// Simple OpenGL ES 1.x application showing how to initialize and draw something.
#include <EGL/egl.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <WindowSurface.h>
#include <EGLUtils.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
using namespace android;
#define METADATA_SCALE(x) (static_cast<EGLint>(x * EGL_METADATA_SCALING_EXT))
EGLDisplay eglDisplay;
EGLSurface eglSurface;
EGLContext eglContext;
GLuint texture;
#define FIXED_ONE 0x10000
#define ITERATIONS 50
int init_gl_surface(const WindowSurface& windowSurface);
void free_gl_surface(void);
void init_scene(void);
void render();
void create_texture(void);
int readTimer(void);
static void printGLString(const char *name, GLenum s) {
const char *v = (const char *) glGetString(s);
fprintf(stderr, "GL %s = %s\n", name, v);
}
static void gluLookAt(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ, float upX, float upY,
float upZ)
{
// See the OpenGL GLUT documentation for gluLookAt for a description
// of the algorithm. We implement it in a straightforward way:
float fx = centerX - eyeX;
float fy = centerY - eyeY;
float fz = centerZ - eyeZ;
// Normalize f
float rlf = 1.0f / sqrtf(fx*fx + fy*fy + fz*fz);
fx *= rlf;
fy *= rlf;
fz *= rlf;
// Normalize up
float rlup = 1.0f / sqrtf(upX*upX + upY*upY + upZ*upZ);
upX *= rlup;
upY *= rlup;
upZ *= rlup;
// compute s = f x up (x means "cross product")
float sx = fy * upZ - fz * upY;
float sy = fz * upX - fx * upZ;
float sz = fx * upY - fy * upX;
// compute u = s x f
float ux = sy * fz - sz * fy;
float uy = sz * fx - sx * fz;
float uz = sx * fy - sy * fx;
float m[16] ;
m[0] = sx;
m[1] = ux;
m[2] = -fx;
m[3] = 0.0f;
m[4] = sy;
m[5] = uy;
m[6] = -fy;
m[7] = 0.0f;
m[8] = sz;
m[9] = uz;
m[10] = -fz;
m[11] = 0.0f;
m[12] = 0.0f;
m[13] = 0.0f;
m[14] = 0.0f;
m[15] = 1.0f;
glMultMatrixf(m);
glTranslatef(-eyeX, -eyeY, -eyeZ);
}
void printEGLConfiguration(EGLDisplay dpy, EGLConfig config) {
#define X(VAL) {VAL, #VAL}
struct {EGLint attribute; const char* name;} names[] = {
X(EGL_BUFFER_SIZE),
X(EGL_ALPHA_SIZE),
X(EGL_BLUE_SIZE),
X(EGL_GREEN_SIZE),
X(EGL_RED_SIZE),
X(EGL_DEPTH_SIZE),
X(EGL_STENCIL_SIZE),
X(EGL_CONFIG_CAVEAT),
X(EGL_CONFIG_ID),
X(EGL_LEVEL),
X(EGL_MAX_PBUFFER_HEIGHT),
X(EGL_MAX_PBUFFER_PIXELS),
X(EGL_MAX_PBUFFER_WIDTH),
X(EGL_NATIVE_RENDERABLE),
X(EGL_NATIVE_VISUAL_ID),
X(EGL_NATIVE_VISUAL_TYPE),
X(EGL_SAMPLES),
X(EGL_SAMPLE_BUFFERS),
X(EGL_SURFACE_TYPE),
X(EGL_TRANSPARENT_TYPE),
X(EGL_TRANSPARENT_RED_VALUE),
X(EGL_TRANSPARENT_GREEN_VALUE),
X(EGL_TRANSPARENT_BLUE_VALUE),
X(EGL_BIND_TO_TEXTURE_RGB),
X(EGL_BIND_TO_TEXTURE_RGBA),
X(EGL_MIN_SWAP_INTERVAL),
X(EGL_MAX_SWAP_INTERVAL),
X(EGL_LUMINANCE_SIZE),
X(EGL_ALPHA_MASK_SIZE),
X(EGL_COLOR_BUFFER_TYPE),
X(EGL_RENDERABLE_TYPE),
X(EGL_CONFORMANT),
};
#undef X
for (size_t j = 0; j < sizeof(names) / sizeof(names[0]); j++) {
EGLint value = -1;
EGLint returnVal = eglGetConfigAttrib(dpy, config, names[j].attribute, &value);
EGLint error = eglGetError();
if (returnVal && error == EGL_SUCCESS) {
printf(" %s: ", names[j].name);
printf("%d (0x%x)", value, value);
}
}
printf("\n");
}
static void checkEglError(const char* op, EGLBoolean returnVal = EGL_TRUE) {
