/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "VtsOffloadControlV1_0TargetTest"
#include <VtsHalHidlTargetCallbackBase.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
#include <android-base/stringprintf.h>
#include <android-base/unique_fd.h>
#include <android/hardware/tetheroffload/config/1.0/IOffloadConfig.h>
#include <android/hardware/tetheroffload/control/1.0/IOffloadControl.h>
#include <android/hardware/tetheroffload/control/1.0/types.h>
#include <linux/netfilter/nfnetlink.h>
#include <linux/netlink.h>
#include <net/if.h>
#include <sys/socket.h>
#include <unistd.h>
#include <set>
using android::base::StringPrintf;
using android::base::unique_fd;
using android::hardware::hidl_handle;
using android::hardware::hidl_string;
using android::hardware::hidl_vec;
using android::hardware::Return;
using android::hardware::tetheroffload::config::V1_0::IOffloadConfig;
using android::hardware::tetheroffload::control::V1_0::IOffloadControl;
using android::hardware::tetheroffload::control::V1_0::IPv4AddrPortPair;
using android::hardware::tetheroffload::control::V1_0::ITetheringOffloadCallback;
using android::hardware::tetheroffload::control::V1_0::OffloadCallbackEvent;
using android::hardware::tetheroffload::control::V1_0::NatTimeoutUpdate;
using android::hardware::tetheroffload::control::V1_0::NetworkProtocol;
using android::hardware::Void;
using android::sp;
enum class ExpectBoolean {
Ignored = -1,
False = 0,
True = 1,
};
constexpr const char* TEST_IFACE = "rmnet_data0";
// We use #defines here so as to get local lamba captures and error message line numbers
#define ASSERT_TRUE_CALLBACK \
[&](bool success, std::string errMsg) { \
std::string msg = StringPrintf("unexpected error: %s", errMsg.c_str()); \
ASSERT_TRUE(success) << msg; \
}
#define ASSERT_FALSE_CALLBACK \
[&](bool success, std::string errMsg) { \
std::string msg = StringPrintf("expected error: %s", errMsg.c_str()); \
ASSERT_FALSE(success) << msg; \
}
#define ASSERT_ZERO_BYTES_CALLBACK \
[&](uint64_t rxBytes, uint64_t txBytes) { \
EXPECT_EQ(0ULL, rxBytes); \
EXPECT_EQ(0ULL, txBytes); \
}
inline const sockaddr* asSockaddr(const sockaddr_nl* nladdr) {
return reinterpret_cast<const sockaddr*>(nladdr);
}
int conntrackSocket(unsigned groups) {
unique_fd s(socket(AF_NETLINK, SOCK_DGRAM, NETLINK_NETFILTER));
if (s.get() < 0) {
return -errno;
}
const struct sockaddr_nl bind_addr = {
.nl_family = AF_NETLINK, .nl_pad = 0, .nl_pid = 0, .nl_groups = groups,
};
if (::bind(s.get(), asSockaddr(&bind_addr), sizeof(bind_addr)) < 0) {
return -errno;
}
const struct sockaddr_nl kernel_addr = {
.nl_family = AF_NETLINK, .nl_pad = 0, .nl_pid = 0, .nl_groups = groups,
};
if (connect(s.get(), asSockaddr(&kernel_addr), sizeof(kernel_addr)) != 0) {
return -errno;
}
return s.release();
}
constexpr char kCallbackOnEvent[] = "onEvent";
constexpr char kCallbackUpdateTimeout[] = "updateTimeout";
class TetheringOffloadCallbackArgs {
public:
OffloadCallbackEvent last_event;
NatTimeoutUpdate last_params;
};
// Test environment for OffloadControl HIDL HAL.
class OffloadControlHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
public:
// get the test environment singleton
static OffloadControlHidlEnvironment* Instance() {
static OffloadControlHidlEnvironment* instance = new OffloadControlHidlEnvironment;
return instance;
}
virtual void registerTestServices() override {
registerTestService<IOffloadConfig>();
registerTestService<IOffloadControl>();
}
private:
OffloadControlHidlEnvironment() {}
};
class OffloadControlHidlTestBase : public testing::VtsHalHidlTargetTestBase {
public:
virtual void SetUp() override {
setupConfigHal();
prepareControlHal();
}
virtual void TearDown() override {
// For good measure, we should try stopOffload() once more. Since we
// don't know where we are in HAL call test cycle we don't know what
// return code to actually expect, so we just ignore it.
stopOffload(ExpectBoolean::Ignored);
}
// The IOffloadConfig HAL is tested more thoroughly elsewhere. He we just
// setup everything correctly and verify basic readiness.
void setupConfigHal() {
config = testing::VtsHalHidlTargetTestBase::getService<IOffloadConfig>(
OffloadControlHidlEnvironment::Instance()->getServiceName<IOffloadConfig>());
ASSERT_NE(nullptr, config.get()) << "Could not get HIDL instance";
unique_fd fd1(conntrackSocket(NF_NETLINK_CONNTRACK_NEW | NF_NETLINK_CONNTRACK_DESTROY));
if (fd1.get() < 0) {
ALOGE("Unable to create conntrack handles: %d/%s", errno, strerror(errno));
FAIL();
}
native_handle_t* const nativeHandle1 = native_handle_create(1, 0);
nativeHandle1->data[0] = fd1.release();
hidl_handle h1;
h1.setTo(nativeHandle1, true);
unique_fd fd2(conntrackSocket(NF_NETLINK_CONNTRACK_UPDATE | NF_NETLINK_CONNTRACK_DESTROY));
if (fd2.get() < 0) {
ALOGE("Unable to create conntrack handles: %d/%s", errno, strerror(errno));
FAIL();
}
native_handle_t* const nativeHandle2 = native_handle_create(1, 0);
nativeHandle2->data[0] = fd2.release();
hidl_handle h2;
h2.setTo(nativeHandle2, true);
const Return<void> ret = config->setHandles(h1, h2, ASSERT_TRUE_CALLBACK);
ASSERT_TRUE(ret.isOk());
}
void prepareControlHal() {
control = testing::VtsHalHidlTargetTestBase::getService<IOffloadControl>(
OffloadControlHidlEnvironment::Instance()->getServiceName<IOffloadControl>());
ASSERT_NE(nullptr, control.get()) << "Could not get HIDL instance";
control_cb = new TetheringOffloadCallback();
ASSERT_NE(nullptr, control_cb.get()) << "Could not get get offload callback";
}
void initOffload(const bool expected_result) {
auto init_cb = [&](bool success, std::string errMsg) {
std::string msg = StringPrintf("Unexpectedly %s to init offload: %s",
success ? "succeeded" : "failed", errMsg.c_str());
ASSERT_EQ(expected_result, success) << msg;
};
const Return<void> ret = control->initOffload(control_cb, init_cb);
ASSERT_TRUE(ret.isOk());
}
void setupControlHal() {
prepareControlHal();
initOffload(true);
}
void stopOffload(const ExpectBoolean value) {
auto cb = [&](bool success, const hidl_string& errMsg) {
switch (value) {
case ExpectBoolean::False:
ASSERT_EQ(false, success) << "Unexpectedly able to stop offload: " << errMsg;
break;
case ExpectBoolean::True:
ASSERT_EQ(true, success) << "Unexpectedly failed to stop offload: " << errMsg;
break;
case ExpectBoolean::Ignored:
break;
}
};
const Return<void> ret = control->stopOffload(cb);
ASSERT_TRUE(ret.isOk());
}
// Callback class for both events and NAT timeout updates.
