/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RecordReadThread.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "event_type.h"
#include "get_test_data.h"
#include "record.h"
#include "record_file.h"
using ::testing::_;
using ::testing::Eq;
using ::testing::Return;
using ::testing::Truly;
using namespace simpleperf;
class RecordBufferTest : public ::testing::Test {
protected:
void PushRecord(uint32_t type, size_t size) {
char* p = buffer_->AllocWriteSpace(size);
ASSERT_NE(p, nullptr);
perf_event_header header;
header.type = type;
header.size = size;
memcpy(p, &header, sizeof(header));
buffer_->FinishWrite();
}
void PopRecord(uint32_t type, uint32_t size) {
char* p = buffer_->GetCurrentRecord();
ASSERT_NE(p, nullptr);
perf_event_header header;
memcpy(&header, p, sizeof(header));
ASSERT_EQ(header.type, type);
ASSERT_EQ(header.size, size);
buffer_->MoveToNextRecord();
}
std::unique_ptr<RecordBuffer> buffer_;
};
TEST_F(RecordBufferTest, fifo) {
for (size_t loop = 0; loop < 10; ++loop) {
buffer_.reset(new RecordBuffer(sizeof(perf_event_header) * 10));
size_t record_size = sizeof(perf_event_header) + loop;
size_t max_records_in_buffer = (buffer_->size() - 2 * record_size + 1) / record_size;
uint32_t write_id = 0;
uint32_t read_id = 0;
while (read_id < 100) {
while (write_id < 100 && write_id - read_id < max_records_in_buffer) {
ASSERT_NO_FATAL_FAILURE(PushRecord(write_id++, record_size));
}
ASSERT_NO_FATAL_FAILURE(PopRecord(read_id++, record_size));
}
}
}
TEST(RecordParser, smoke) {
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(
GetTestData(PERF_DATA_NO_UNWIND));
ASSERT_TRUE(reader);
RecordParser parser(*reader->AttrSection()[0].attr);
auto process_record = [&](std::unique_ptr<Record> record) {
if (record->type() == PERF_RECORD_MMAP || record->type() == PERF_RECORD_COMM ||
record->type() == PERF_RECORD_FORK || record->type() == PERF_RECORD_SAMPLE) {
perf_event_header header;
memcpy(&header, record->Binary(), sizeof(header));
auto read_record_fn = [&](size_t pos, size_t size, void* dest) {
memcpy(dest, record->Binary() + pos, size);
};
size_t pos = parser.GetTimePos(header);
ASSERT_NE(0u, pos);
uint64_t time;
read_record_fn(pos, sizeof(time), &time);
ASSERT_EQ(record->Timestamp(), time);
if (record->type() == PERF_RECORD_SAMPLE) {
pos = parser.GetStackSizePos(read_record_fn);
ASSERT_NE(0u, pos);
uint64_t stack_size;
read_record_fn(pos, sizeof(stack_size), &stack_size);
ASSERT_EQ(static_cast<SampleRecord*>(record.get())->stack_user_data.size, stack_size);
}
}
};
ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr<Record> record) {
process_record(std::move(record));
return !HasFatalFailure();
}));
}
struct MockEventFd : public EventFd {
MockEventFd(const perf_event_attr& attr, int cpu, char* buffer, size_t buffer_size)
: EventFd(attr, -1, "", 0, cpu) {
mmap_data_buffer_ = buffer;
mmap_data_buffer_size_ = buffer_size;
}
MOCK_METHOD2(CreateMappedBuffer, bool(size_t, bool));
MOCK_METHOD0(DestroyMappedBuffer, void());
MOCK_METHOD2(StartPolling, bool(IOEventLoop&, const std::function<bool()>&));
MOCK_METHOD0(StopPolling, bool());
MOCK_METHOD1(GetAvailableMmapDataSize, size_t(size_t&));
MOCK_METHOD1(DiscardMmapData, void(size_t));
};
static perf_event_attr CreateFakeEventAttr() {
const EventType* type = FindEventTypeByName("cpu-clock");
CHECK(type != nullptr);
return CreateDefaultPerfEventAttr(*type);
}
static std::vector<std::unique_ptr<Record>> CreateFakeRecords(
const perf_event_attr& attr, size_t record_count, size_t stack_size, size_t dyn_stack_size) {
std::vector<std::unique_ptr<Record>> records;
for (size_t i = 0; i < record_count; ++i) {
SampleRecord* r = new SampleRecord(attr, i, i + 1, i + 2, i + 3, i + 4, i + 5, i + 6, {},
std::vector<char>(stack_size), dyn_stack_size);
records.emplace_back(r);
}
return records;
}
static size_t AlignToPowerOfTwo(size_t value) {
size_t result = 1;
while (result < value) {
result <<= 1;
}
return result;
}
static inline std::function<bool(size_t&)> SetArg(size_t value) {
return [value](size_t& arg) {
arg = value;
return true;
};
}
TEST(KernelRecordReader, smoke) {
// 1. Create fake records.