if (returnVal != EGL_TRUE) {
fprintf(stderr, "%s() returned %d\n", op, returnVal);
}
for (EGLint error = eglGetError(); error != EGL_SUCCESS; error
= eglGetError()) {
fprintf(stderr, "after %s() eglError %s (0x%x)\n", op, EGLUtils::strerror(error),
error);
}
}
int printEGLConfigurations(EGLDisplay dpy) {
EGLint numConfig = 0;
EGLint returnVal = eglGetConfigs(dpy, NULL, 0, &numConfig);
checkEglError("eglGetConfigs", returnVal);
if (!returnVal) {
return false;
}
printf("Number of EGL configurations: %d\n", numConfig);
EGLConfig* configs = (EGLConfig*) malloc(sizeof(EGLConfig) * numConfig);
if (! configs) {
printf("Could not allocate configs.\n");
return false;
}
returnVal = eglGetConfigs(dpy, configs, numConfig, &numConfig);
checkEglError("eglGetConfigs", returnVal);
if (!returnVal) {
free(configs);
return false;
}
for(int i = 0; i < numConfig; i++) {
printf("Configuration %d\n", i);
printEGLConfiguration(dpy, configs[i]);
}
free(configs);
return true;
}
int main(int /*argc*/, char **/*argv*/)
{
printf("Initializing EGL...\n");
WindowSurface windowSurface;
if(!init_gl_surface(windowSurface))
{
printf("GL initialisation failed - exiting\n");
return 0;
}
init_scene();
create_texture();
printf("Running...\n");
while(true) {
render();
}
free_gl_surface();
return 0;
}
int init_gl_surface(const WindowSurface& windowSurface)
{
EGLConfig myConfig = {0};
EGLint attrib[] =
{
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_NONE
};
if ( (eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY)) == EGL_NO_DISPLAY )
{
printf("eglGetDisplay failed\n");
return 0;
}
if ( eglInitialize(eglDisplay, NULL, NULL) != EGL_TRUE )
{
printf("eglInitialize failed\n");
return 0;
}
if (! printEGLConfigurations(eglDisplay)) {
printf("printEGLConfigurations failed.\n");
return 0;
}
EGLNativeWindowType window = windowSurface.getSurface();
EGLUtils::selectConfigForNativeWindow(eglDisplay, attrib, window, &myConfig);
if ( (eglSurface = eglCreateWindowSurface(eglDisplay, myConfig,
window, 0)) == EGL_NO_SURFACE )
{
printf("eglCreateWindowSurface failed\n");
return 0;
}
if ( (eglContext = eglCreateContext(eglDisplay, myConfig, 0, 0)) == EGL_NO_CONTEXT )
{
printf("eglCreateContext failed\n");
return 0;
}
if ( eglMakeCurrent(eglDisplay, eglSurface, eglSurface, eglContext) != EGL_TRUE )
{
printf("eglMakeCurrent failed\n");
return 0;
}
int w, h;
eglQuerySurface(eglDisplay, eglSurface, EGL_WIDTH, &w);
checkEglError("eglQuerySurface");
eglQuerySurface(eglDisplay, eglSurface, EGL_HEIGHT, &h);
checkEglError("eglQuerySurface");
fprintf(stderr, "Window dimensions: %d x %d\n", w, h);
printGLString("Version", GL_VERSION);
printGLString("Vendor", GL_VENDOR);
printGLString("Renderer", GL_RENDERER);
printGLString("Extensions", GL_EXTENSIONS);
return 1;
}
void free_gl_surface(void)
{
if (eglDisplay != EGL_NO_DISPLAY)
{
eglMakeCurrent( EGL_NO_DISPLAY, EGL_NO_SURFACE,
EGL_NO_SURFACE, EGL_NO_CONTEXT );
eglDestroyContext( eglDisplay, eglContext );
eglDestroySurface( eglDisplay, eglSurface );
eglTerminate( eglDisplay );
eglDisplay = EGL_NO_DISPLAY;
}
}
void init_scene(void)
{
glDisable(GL_DITHER);
glEnable(GL_CULL_FACE);
