// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ecdsa
import (
"bufio"
"compress/bzip2"
"crypto/elliptic"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"hash"
"io"
"math/big"
"os"
"strings"
"testing"
)
func testKeyGeneration(t *testing.T, c elliptic.Curve, tag string) {
priv, err := GenerateKey(c, rand.Reader)
if err != nil {
t.Errorf("%s: error: %s", tag, err)
return
}
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
t.Errorf("%s: public key invalid: %s", tag, err)
}
}
func TestKeyGeneration(t *testing.T) {
testKeyGeneration(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
testKeyGeneration(t, elliptic.P256(), "p256")
testKeyGeneration(t, elliptic.P384(), "p384")
testKeyGeneration(t, elliptic.P521(), "p521")
}
func BenchmarkSignP256(b *testing.B) {
b.ResetTimer()
p256 := elliptic.P256()
hashed := []byte("testing")
priv, _ := GenerateKey(p256, rand.Reader)
b.ReportAllocs()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
_, _, _ = Sign(rand.Reader, priv, hashed)
}
})
}
func BenchmarkSignP384(b *testing.B) {
b.ResetTimer()
p384 := elliptic.P384()
hashed := []byte("testing")
priv, _ := GenerateKey(p384, rand.Reader)
b.ReportAllocs()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
_, _, _ = Sign(rand.Reader, priv, hashed)
}
})
}
func BenchmarkVerifyP256(b *testing.B) {
b.ResetTimer()
p256 := elliptic.P256()
hashed := []byte("testing")
priv, _ := GenerateKey(p256, rand.Reader)
r, s, _ := Sign(rand.Reader, priv, hashed)
b.ReportAllocs()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
Verify(&priv.PublicKey, hashed, r, s)
}
})
}
func BenchmarkKeyGeneration(b *testing.B) {
b.ResetTimer()
p256 := elliptic.P256()
b.ReportAllocs()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
GenerateKey(p256, rand.Reader)
}
})
}
func testSignAndVerify(t *testing.T, c elliptic.Curve, tag string) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r, s, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if !Verify(&priv.PublicKey, hashed, r, s) {
t.Errorf("%s: Verify failed", tag)
}
hashed[0] ^= 0xff
if Verify(&priv.PublicKey, hashed, r, s) {
t.Errorf("%s: Verify always works!", tag)
}
}
func TestSignAndVerify(t *testing.T) {
testSignAndVerify(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
testSignAndVerify(t, elliptic.P256(), "p256")
testSignAndVerify(t, elliptic.P384(), "p384")
testSignAndVerify(t, elliptic.P521(), "p521")
}
func testNonceSafety(t *testing.T, c elliptic.Curve, tag string) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r0, s0, err := Sign(zeroReader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
hashed = []byte("testing...")
r1, s1, err := Sign(zeroReader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if s0.Cmp(s1) == 0 {
// This should never happen.
t.Errorf("%s: the signatures on two different messages were the same", tag)
}
if r0.Cmp(r1) == 0 {
t.Errorf("%s: the nonce used for two different messages was the same", tag)
}
}
func TestNonceSafety(t *testing.T) {
testNonceSafety(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
testNonceSafety(t, elliptic.P256(), "p256")
testNonceSafety(t, elliptic.P384(), "p384")
testNonceSafety(t, elliptic.P521(), "p521")
}
func testINDCCA(t *testing.T, c elliptic.Curve, tag string) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r0, s0, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
r1, s1, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if s0.Cmp(s1) == 0 {
t.Errorf("%s: two signatures of the same message produced the same result", tag)
}
if r0.Cmp(r1) == 0 {
t.Errorf("%s: two signatures of the same message produced the same nonce", tag)
}
}
func TestINDCCA(t *testing.T) {
testINDCCA(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
testINDCCA(t, elliptic.P256(), "p256")
testINDCCA(t, elliptic.P384(), "p384")
testINDCCA(t, elliptic.P521(), "p521")
}
func fromHex(s string) *big.Int {
r, ok := new(big.Int).SetString(s, 16)
if !ok {
panic("bad hex")
}
return r
}
func TestVectors(t *testing.T) {
// This test runs the full set of NIST test vectors from
// https://csrc.nist.gov/groups/STM/cavp/documents/dss/186-3ecdsatestvectors.zip
//
// The SigVer.rsp file has been edited to remove test vectors for
// unsupported algorithms and has been compressed.
