C++程序  |  348行  |  9.42 KB

/******************************************************************************
 *
 *  Copyright 2014 The Android Open Source Project
 *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights
 *                        reserved.
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at:
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 ******************************************************************************/

/*******************************************************************************
  $Revision: #1 $
 ******************************************************************************/

/** @file
@ingroup codec_internal
*/

/**@addgroup codec_internal*/
/**@{*/

/*
 * Performs an 8-point Type-II scaled DCT using the Arai-Agui-Nakajima
 * factorization. The scaling factors are folded into the windowing
 * constants. 29 adds and 5 16x32 multiplies per 8 samples.
 */

#include "oi_codec_sbc_private.h"

#define AAN_C4_FIX (759250125) /* S1.30  759250125   0.707107*/

#define AAN_C6_FIX (410903207) /* S1.30  410903207   0.382683*/

#define AAN_Q0_FIX (581104888) /* S1.30  581104888   0.541196*/

#define AAN_Q1_FIX (1402911301) /* S1.30 1402911301   1.306563*/

/** Scales x by y bits to the right, adding a rounding factor.
 */
#ifndef SCALE
#define SCALE(x, y) (((x) + (1 << ((y)-1))) >> (y))
#endif

/**
 * Default C language implementation of a 32x32->32 multiply. This function may
 * be replaced by a platform-specific version for speed.
 *
 * @param u A signed 32-bit multiplicand
 * @param v A signed 32-bit multiplier

 * @return  A signed 32-bit value corresponding to the 32 most significant bits
 * of the 64-bit product of u and v.
 */
INLINE int32_t default_mul_32s_32s_hi(int32_t u, int32_t v) {
  uint32_t u0, v0;
  int32_t u1, v1, w1, w2, t;

  u0 = u & 0xFFFF;
  u1 = u >> 16;
  v0 = v & 0xFFFF;
  v1 = v >> 16;
  t = u0 * v0;
  t = u1 * v0 + ((uint32_t)t >> 16);
  w1 = t & 0xFFFF;
  w2 = t >> 16;
  w1 = u0 * v1 + w1;
  return u1 * v1 + w2 + (w1 >> 16);
}

#define MUL_32S_32S_HI(_x, _y) default_mul_32s_32s_hi(_x, _y)

#ifdef DEBUG_DCT
PRIVATE void float_dct2_8(float* RESTRICT out, int32_t const* RESTRICT in) {
#define FIX(x, bits) \
  (((int)floor(0.5f + ((x) * ((float)(1 << bits))))) / ((float)(1 << bits)))
#define FLOAT_BUTTERFLY(x, y) \
  x += y;                     \
  y = x - (y * 2);            \
  OI_ASSERT(VALID_INT32(x));  \
  OI_ASSERT(VALID_INT32(y));
#define FLOAT_MULT_DCT(K, sample) (FIX(K, 20) * sample)
#define FLOAT_SCALE(x, y) (((x) / (double)(1 << (y))))

  double L00, L01, L02, L03, L04, L05, L06, L07;
  double L25;

  double in0, in1, in2, in3;
  double in4, in5, in6, in7;

  in0 = FLOAT_SCALE(in[0], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in0));
  in1 = FLOAT_SCALE(in[1], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in1));
  in2 = FLOAT_SCALE(in[2], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in2));
  in3 = FLOAT_SCALE(in[3], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in3));
  in4 = FLOAT_SCALE(in[4], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in4));
  in5 = FLOAT_SCALE(in[5], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in5));
  in6 = FLOAT_SCALE(in[6], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in6));
  in7 = FLOAT_SCALE(in[7], DCTII_8_SHIFT_IN);
  OI_ASSERT(VALID_INT32(in7));

  L00 = (in0 + in7);
  OI_ASSERT(VALID_INT32(L00));
  L01 = (in1 + in6);
  OI_ASSERT(VALID_INT32(L01));
  L02 = (in2 + in5);
  OI_ASSERT(VALID_INT32(L02));
  L03 = (in3 + in4);
  OI_ASSERT(VALID_INT32(L03));

  L04 = (in3 - in4);
  OI_ASSERT(VALID_INT32(L04));
  L05 = (in2 - in5);
  OI_ASSERT(VALID_INT32(L05));
  L06 = (in1 - in6);
  OI_ASSERT(VALID_INT32(L06));
  L07 = (in0 - in7);
  OI_ASSERT(VALID_INT32(L07));

