/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "NeuralNetworksOEM.h"
#include "NeuralNetworksWrapper.h"
#include <gtest/gtest.h>
#include <optional>
#include <set>
using namespace android::nn::wrapper;
namespace {
static const int32_t kAvailableOperandCodes[] = {ANEURALNETWORKS_FLOAT32,
ANEURALNETWORKS_INT32,
ANEURALNETWORKS_UINT32,
ANEURALNETWORKS_TENSOR_FLOAT32,
ANEURALNETWORKS_TENSOR_INT32,
ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_BOOL,
ANEURALNETWORKS_TENSOR_QUANT16_SYMM,
ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_TENSOR_BOOL8,
ANEURALNETWORKS_FLOAT16,
ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL,
ANEURALNETWORKS_TENSOR_QUANT16_ASYMM,
ANEURALNETWORKS_TENSOR_OEM_BYTE};
ANeuralNetworksOperandType getOpType(int32_t opcode, uint32_t dimCount = 0,
uint32_t* dim = nullptr) {
ANeuralNetworksOperandType opType = {.type = opcode,
.dimensionCount = dimCount,
.dimensions = dim,
.scale = 0.0,
.zeroPoint = 0};
if (opcode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM ||
opcode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM ||
opcode == ANEURALNETWORKS_TENSOR_QUANT16_ASYMM ||
opcode == ANEURALNETWORKS_TENSOR_QUANT16_SYMM) {
opType.scale = 1. / 256.;
}
return opType;
}
struct OperandTypeWithExtraParams {
OperandTypeWithExtraParams(const ANeuralNetworksOperandType& operandType)
: operandType(operandType), channelQuant(std::nullopt) {}
ANeuralNetworksOperandType operandType;
std::optional<ANeuralNetworksSymmPerChannelQuantParams> channelQuant;
};
class OperationTestBase {
public:
OperationTestBase(ANeuralNetworksOperationType opCode,
std::vector<ANeuralNetworksOperandType> validInputs,
std::vector<ANeuralNetworksOperandType> validOutputs)
: mOpCode(opCode) {
for (ANeuralNetworksOperandType input : validInputs) {
mValidInputs.push_back(input);
}
for (ANeuralNetworksOperandType output : validOutputs) {
mValidOutputs.push_back(output);
}
}
void setInputSymmPerChannelQuantParams(
int32_t index, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant) {
mValidInputs[index].channelQuant = channelQuant;
}
void setOutputSymmPerChannelQuantParams(
int32_t index, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant) {
mValidOutputs[index].channelQuant = channelQuant;
}
// Add each operand separately and add the operation using these operands.
// This function does not cover the cases that an operand is used mutiple times.
int32_t addOperation(const std::vector<OperandTypeWithExtraParams>& inputs,
const std::vector<OperandTypeWithExtraParams>& outputs) {
ANeuralNetworksModel* model = nullptr;
ANeuralNetworksModel_create(&model);
uint32_t opIdx = 0;
std::vector<uint32_t> inputIds;
std::vector<uint32_t> outputIds;
for (uint32_t i = 0; i < inputs.size(); i++) {
ANeuralNetworksModel_addOperand(model, &inputs[i].operandType);
if (inputs[i].channelQuant) {
ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(
model, opIdx, &inputs[i].channelQuant.value());
}
inputIds.push_back(opIdx++);
}
for (uint32_t i = 0; i < outputs.size(); i++) {
ANeuralNetworksModel_addOperand(model, &outputs[i].operandType);
if (outputs[i].channelQuant) {
ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(
model, opIdx, &outputs[i].channelQuant.value());
}
outputIds.push_back(opIdx++);
}
int32_t result = ANeuralNetworksModel_addOperation(
model, mOpCode, static_cast<uint32_t>(inputIds.size()), inputIds.data(),
static_cast<uint32_t>(outputIds.size()), outputIds.data());
ANeuralNetworksModel_free(model);
return result;
}
void testOpsValidations() {
EXPECT_TRUE(testSuccess());
EXPECT_TRUE(testMutatingInputOperandCode());
EXPECT_TRUE(testMutatingInputOperandCounts());
EXPECT_TRUE(testMutatingOutputOperandCode());
EXPECT_TRUE(testMutatingOutputOperandCounts());
}
void testFailure(int32_t expectedResult) {
int32_t result = addOperation(mValidInputs, mValidOutputs);
EXPECT_TRUE(expectedResult == result);
}
bool testSuccess() {
int32_t result = addOperation(mValidInputs, mValidOutputs);
return ANEURALNETWORKS_NO_ERROR == result;
}
bool testMutatingInputOperandCode() {
for (uint32_t i = 0; i < mValidInputs.size(); i++) {
// LSH_PROJECTION's second argument is allowed to have any type.
