/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "IOEventLoop.h"
#include <gtest/gtest.h>
#include <atomic>
#include <chrono>
#include <thread>
#include <android-base/logging.h>
TEST(IOEventLoop, read) {
int fd[2];
ASSERT_EQ(0, pipe(fd));
IOEventLoop loop;
int count = 0;
int retry_count = 0;
ASSERT_NE(nullptr, loop.AddReadEvent(fd[0], [&]() {
while (true) {
char c;
int ret = read(fd[0], &c, 1);
if (ret == 1) {
if (++count == 100) {
return loop.ExitLoop();
}
} else if (ret == -1 && errno == EAGAIN) {
retry_count++;
break;
} else {
return false;
}
}
return true;
}));
std::thread thread([&]() {
for (int i = 0; i < 100; ++i) {
usleep(1000);
char c;
CHECK_EQ(write(fd[1], &c, 1), 1);
}
});
ASSERT_TRUE(loop.RunLoop());
thread.join();
ASSERT_EQ(100, count);
// Test retry_count to make sure we are not doing blocking read.
ASSERT_GT(retry_count, 0);
close(fd[0]);
close(fd[1]);
}
TEST(IOEventLoop, write) {
int fd[2];
ASSERT_EQ(0, pipe(fd));
IOEventLoop loop;
int count = 0;
ASSERT_NE(nullptr, loop.AddWriteEvent(fd[1], [&]() {
int ret = 0;
char buf[4096];
while ((ret = write(fd[1], buf, sizeof(buf))) > 0) {
}
if (ret == -1 && errno == EAGAIN) {
if (++count == 100) {
loop.ExitLoop();
}
return true;
}
return false;
}));
std::thread thread([&]() {
usleep(500000);
while (true) {
usleep(1000);
char buf[4096];
if (read(fd[0], buf, sizeof(buf)) <= 0) {
break;
}
}
});
ASSERT_TRUE(loop.RunLoop());
// close fd[1] to make read thread stop.
close(fd[1]);
thread.join();
close(fd[0]);
ASSERT_EQ(100, count);
}
TEST(IOEventLoop, signal) {
IOEventLoop loop;
int count = 0;
ASSERT_TRUE(loop.AddSignalEvent(SIGINT, [&]() {
if (++count == 100) {
loop.ExitLoop();
}
return true;
}));
std::atomic<bool> stop_thread(false);
std::thread thread([&]() {
while (!stop_thread) {
usleep(1000);
kill(getpid(), SIGINT);
}
});
ASSERT_TRUE(loop.RunLoop());
stop_thread = true;
thread.join();
ASSERT_EQ(100, count);
}
void TestPeriodicEvents(int period_in_us, int iterations, bool precise) {
timeval tv;
tv.tv_sec = period_in_us / 1000000;
tv.tv_usec = period_in_us % 1000000;
int count = 0;
IOEventLoop loop;
if (precise) {
ASSERT_TRUE(loop.UsePreciseTimer());
}
ASSERT_TRUE(loop.AddPeriodicEvent(tv, [&]() {
if (++count == iterations) {
loop.ExitLoop();
}
return true;
}));
auto start_time = std::chrono::steady_clock::now();
ASSERT_TRUE(loop.RunLoop());
auto end_time = std::chrono::steady_clock::now();
ASSERT_EQ(iterations, count);
double time_used = std::chrono::duration_cast<std::chrono::duration<double>>(
end_time - start_time).count();
double min_time_in_sec = period_in_us / 1e6 * iterations;
double max_time_in_sec = min_time_in_sec + (precise ? 0.1 : 1);
ASSERT_GE(time_used, min_time_in_sec);
ASSERT_LT(time_used, max_time_in_sec);
}
TEST(IOEventLoop, periodic) {
TestPeriodicEvents(1000000, 1, false);
}
TEST(IOEventLoop, periodic_precise) {
TestPeriodicEvents(1000, 100, true);
}
TEST(IOEventLoop, read_and_del_event) {
int fd[2];
ASSERT_EQ(0, pipe(fd));
IOEventLoop loop;
int count = 0;
IOEventRef ref = loop.AddReadEvent(fd[0], [&]() {
count++;
return IOEventLoop::DelEvent(ref);
});
ASSERT_NE(nullptr, ref);
std::thread thread([&]() {
for (int i = 0; i < 100; ++i) {
usleep(1000);
char c;
CHECK_EQ(write(fd[1], &c, 1), 1);
}
});
ASSERT_TRUE(loop.RunLoop());
thread.join();
ASSERT_EQ(1, count);
close(fd[0]);
close(fd[1]);
}
TEST(IOEventLoop, disable_enable_event) {
int fd[2];
ASSERT_EQ(0, pipe(fd));
IOEventLoop loop;
int count = 0;
IOEventRef ref = loop.AddWriteEvent(fd[1], [&]() {
count++;
return IOEventLoop::DisableEvent(ref);
});
ASSERT_NE(nullptr, ref);
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 500000;
int periodic_count = 0;
ASSERT_TRUE(loop.AddPeriodicEvent(tv, [&]() {
periodic_count++;
if (periodic_count == 1) {
if (count != 1) {
return false;
}
return IOEventLoop::EnableEvent(ref);
} else {
if (count != 2) {
return false;
}
return loop.ExitLoop();
}
}));
ASSERT_TRUE(loop.RunLoop());
ASSERT_EQ(2, count);
ASSERT_EQ(2, periodic_count);
close(fd[0]);
close(fd[1]);
}
TEST(IOEventLoop, disable_enable_periodic_event) {
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 200000;
IOEventLoop loop;
IOEventRef wait_ref = loop.AddPeriodicEvent(tv, [&]() { return loop.ExitLoop(); });
ASSERT_TRUE(wait_ref != nullptr);
ASSERT_TRUE(loop.DisableEvent(wait_ref));
tv.tv_sec = 0;
tv.tv_usec = 100000;
size_t periodic_count = 0;
IOEventRef ref = loop.AddPeriodicEvent(tv, [&]() {
if (!loop.DisableEvent(ref)) {
return false;
}
periodic_count++;
if (periodic_count < 2u) {
return loop.EnableEvent(ref);
}
return loop.EnableEvent(wait_ref);
});
ASSERT_TRUE(loop.RunLoop());
ASSERT_EQ(2u, periodic_count);
}
TEST(IOEventLoop, exit_before_loop) {
IOEventLoop loop;
ASSERT_TRUE(loop.ExitLoop());
}