  FLOAT_BUTTERFLY(L00, L03);
  FLOAT_BUTTERFLY(L01, L02);

  L02 += L03;
  OI_ASSERT(VALID_INT32(L02));

  L02 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L02);
  OI_ASSERT(VALID_INT32(L02));

  FLOAT_BUTTERFLY(L00, L01);

  out[0] = (float)FLOAT_SCALE(L00, DCTII_8_SHIFT_0);
  OI_ASSERT(VALID_INT16(out[0]));
  out[4] = (float)FLOAT_SCALE(L01, DCTII_8_SHIFT_4);
  OI_ASSERT(VALID_INT16(out[4]));

  FLOAT_BUTTERFLY(L03, L02);
  out[6] = (float)FLOAT_SCALE(L02, DCTII_8_SHIFT_6);
  OI_ASSERT(VALID_INT16(out[6]));
  out[2] = (float)FLOAT_SCALE(L03, DCTII_8_SHIFT_2);
  OI_ASSERT(VALID_INT16(out[2]));

  L04 += L05;
  OI_ASSERT(VALID_INT32(L04));
  L05 += L06;
  OI_ASSERT(VALID_INT32(L05));
  L06 += L07;
  OI_ASSERT(VALID_INT32(L06));

  L04 /= 2;
  L05 /= 2;
  L06 /= 2;
  L07 /= 2;

  L05 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L05);
  OI_ASSERT(VALID_INT32(L05));

  L25 = L06 - L04;
  OI_ASSERT(VALID_INT32(L25));
  L25 = FLOAT_MULT_DCT(AAN_C6_FLOAT, L25);
  OI_ASSERT(VALID_INT32(L25));

  L04 = FLOAT_MULT_DCT(AAN_Q0_FLOAT, L04);
  OI_ASSERT(VALID_INT32(L04));
  L04 -= L25;
  OI_ASSERT(VALID_INT32(L04));

  L06 = FLOAT_MULT_DCT(AAN_Q1_FLOAT, L06);
  OI_ASSERT(VALID_INT32(L06));
  L06 -= L25;
  OI_ASSERT(VALID_INT32(L25));

  FLOAT_BUTTERFLY(L07, L05);

  FLOAT_BUTTERFLY(L05, L04);
  out[3] = (float)(FLOAT_SCALE(L04, DCTII_8_SHIFT_3 - 1));
  OI_ASSERT(VALID_INT16(out[3]));
  out[5] = (float)(FLOAT_SCALE(L05, DCTII_8_SHIFT_5 - 1));
  OI_ASSERT(VALID_INT16(out[5]));

  FLOAT_BUTTERFLY(L07, L06);
  out[7] = (float)(FLOAT_SCALE(L06, DCTII_8_SHIFT_7 - 1));
  OI_ASSERT(VALID_INT16(out[7]));
  out[1] = (float)(FLOAT_SCALE(L07, DCTII_8_SHIFT_1 - 1));
  OI_ASSERT(VALID_INT16(out[1]));
}
#undef BUTTERFLY
#endif

/*
 * This function calculates the AAN DCT. Its inputs are in S16.15 format, as
 * returned by OI_SBC_Dequant. In practice, abs(in[x]) < 52429.0 / 1.38
 * (1244918057 integer). The function it computes is an approximation to the
 * array defined by:
 *
 * diag(aan_s) * AAN= C2
 *
 *   or
 *
 * AAN = diag(1/aan_s) * C2
 *
 * where C2 is as it is defined in the comment at the head of this file, and
 *
 * aan_s[i] = aan_s = 1/(2*cos(i*pi/16)) with i = 1..7, aan_s[0] = 1;
 *
 * aan_s[i] = [ 1.000  0.510  0.541  0.601  0.707  0.900  1.307  2.563 ]
 *
 * The output ranges are shown as follows:
 *
 * Let Y[0..7] = AAN * X[0..7]
 *
 * Without loss of generality, assume the input vector X consists of elements
 * between -1 and 1. The maximum possible value of a given output element occurs
 * with some particular combination of input vector elements each of which is -1
 * or 1. Consider the computation of Y[i]. Y[i] = sum t=0..7 of AAN[t,i]*X[i]. Y
 * is maximized if the sign of X[i] matches the sign of AAN[t,i], ensuring a
 * positive contribution to the sum. Equivalently, one may simply sum
 * abs(AAN)[t,i] over t to get the maximum possible value of Y[i].
 *
 * This yields approximately:
 *  [8.00  10.05   9.66   8.52   8.00   5.70   4.00   2.00]
 *
 * Given the maximum magnitude sensible input value of +/-37992, this yields the
 * following vector of maximum output magnitudes:
 *
 * [ 303936  381820  367003  323692  303936  216555  151968   75984 ]
 *
 * Ultimately, these values must fit into 16 bit signed integers, so they must
 * be scaled. A non-uniform scaling helps maximize the kept precision. The
 * relative number of extra bits of precision maintainable with respect to the
 * largest value is given here:
 *
 * [ 0  0  0  0  0  0  1  2 ]
 *
 */
PRIVATE void dct2_8(SBC_BUFFER_T* RESTRICT out, int32_t const* RESTRICT in) {
#define BUTTERFLY(x, y) \
  x += (y);             \
  (y) = (x) - ((y) << 1);
#define FIX_MULT_DCT(K, x) (MUL_32S_32S_HI(K, x) << 2)