// This is the only operation that currently has a type that can be
// anything independent from any other type. Changing the operand
// type to any other type will result in a valid model for
// LSH_PROJECTION. If this is the case, skip the test.
if (mOpCode == ANEURALNETWORKS_LSH_PROJECTION && i == 1) {
continue;
}
OperandTypeWithExtraParams newType = mValidInputs[i];
int32_t originalOperandCode = mValidInputs[i].operandType.type;
std::set<int32_t> operandTypesToSkip;
// Transposed conv can have either fully quantized or per-channel
// quantized filter for the quantized version of the op.
if (mOpCode == ANEURALNETWORKS_TRANSPOSE_CONV_2D && i == 1) {
if (originalOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL);
} else if (originalOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
}
// CAST accepts any of supported types for any of output types
if (mOpCode == ANEURALNETWORKS_CAST && i == 0) {
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_FLOAT16);
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_FLOAT32);
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_INT32);
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
// RANDOM_MULTINOMIAL's first input can be either of float16 or
// float32 type while everything else has the same types.
if (mOpCode == ANEURALNETWORKS_RANDOM_MULTINOMIAL && i == 0) {
if (originalOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16) {
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_FLOAT32);
} else if (originalOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32) {
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_FLOAT16);
}
}
// DEQUANTIZE supports any of the inputs types below for any of the
// output types.
if (mOpCode == ANEURALNETWORKS_DEQUANTIZE && i == 0) {
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_QUANT8_SYMM);
operandTypesToSkip.insert(ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL);
}
for (int32_t newOperandCode : kAvailableOperandCodes) {
if (newOperandCode == originalOperandCode ||
operandTypesToSkip.find(newOperandCode) != operandTypesToSkip.end()) {
continue;
}
// Switch input 7 from bool to int for 10-input CONV_2d
// switch between valid "implicit padding with layout param"
// and valid "explicit padding without layout param"
if (mOpCode == ANEURALNETWORKS_CONV_2D && i == 7 && mValidInputs.size() == 10) {
if ((newOperandCode == ANEURALNETWORKS_INT32 &&
originalOperandCode == ANEURALNETWORKS_BOOL) ||
(newOperandCode == ANEURALNETWORKS_BOOL &&
originalOperandCode == ANEURALNETWORKS_INT32)) {
continue;
}
}
// QUANTIZE supports both types below and its output type does
// not depend on the input type.
if (mOpCode == ANEURALNETWORKS_QUANTIZE && i == 0 &&
(newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16 ||
newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32)) {
continue;
}
// ARGMIN/MAX supports four input types and has a fixed output type.