class TetheringOffloadCallback
: public testing::VtsHalHidlTargetCallbackBase<TetheringOffloadCallbackArgs>,
public ITetheringOffloadCallback {
public:
TetheringOffloadCallback() = default;
virtual ~TetheringOffloadCallback() = default;
Return<void> onEvent(OffloadCallbackEvent event) override {
const TetheringOffloadCallbackArgs args{.last_event = event};
NotifyFromCallback(kCallbackOnEvent, args);
return Void();
};
Return<void> updateTimeout(const NatTimeoutUpdate& params) override {
const TetheringOffloadCallbackArgs args{.last_params = params};
NotifyFromCallback(kCallbackUpdateTimeout, args);
return Void();
};
};
sp<IOffloadConfig> config;
sp<IOffloadControl> control;
sp<TetheringOffloadCallback> control_cb;
};
// Call initOffload() multiple times. Check that non-first initOffload() calls return false.
TEST_F(OffloadControlHidlTestBase, AdditionalInitsWithoutStopReturnFalse) {
initOffload(true);
initOffload(false);
initOffload(false);
initOffload(false);
}
// Check that calling stopOffload() without first having called initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, MultipleStopsWithoutInitReturnFalse) {
stopOffload(ExpectBoolean::False);
stopOffload(ExpectBoolean::False);
stopOffload(ExpectBoolean::False);
}
// Check whether the specified interface is up.
bool interfaceIsUp(const char* name) {
if (name == nullptr) return false;
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
int sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock == -1) return false;
int ret = ioctl(sock, SIOCGIFFLAGS, &ifr, sizeof(ifr));
close(sock);
return (ret == 0) && (ifr.ifr_flags & IFF_UP);
}
// Check that calling stopOffload() after a complete init/stop cycle returns false.
TEST_F(OffloadControlHidlTestBase, AdditionalStopsWithInitReturnFalse) {
initOffload(true);
// Call setUpstreamParameters() so that "offload" can be reasonably said
// to be both requested and operational.
const hidl_string v4Addr("192.0.0.2");
const hidl_string v4Gw("192.0.0.1");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1"), hidl_string("fe80::db8:2")};
const Return<void> upstream =
control->setUpstreamParameters(TEST_IFACE, v4Addr, v4Gw, v6Gws, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(upstream.isOk());
if (!interfaceIsUp(TEST_IFACE)) {
return;
}
SCOPED_TRACE("Expecting stopOffload to succeed");
stopOffload(ExpectBoolean::Ignored); // balance out initOffload(true)
SCOPED_TRACE("Expecting stopOffload to fail the first time");
stopOffload(ExpectBoolean::False);
SCOPED_TRACE("Expecting stopOffload to fail the second time");
stopOffload(ExpectBoolean::False);
}
// Check that calling setLocalPrefixes() without first having called initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, SetLocalPrefixesWithoutInitReturnsFalse) {
const vector<hidl_string> prefixes{hidl_string("2001:db8::/64")};
const Return<void> ret = control->setLocalPrefixes(prefixes, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling getForwardedStats() without first having called initOffload()
// returns zero bytes statistics.
TEST_F(OffloadControlHidlTestBase, GetForwardedStatsWithoutInitReturnsZeroValues) {
const hidl_string upstream(TEST_IFACE);
const Return<void> ret = control->getForwardedStats(upstream, ASSERT_ZERO_BYTES_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling setDataLimit() without first having called initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, SetDataLimitWithoutInitReturnsFalse) {
const hidl_string upstream(TEST_IFACE);
const uint64_t limit = 5000ULL;
const Return<void> ret = control->setDataLimit(upstream, limit, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling setUpstreamParameters() without first having called initOffload()
// returns false.