perf_event_attr attr = CreateFakeEventAttr();
std::vector<std::unique_ptr<Record>> records = CreateFakeRecords(attr, 10, 0, 0);
// 2. Create a buffer whose size is power of two.
size_t data_size = records.size() * records[0]->size();
std::vector<char> buffer(AlignToPowerOfTwo(data_size));
// 3. Copy record data into the buffer. Since a record in a kernel buffer can be wrapped around
// to the beginning of the buffer, create the case in the first record.
size_t data_pos = buffer.size() - 4;
memcpy(&buffer[data_pos], records[0]->Binary(), 4);
memcpy(&buffer[0], records[0]->Binary() + 4, records[0]->size() - 4);
size_t pos = records[0]->size() - 4;
for (size_t i = 1; i < records.size(); ++i) {
memcpy(&buffer[pos], records[i]->Binary(), records[i]->size());
pos += records[i]->size();
}
// Read records using KernelRecordReader.
MockEventFd event_fd(attr, 0, buffer.data(), buffer.size());
EXPECT_CALL(event_fd, GetAvailableMmapDataSize(Truly(SetArg(data_pos))))
.Times(1).WillOnce(Return(data_size));
EXPECT_CALL(event_fd, DiscardMmapData(Eq(data_size))).Times(1);
KernelRecordReader reader(&event_fd);
RecordParser parser(attr);
ASSERT_TRUE(reader.GetDataFromKernelBuffer());
for (size_t i = 0; i < records.size(); ++i) {
ASSERT_TRUE(reader.MoveToNextRecord(parser));
ASSERT_EQ(reader.RecordHeader().type, records[i]->type());
ASSERT_EQ(reader.RecordHeader().size, records[i]->size());
ASSERT_EQ(reader.RecordTime(), records[i]->Timestamp());
std::vector<char> data(reader.RecordHeader().size);
reader.ReadRecord(0, data.size(), &data[0]);
ASSERT_EQ(0, memcmp(&data[0], records[i]->Binary(), records[i]->size()));
}
ASSERT_FALSE(reader.MoveToNextRecord(parser));
}
class RecordReadThreadTest : public ::testing::Test {
protected:
std::vector<EventFd*> CreateFakeEventFds(const perf_event_attr& attr, size_t event_fd_count) {
size_t records_per_fd = records_.size() / event_fd_count;
buffers_.clear();
buffers_.resize(event_fd_count);
for (size_t i = 0; i < records_.size(); ++i) {
std::vector<char>& buffer = buffers_[i % event_fd_count];
buffer.insert(buffer.end(), records_[i]->Binary(),
records_[i]->Binary() + records_[i]->size());
}
size_t data_size = records_per_fd * records_[0]->size();
size_t buffer_size = AlignToPowerOfTwo(data_size);
for (auto& buffer : buffers_) {
buffer.resize(buffer_size);
}
event_fds_.resize(event_fd_count);
for (size_t i = 0; i < event_fd_count; ++i) {
event_fds_[i].reset(new MockEventFd(attr, i, buffers_[i].data(), buffer_size));
EXPECT_CALL(*event_fds_[i], CreateMappedBuffer(_, _)).Times(1).WillOnce(Return(true));
EXPECT_CALL(*event_fds_[i], StartPolling(_, _)).Times(1).WillOnce(Return(true));
EXPECT_CALL(*event_fds_[i], GetAvailableMmapDataSize(Truly(SetArg(0)))).Times(1)
.WillOnce(Return(data_size));
EXPECT_CALL(*event_fds_[i], DiscardMmapData(Eq(data_size))).Times(1);
EXPECT_CALL(*event_fds_[i], StopPolling()).Times(1).WillOnce(Return(true));
EXPECT_CALL(*event_fds_[i], DestroyMappedBuffer()).Times(1);
}
std::vector<EventFd*> result;
for (auto& fd : event_fds_) {
result.push_back(fd.get());
}
return result;
}
std::vector<std::unique_ptr<Record>> records_;
std::vector<std::vector<char>> buffers_;
std::vector<std::unique_ptr<MockEventFd>> event_fds_;
};
TEST_F(RecordReadThreadTest, handle_cmds) {
perf_event_attr attr = CreateFakeEventAttr();
records_ = CreateFakeRecords(attr, 2, 0, 0);
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, 2);
RecordReadThread thread(128 * 1024, event_fds[0]->attr(), 1, 1);
IOEventLoop loop;
bool has_notify = false;
auto callback = [&]() {
has_notify = true;
return loop.ExitLoop();
};
ASSERT_TRUE(thread.RegisterDataCallback(loop, callback));
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(loop.RunLoop());
ASSERT_TRUE(has_notify);
ASSERT_TRUE(thread.GetRecord());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
ASSERT_TRUE(thread.StopReadThread());
}