  int32_t L00, L01, L02, L03, L04, L05, L06, L07;
  int32_t L25;

  int32_t in0, in1, in2, in3;
  int32_t in4, in5, in6, in7;

#if DCTII_8_SHIFT_IN != 0
  in0 = SCALE(in[0], DCTII_8_SHIFT_IN);
  in1 = SCALE(in[1], DCTII_8_SHIFT_IN);
  in2 = SCALE(in[2], DCTII_8_SHIFT_IN);
  in3 = SCALE(in[3], DCTII_8_SHIFT_IN);
  in4 = SCALE(in[4], DCTII_8_SHIFT_IN);
  in5 = SCALE(in[5], DCTII_8_SHIFT_IN);
  in6 = SCALE(in[6], DCTII_8_SHIFT_IN);
  in7 = SCALE(in[7], DCTII_8_SHIFT_IN);
#else
  in0 = in[0];
  in1 = in[1];
  in2 = in[2];
  in3 = in[3];
  in4 = in[4];
  in5 = in[5];
  in6 = in[6];
  in7 = in[7];
#endif

  L00 = in0 + in7;
  L01 = in1 + in6;
  L02 = in2 + in5;
  L03 = in3 + in4;

  L04 = in3 - in4;
  L05 = in2 - in5;
  L06 = in1 - in6;
  L07 = in0 - in7;

  BUTTERFLY(L00, L03);
  BUTTERFLY(L01, L02);

  L02 += L03;

  L02 = FIX_MULT_DCT(AAN_C4_FIX, L02);

  BUTTERFLY(L00, L01);

  out[0] = (int16_t)SCALE(L00, DCTII_8_SHIFT_0);
  out[4] = (int16_t)SCALE(L01, DCTII_8_SHIFT_4);

  BUTTERFLY(L03, L02);
  out[6] = (int16_t)SCALE(L02, DCTII_8_SHIFT_6);
  out[2] = (int16_t)SCALE(L03, DCTII_8_SHIFT_2);

  L04 += L05;
  L05 += L06;
  L06 += L07;

  L04 /= 2;
  L05 /= 2;
  L06 /= 2;
  L07 /= 2;

  L05 = FIX_MULT_DCT(AAN_C4_FIX, L05);

  L25 = L06 - L04;
  L25 = FIX_MULT_DCT(AAN_C6_FIX, L25);

  L04 = FIX_MULT_DCT(AAN_Q0_FIX, L04);
  L04 -= L25;

  L06 = FIX_MULT_DCT(AAN_Q1_FIX, L06);
  L06 -= L25;

  BUTTERFLY(L07, L05);

  BUTTERFLY(L05, L04);
  out[3] = (int16_t)SCALE(L04, DCTII_8_SHIFT_3 - 1);
  out[5] = (int16_t)SCALE(L05, DCTII_8_SHIFT_5 - 1);

  BUTTERFLY(L07, L06);
  out[7] = (int16_t)SCALE(L06, DCTII_8_SHIFT_7 - 1);
  out[1] = (int16_t)SCALE(L07, DCTII_8_SHIFT_1 - 1);
#undef BUTTERFLY

#ifdef DEBUG_DCT
  {
    float float_out[8];
    float_dct2_8(float_out, in);
  }
#endif
}

/**@}*/