TEST_F(OffloadControlHidlTestBase, SetUpstreamParametersWithoutInitReturnsFalse) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr("192.0.2.0/24");
const hidl_string v4Gw("192.0.2.1");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1")};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling addDownstream() with an IPv4 prefix without first having called
// initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, AddIPv4DownstreamWithoutInitReturnsFalse) {
const hidl_string iface(TEST_IFACE);
const hidl_string prefix("192.0.2.0/24");
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling addDownstream() with an IPv6 prefix without first having called
// initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, AddIPv6DownstreamWithoutInitReturnsFalse) {
const hidl_string iface(TEST_IFACE);
const hidl_string prefix("2001:db8::/64");
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling removeDownstream() with an IPv4 prefix without first having called
// initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, RemoveIPv4DownstreamWithoutInitReturnsFalse) {
const hidl_string iface(TEST_IFACE);
const hidl_string prefix("192.0.2.0/24");
const Return<void> ret = control->removeDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Check that calling removeDownstream() with an IPv6 prefix without first having called
// initOffload() returns false.
TEST_F(OffloadControlHidlTestBase, RemoveIPv6DownstreamWithoutInitReturnsFalse) {
const hidl_string iface(TEST_IFACE);
const hidl_string prefix("2001:db8::/64");
const Return<void> ret = control->removeDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
class OffloadControlHidlTest : public OffloadControlHidlTestBase {
public:
virtual void SetUp() override {
setupConfigHal();
setupControlHal();
}
virtual void TearDown() override {
// For good measure, we should try stopOffload() once more. Since we
// don't know where we are in HAL call test cycle we don't know what
// return code to actually expect, so we just ignore it.
stopOffload(ExpectBoolean::Ignored);
}
};
/*
* Tests for IOffloadControl::setLocalPrefixes().
*/
// Test setLocalPrefixes() accepts an IPv4 address.
TEST_F(OffloadControlHidlTest, SetLocalPrefixesIPv4AddressOk) {
const vector<hidl_string> prefixes{hidl_string("192.0.2.1")};
const Return<void> ret = control->setLocalPrefixes(prefixes, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test setLocalPrefixes() accepts an IPv6 address.
TEST_F(OffloadControlHidlTest, SetLocalPrefixesIPv6AddressOk) {
const vector<hidl_string> prefixes{hidl_string("fe80::1")};
const Return<void> ret = control->setLocalPrefixes(prefixes, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test setLocalPrefixes() accepts both IPv4 and IPv6 prefixes.
TEST_F(OffloadControlHidlTest, SetLocalPrefixesIPv4v6PrefixesOk) {
const vector<hidl_string> prefixes{hidl_string("192.0.2.0/24"), hidl_string("fe80::/64")};
const Return<void> ret = control->setLocalPrefixes(prefixes, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test that setLocalPrefixes() fails given empty input. There is always
// a non-empty set of local prefixes; when all networking interfaces are down
// we still apply {127.0.0.0/8, ::1/128, fe80::/64} here.
TEST_F(OffloadControlHidlTest, SetLocalPrefixesEmptyFails) {
const vector<hidl_string> prefixes{};
const Return<void> ret = control->setLocalPrefixes(prefixes, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test setLocalPrefixes() fails on incorrectly formed input strings.
TEST_F(OffloadControlHidlTest, SetLocalPrefixesInvalidFails) {
const vector<hidl_string> prefixes{hidl_string("192.0.2.0/24"), hidl_string("invalid")};
const Return<void> ret = control->setLocalPrefixes(prefixes, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
/*
* Tests for IOffloadControl::getForwardedStats().
*/
// Test that getForwardedStats() for a non-existent upstream yields zero bytes statistics.
TEST_F(OffloadControlHidlTest, GetForwardedStatsInvalidUpstreamIface) {
const hidl_string upstream("invalid");
const Return<void> ret = control->getForwardedStats(upstream, ASSERT_ZERO_BYTES_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, GetForwardedStatsDummyIface) {
const hidl_string upstream(TEST_IFACE);
const Return<void> ret = control->getForwardedStats(upstream, ASSERT_ZERO_BYTES_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
/*
* Tests for IOffloadControl::setDataLimit().