TEST_F(RecordReadThreadTest, read_records) {
perf_event_attr attr = CreateFakeEventAttr();
RecordReadThread thread(128 * 1024, attr, 1, 1);
IOEventLoop loop;
size_t record_index;
auto callback = [&]() {
while (true) {
std::unique_ptr<Record> r = thread.GetRecord();
if (!r) {
break;
}
std::unique_ptr<Record>& expected = records_[record_index++];
if (r->size() != expected->size() ||
memcmp(r->Binary(), expected->Binary(), r->size()) != 0) {
return false;
}
}
return loop.ExitLoop();
};
ASSERT_TRUE(thread.RegisterDataCallback(loop, callback));
for (size_t event_fd_count = 1; event_fd_count < 10; ++event_fd_count) {
records_ = CreateFakeRecords(attr, event_fd_count * 10, 0, 0);
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, event_fd_count);
record_index = 0;
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(loop.RunLoop());
ASSERT_EQ(record_index, records_.size());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
}
}
TEST_F(RecordReadThreadTest, process_sample_record) {
perf_event_attr attr = CreateFakeEventAttr();
attr.sample_type |= PERF_SAMPLE_STACK_USER;
attr.sample_stack_user = 64 * 1024;
size_t record_buffer_size = 128 * 1024;
RecordReadThread thread(record_buffer_size, attr, 1, 1);
IOEventLoop loop;
ASSERT_TRUE(thread.RegisterDataCallback(loop, []() { return true; }));
auto read_record = [&](std::unique_ptr<Record>& r) {
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, 1);
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
r = thread.GetRecord();
};
// When the free space in record buffer is above low level, only invalid stack data in sample
// records is removed.
thread.SetBufferLevels(0, 0);
records_ = CreateFakeRecords(attr, 1, 8192, 8192);
std::unique_ptr<Record> r;
read_record(r);
ASSERT_TRUE(r);
SampleRecord* sr = static_cast<SampleRecord*>(r.get());
ASSERT_EQ(sr->stack_user_data.size, 8192u);
ASSERT_EQ(sr->stack_user_data.dyn_size, 8192u);
records_ = CreateFakeRecords(attr, 1, 8192, 4096);
read_record(r);
ASSERT_TRUE(r);
sr = static_cast<SampleRecord*>(r.get());
ASSERT_EQ(sr->stack_user_data.size, 4096u);
ASSERT_EQ(sr->stack_user_data.dyn_size, 4096u);
// When the free space in record buffer is below low level but above critical level, only
// 1K stack data in sample records is left.
thread.SetBufferLevels(record_buffer_size, 0);
read_record(r);
ASSERT_TRUE(r);
sr = static_cast<SampleRecord*>(r.get());
ASSERT_EQ(sr->stack_user_data.size, 1024u);
ASSERT_EQ(sr->stack_user_data.dyn_size, 1024u);
// When the free space in record buffer is below critical level, sample records are dropped.
thread.SetBufferLevels(record_buffer_size, record_buffer_size);
read_record(r);
ASSERT_FALSE(r);
size_t lost_samples;
size_t lost_non_samples;
size_t cut_stack_samples;
thread.GetLostRecords(&lost_samples, &lost_non_samples, &cut_stack_samples);
ASSERT_EQ(lost_samples, 1u);
ASSERT_EQ(lost_non_samples, 0u);
ASSERT_EQ(cut_stack_samples, 1u);
}
// Test that the data notification exists until the RecordBuffer is empty. So we can read all
// records even if reading one record at a time.
TEST_F(RecordReadThreadTest, has_data_notification_until_buffer_empty) {
perf_event_attr attr = CreateFakeEventAttr();
RecordReadThread thread(128 * 1024, attr, 1, 1);
IOEventLoop loop;
size_t record_index = 0;
auto read_one_record = [&]() {
std::unique_ptr<Record> r = thread.GetRecord();
if (!r) {
return loop.ExitLoop();
}
std::unique_ptr<Record>& expected = records_[record_index++];
if (r->size() != expected->size() || memcmp(r->Binary(), expected->Binary(), r->size()) != 0) {
return false;
}
return true;
};
ASSERT_TRUE(thread.RegisterDataCallback(loop, read_one_record));
records_ = CreateFakeRecords(attr, 2, 0, 0);
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, 1);
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(loop.RunLoop());
ASSERT_EQ(record_index, records_.size());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
}