if testing.Short() {
return
}
f, err := os.Open("testdata/SigVer.rsp.bz2")
if err != nil {
t.Fatal(err)
}
buf := bufio.NewReader(bzip2.NewReader(f))
lineNo := 1
var h hash.Hash
var msg []byte
var hashed []byte
var r, s *big.Int
pub := new(PublicKey)
for {
line, err := buf.ReadString('\n')
if len(line) == 0 {
if err == io.EOF {
break
}
t.Fatalf("error reading from input: %s", err)
}
lineNo++
// Need to remove \r\n from the end of the line.
if !strings.HasSuffix(line, "\r\n") {
t.Fatalf("bad line ending (expected \\r\\n) on line %d", lineNo)
}
line = line[:len(line)-2]
if len(line) == 0 || line[0] == '#' {
continue
}
if line[0] == '[' {
line = line[1 : len(line)-1]
parts := strings.SplitN(line, ",", 2)
switch parts[0] {
case "P-224":
pub.Curve = elliptic.P224()
case "P-256":
pub.Curve = elliptic.P256()
case "P-384":
pub.Curve = elliptic.P384()
case "P-521":
pub.Curve = elliptic.P521()
default:
pub.Curve = nil
}
switch parts[1] {
case "SHA-1":
h = sha1.New()
case "SHA-224":
h = sha256.New224()
case "SHA-256":
h = sha256.New()
case "SHA-384":
h = sha512.New384()
case "SHA-512":
h = sha512.New()
default:
h = nil
}
continue
}
if h == nil || pub.Curve == nil {
continue
}
switch {
case strings.HasPrefix(line, "Msg = "):
if msg, err = hex.DecodeString(line[6:]); err != nil {
t.Fatalf("failed to decode message on line %d: %s", lineNo, err)
}
case strings.HasPrefix(line, "Qx = "):
pub.X = fromHex(line[5:])
case strings.HasPrefix(line, "Qy = "):
pub.Y = fromHex(line[5:])
case strings.HasPrefix(line, "R = "):
r = fromHex(line[4:])
case strings.HasPrefix(line, "S = "):
s = fromHex(line[4:])
case strings.HasPrefix(line, "Result = "):
expected := line[9] == 'P'
h.Reset()
h.Write(msg)
hashed := h.Sum(hashed[:0])
if Verify(pub, hashed, r, s) != expected {
t.Fatalf("incorrect result on line %d", lineNo)
}
default:
t.Fatalf("unknown variable on line %d: %s", lineNo, line)
}
}
}
func testNegativeInputs(t *testing.T, curve elliptic.Curve, tag string) {
key, err := GenerateKey(curve, rand.Reader)
if err != nil {
t.Errorf("failed to generate key for %q", tag)
}
var hash [32]byte
r := new(big.Int).SetInt64(1)
r.Lsh(r, 550 /* larger than any supported curve */)
r.Neg(r)
if Verify(&key.PublicKey, hash[:], r, r) {
t.Errorf("bogus signature accepted for %q", tag)
}
}
func TestNegativeInputs(t *testing.T) {
testNegativeInputs(t, elliptic.P224(), "p224")
testNegativeInputs(t, elliptic.P256(), "p256")
testNegativeInputs(t, elliptic.P384(), "p384")
testNegativeInputs(t, elliptic.P521(), "p521")
}
func TestZeroHashSignature(t *testing.T) {
zeroHash := make([]byte, 64)
for _, curve := range []elliptic.Curve{elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521()} {
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
// Sign a hash consisting of all zeros.
r, s, err := Sign(rand.Reader, privKey, zeroHash)
if err != nil {
panic(err)
}
// Confirm that it can be verified.
if !Verify(&privKey.PublicKey, zeroHash, r, s) {
t.Errorf("zero hash signature verify failed for %T", curve)
}
}
}