*/
// Test that setDataLimit() for an empty interface name fails.
TEST_F(OffloadControlHidlTest, SetDataLimitEmptyUpstreamIfaceFails) {
const hidl_string upstream("");
const uint64_t limit = 5000ULL;
const Return<void> ret = control->setDataLimit(upstream, limit, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, SetDataLimitNonZeroOk) {
const hidl_string upstream(TEST_IFACE);
const uint64_t limit = 5000ULL;
const Return<void> ret = control->setDataLimit(upstream, limit, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, SetDataLimitZeroOk) {
const hidl_string upstream(TEST_IFACE);
const uint64_t limit = 0ULL;
const Return<void> ret = control->setDataLimit(upstream, limit, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
/*
* Tests for IOffloadControl::setUpstreamParameters().
*/
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersIPv6OnlyOk) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr("");
const hidl_string v4Gw("");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1"), hidl_string("fe80::db8:2")};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersAlternateIPv6OnlyOk) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr;
const hidl_string v4Gw;
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1"), hidl_string("fe80::db8:3")};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersIPv4OnlyOk) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr("192.0.2.2");
const hidl_string v4Gw("192.0.2.1");
const vector<hidl_string> v6Gws{};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// TEST_IFACE is presumed to exist on the device and be up. No packets
// are ever actually caused to be forwarded.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersIPv4v6Ok) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr("192.0.2.2");
const hidl_string v4Gw("192.0.2.1");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1"), hidl_string("fe80::db8:2")};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test that setUpstreamParameters() fails when all parameters are empty.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersEmptyFails) {
const hidl_string iface("");
const hidl_string v4Addr("");
const hidl_string v4Gw("");
const vector<hidl_string> v6Gws{};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test that setUpstreamParameters() fails when given empty or non-existent interface names.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersBogusIfaceFails) {
const hidl_string v4Addr("192.0.2.2");
const hidl_string v4Gw("192.0.2.1");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1")};
for (const auto& bogus : {"", "invalid"}) {
SCOPED_TRACE(StringPrintf("iface='%s'", bogus));
const hidl_string iface(bogus);
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
// Test that setUpstreamParameters() fails when given unparseable IPv4 addresses.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersInvalidIPv4AddrFails) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Gw("192.0.2.1");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1")};
for (const auto& bogus : {"invalid", "192.0.2"}) {
SCOPED_TRACE(StringPrintf("v4addr='%s'", bogus));
const hidl_string v4Addr(bogus);
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
// Test that setUpstreamParameters() fails when given unparseable IPv4 gateways.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersInvalidIPv4GatewayFails) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr("192.0.2.2");
const vector<hidl_string> v6Gws{hidl_string("fe80::db8:1")};
for (const auto& bogus : {"invalid", "192.0.2"}) {
SCOPED_TRACE(StringPrintf("v4gateway='%s'", bogus));
const hidl_string v4Gw(bogus);
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
// Test that setUpstreamParameters() fails when given unparseable IPv6 gateways.
TEST_F(OffloadControlHidlTest, SetUpstreamParametersBadIPv6GatewaysFail) {
const hidl_string iface(TEST_IFACE);
const hidl_string v4Addr("192.0.2.2");
const hidl_string v4Gw("192.0.2.1");
for (const auto& bogus : {"", "invalid", "fe80::bogus", "192.0.2.66"}) {
SCOPED_TRACE(StringPrintf("v6gateway='%s'", bogus));
const vector<hidl_string> v6Gws{hidl_string("fe80::1"), hidl_string(bogus)};
const Return<void> ret =
control->setUpstreamParameters(iface, v4Addr, v4Gw, v6Gws, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
/*
* Tests for IOffloadControl::addDownstream().
*/
// Test addDownstream() works given an IPv4 prefix.
