#include <cstring>
#include "gtest/gtest.h"
#include "chre/util/unique_ptr.h"
using chre::UniquePtr;
using chre::MakeUnique;
using chre::MakeUniqueZeroFill;
struct Value {
Value(int value) : value(value) {
constructionCounter++;
}
~Value() {
constructionCounter--;
}
Value& operator=(Value&& other) {
value = other.value;
return *this;
}
int value;
static int constructionCounter;
};
int Value::constructionCounter = 0;
TEST(UniquePtr, Construct) {
UniquePtr<Value> myInt = MakeUnique<Value>(0xcafe);
ASSERT_FALSE(myInt.isNull());
EXPECT_EQ(myInt.get()->value, 0xcafe);
EXPECT_EQ(myInt->value, 0xcafe);
EXPECT_EQ((*myInt).value, 0xcafe);
EXPECT_EQ(myInt[0].value, 0xcafe);
}
struct BigArray {
int x[2048];
};
TEST(UniquePtr, MakeUniqueZeroFill) {
BigArray baseline = {};
auto myArray = MakeUniqueZeroFill<BigArray>();
ASSERT_FALSE(myArray.isNull());
// Note that this doesn't actually test things properly, because we don't
// guarantee that malloc is not already giving us zeroed out memory. To
// properly do it, we could inject the allocator, but this function is simple
// enough that it's not really worth the effort.
EXPECT_EQ(std::memcmp(&baseline, myArray.get(), sizeof(baseline)), 0);
}
TEST(UniquePtr, MoveConstruct) {
UniquePtr<Value> myInt = MakeUnique<Value>(0xcafe);
ASSERT_FALSE(myInt.isNull());
Value *value = myInt.get();
UniquePtr<Value> moved(std::move(myInt));
EXPECT_EQ(moved.get(), value);
EXPECT_EQ(myInt.get(), nullptr);
}
TEST(UniquePtr, Move) {
Value::constructionCounter = 0;
{
UniquePtr<Value> myInt = MakeUnique<Value>(0xcafe);
ASSERT_FALSE(myInt.isNull());
EXPECT_EQ(Value::constructionCounter, 1);
UniquePtr<Value> myMovedInt = MakeUnique<Value>(0);
ASSERT_FALSE(myMovedInt.isNull());
EXPECT_EQ(Value::constructionCounter, 2);
myMovedInt = std::move(myInt);
ASSERT_FALSE(myMovedInt.isNull());
ASSERT_TRUE(myInt.isNull());
EXPECT_EQ(myMovedInt.get()->value, 0xcafe);
}
EXPECT_EQ(Value::constructionCounter, 0);
}
TEST(UniquePtr, Release) {
Value::constructionCounter = 0;
Value *value1, *value2;
{
UniquePtr<Value> myInt = MakeUnique<Value>(0xcafe);
ASSERT_FALSE(myInt.isNull());
EXPECT_EQ(Value::constructionCounter, 1);
value1 = myInt.get();
EXPECT_NE(value1, nullptr);
value2 = myInt.release();
EXPECT_EQ(value1, value2);
EXPECT_EQ(myInt.get(), nullptr);
EXPECT_TRUE(myInt.isNull());
}
EXPECT_EQ(Value::constructionCounter, 1);
EXPECT_EQ(value2->value, 0xcafe);
value2->~Value();
chre::memoryFree(value2);
}
TEST(UniquePtr, Reset) {
Value::constructionCounter = 0;
{
UniquePtr<Value> myInt = MakeUnique<Value>(0xcafe);
EXPECT_EQ(myInt.get()->value, 0xcafe);
EXPECT_EQ(Value::constructionCounter, 1);
myInt.reset(nullptr);
EXPECT_EQ(myInt.get(), nullptr);
EXPECT_EQ(Value::constructionCounter, 0);
myInt = MakeUnique<Value>(0xcafe);
UniquePtr<Value> myInt2 = MakeUnique<Value>(0xface);
EXPECT_EQ(Value::constructionCounter, 2);
myInt.reset(myInt2.release());
EXPECT_EQ(Value::constructionCounter, 1);
EXPECT_EQ(myInt.get()->value, 0xface);
EXPECT_EQ(myInt2.get(), nullptr);
myInt.reset();
EXPECT_EQ(myInt.get(), nullptr);
}
EXPECT_EQ(Value::constructionCounter, 0);
}
TEST(UniquePtr, EqualityOperator) {
Value::constructionCounter = 0;
{
UniquePtr<Value> myInt = MakeUnique<Value>(0xcafe);
EXPECT_TRUE(myInt != nullptr);
myInt.reset();
EXPECT_TRUE(myInt == nullptr);
}
EXPECT_EQ(Value::constructionCounter, 0);
}