float ratio = 320.0f / 480.0f;
glViewport(0, 0, 320, 480);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustumf(-ratio, ratio, -1, 1, 1, 10);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(
0, 0, 3, // eye
0, 0, 0, // center
0, 1, 0); // up
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
}
void create_texture(void)
{
const unsigned int on = 0xff0000ff;
const unsigned int off = 0xffffffff;
const unsigned int pixels[] =
{
on, off, on, off, on, off, on, off,
off, on, off, on, off, on, off, on,
on, off, on, off, on, off, on, off,
off, on, off, on, off, on, off, on,
on, off, on, off, on, off, on, off,
off, on, off, on, off, on, off, on,
on, off, on, off, on, off, on, off,
off, on, off, on, off, on, off, on,
};
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 8, 8, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
}
void setSurfaceMetadata(EGLDisplay dpy, EGLSurface surface) {
static EGLBoolean toggle = GL_FALSE;
if (EGLUtils::hasEglExtension(dpy, "EGL_EXT_surface_SMPTE2086_metadata")) {
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_DISPLAY_PRIMARY_RX_EXT, METADATA_SCALE(0.640));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_DISPLAY_PRIMARY_RY_EXT, METADATA_SCALE(0.330));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_DISPLAY_PRIMARY_GX_EXT, METADATA_SCALE(0.290));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_DISPLAY_PRIMARY_GY_EXT, METADATA_SCALE(0.600));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_DISPLAY_PRIMARY_BX_EXT, METADATA_SCALE(0.150));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_DISPLAY_PRIMARY_BY_EXT, METADATA_SCALE(0.060));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_WHITE_POINT_X_EXT, METADATA_SCALE(0.3127));
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_WHITE_POINT_Y_EXT, METADATA_SCALE(0.3290));
if (toggle) {
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_MAX_LUMINANCE_EXT, METADATA_SCALE(350));
} else {
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_MAX_LUMINANCE_EXT, METADATA_SCALE(300));
}
eglSurfaceAttrib(dpy, surface, EGL_SMPTE2086_MIN_LUMINANCE_EXT, METADATA_SCALE(0.7));
}
if (EGLUtils::hasEglExtension(dpy, "EGL_EXT_surface_CTA861_3_metadata")) {
if (toggle) {
eglSurfaceAttrib(dpy, surface, EGL_CTA861_3_MAX_CONTENT_LIGHT_LEVEL_EXT,
METADATA_SCALE(300));
} else {
eglSurfaceAttrib(dpy, surface, EGL_CTA861_3_MAX_CONTENT_LIGHT_LEVEL_EXT,
METADATA_SCALE(325));
}
eglSurfaceAttrib(dpy, surface, EGL_CTA861_3_MAX_FRAME_AVERAGE_LEVEL_EXT,
METADATA_SCALE(75));
}
toggle = !toggle;
}
void render()
{
const GLfloat vertices[] = {
-1, -1, 0,
1, -1, 0,
1, 1, 0,
-1, 1, 0
};
const GLfixed texCoords[] = {
0, 0,
FIXED_ONE, 0,
FIXED_ONE, FIXED_ONE,
0, FIXED_ONE
};
const GLushort indices[] = { 0, 1, 2, 0, 2, 3 };
glVertexPointer(3, GL_FLOAT, 0, vertices);
glTexCoordPointer(2, GL_FIXED, 0, texCoords);
glClearColor(1.0, 1.0, 1.0, 1.0);
int nelem = sizeof(indices)/sizeof(indices[0]);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glDrawElements(GL_TRIANGLES, nelem, GL_UNSIGNED_SHORT, indices);
setSurfaceMetadata(eglDisplay, eglSurface);
eglSwapBuffers(eglDisplay, eglSurface);
}