TEST_F(OffloadControlHidlTest, AddDownstreamIPv4) {
const hidl_string iface("dummy0");
const hidl_string prefix("192.0.2.0/24");
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test addDownstream() works given an IPv6 prefix.
TEST_F(OffloadControlHidlTest, AddDownstreamIPv6) {
const hidl_string iface("dummy0");
const hidl_string prefix("2001:db8::/64");
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test addDownstream() fails given all empty parameters.
TEST_F(OffloadControlHidlTest, AddDownstreamEmptyFails) {
const hidl_string iface("");
const hidl_string prefix("");
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test addDownstream() fails given empty or non-existent interface names.
TEST_F(OffloadControlHidlTest, AddDownstreamInvalidIfaceFails) {
const hidl_string prefix("192.0.2.0/24");
for (const auto& bogus : {"", "invalid"}) {
SCOPED_TRACE(StringPrintf("iface='%s'", bogus));
const hidl_string iface(bogus);
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
// Test addDownstream() fails given unparseable prefix arguments.
TEST_F(OffloadControlHidlTest, AddDownstreamBogusPrefixFails) {
const hidl_string iface("dummy0");
for (const auto& bogus : {"", "192.0.2/24", "2001:db8/64"}) {
SCOPED_TRACE(StringPrintf("prefix='%s'", bogus));
const hidl_string prefix(bogus);
const Return<void> ret = control->addDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
/*
* Tests for IOffloadControl::removeDownstream().
*/
// Test removeDownstream() works given an IPv4 prefix.
TEST_F(OffloadControlHidlTest, RemoveDownstreamIPv4) {
const hidl_string iface("dummy0");
const hidl_string prefix("192.0.2.0/24");
// First add the downstream, otherwise removeDownstream logic can reasonably
// return false for downstreams not previously added.
const Return<void> add = control->addDownstream(iface, prefix, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(add.isOk());
const Return<void> del = control->removeDownstream(iface, prefix, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(del.isOk());
}
// Test removeDownstream() works given an IPv6 prefix.
TEST_F(OffloadControlHidlTest, RemoveDownstreamIPv6) {
const hidl_string iface("dummy0");
const hidl_string prefix("2001:db8::/64");
// First add the downstream, otherwise removeDownstream logic can reasonably
// return false for downstreams not previously added.
const Return<void> add = control->addDownstream(iface, prefix, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(add.isOk());
const Return<void> del = control->removeDownstream(iface, prefix, ASSERT_TRUE_CALLBACK);
EXPECT_TRUE(del.isOk());
}
// Test removeDownstream() fails given all empty parameters.
TEST_F(OffloadControlHidlTest, RemoveDownstreamEmptyFails) {
const hidl_string iface("");
const hidl_string prefix("");
const Return<void> ret = control->removeDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
// Test removeDownstream() fails given empty or non-existent interface names.
TEST_F(OffloadControlHidlTest, RemoveDownstreamBogusIfaceFails) {
const hidl_string prefix("192.0.2.0/24");
for (const auto& bogus : {"", "invalid"}) {
SCOPED_TRACE(StringPrintf("iface='%s'", bogus));
const hidl_string iface(bogus);
const Return<void> ret = control->removeDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
// Test removeDownstream() fails given unparseable prefix arguments.
TEST_F(OffloadControlHidlTest, RemoveDownstreamBogusPrefixFails) {
const hidl_string iface("dummy0");
for (const auto& bogus : {"", "192.0.2/24", "2001:db8/64"}) {
SCOPED_TRACE(StringPrintf("prefix='%s'", bogus));
const hidl_string prefix(bogus);
const Return<void> ret = control->removeDownstream(iface, prefix, ASSERT_FALSE_CALLBACK);
EXPECT_TRUE(ret.isOk());
}
}
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(OffloadControlHidlEnvironment::Instance());
::testing::InitGoogleTest(&argc, argv);
OffloadControlHidlEnvironment::Instance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
ALOGE("Test result with status=%d", status);
return status;
}