if ((mOpCode == ANEURALNETWORKS_ARGMIN || mOpCode == ANEURALNETWORKS_ARGMAX) &&
i == 0 &&
(newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16 ||
newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32 ||
newOperandCode == ANEURALNETWORKS_TENSOR_INT32 ||
newOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM)) {
continue;
}
// Switch input 8 from bool to int for 11-input DEPTHWISE_CONV_2D
// switch between valid "implicit padding with layout param"
// and valid "explicit padding without layout param"
if (mOpCode == ANEURALNETWORKS_DEPTHWISE_CONV_2D && i == 8 &&
mValidInputs.size() == 11) {
if ((newOperandCode == ANEURALNETWORKS_INT32 &&
originalOperandCode == ANEURALNETWORKS_BOOL) ||
(newOperandCode == ANEURALNETWORKS_BOOL &&
originalOperandCode == ANEURALNETWORKS_INT32)) {
continue;
}
}
newType.operandType.type = newOperandCode;
std::vector<OperandTypeWithExtraParams> inputs = mValidInputs;
inputs[i] = newType;
int32_t result = addOperation(inputs, mValidOutputs);
if (ANEURALNETWORKS_NO_ERROR == result) {
return false;
}
}
}
return true;
}
bool testMutatingOutputOperandCode() {
for (uint32_t i = 0; i < mValidOutputs.size(); i++) {
// LSH_PROJECTION's second argument is allowed to have any type.
// This is the only operation that currently has a type that can be
// anything independent from any other type. Changing the operand
// type to any other type will result in a valid model for
// LSH_PROJECTION. If this is the case, skip the test.
if (mOpCode == ANEURALNETWORKS_LSH_PROJECTION && i == 1) {
continue;
}
OperandTypeWithExtraParams newType = mValidOutputs[i].operandType;
int32_t originalOperandCode = mValidOutputs[i].operandType.type;
for (int32_t newOperandCode : kAvailableOperandCodes) {
if (newOperandCode == originalOperandCode) {
continue;
}
// DEQUANTIZE's output can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
if (mOpCode == ANEURALNETWORKS_DEQUANTIZE &&
(newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16 ||
newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32)) {
continue;
}
// CAST accepts any of supported types for any of input types
if (mOpCode == ANEURALNETWORKS_CAST && i == 0 &&
(newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16 ||
newOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32 ||
newOperandCode == ANEURALNETWORKS_TENSOR_INT32 ||
newOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM)) {
continue;
}
newType.operandType.type = newOperandCode;
std::vector<OperandTypeWithExtraParams> outputs = mValidOutputs;
outputs[i] = newType;
int32_t result = addOperation(mValidInputs, outputs);
if (ANEURALNETWORKS_NO_ERROR == result) {
return false;
}
}
}
return true;
}
bool testMutatingInputOperandCounts() {
uint32_t numToAdd = 5;
// LSTM since API 29 supports 23 and 27 outputs.
if (mOpCode == ANEURALNETWORKS_LSTM) {
numToAdd = 3;
}
std::vector<OperandTypeWithExtraParams> inputs = mValidInputs;
for (uint32_t i = 0; i < numToAdd; i++) {
inputs.push_back(inputs[0]);
if (ANEURALNETWORKS_NO_ERROR == addOperation(inputs, mValidOutputs)) {
return false;
}
}
return true;
}
bool testMutatingOutputOperandCounts() {
// SPLIT's number of outputs depends on a value of one of its inputs and
// are not checked during validation.
if (mOpCode == ANEURALNETWORKS_SPLIT) {
return true;
}
std::vector<OperandTypeWithExtraParams> outputs = mValidOutputs;
for (int i = 0; i < 5; i++) {
outputs.push_back(outputs[0]);
if (ANEURALNETWORKS_NO_ERROR == addOperation(mValidInputs, outputs)) {
return false;
}
}
return true;
}
private:
ANeuralNetworksOperationType mOpCode;
// The dimensions in the ANeuralNetworksOperandType must outlive the test object.
std::vector<OperandTypeWithExtraParams> mValidInputs;
std::vector<OperandTypeWithExtraParams> mValidOutputs;
};
void argMinMaxTest(ANeuralNetworksOperationType operationCode, int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input0 = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType axis = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
};
uint32_t outputDimensions[3] = {2, 2, 2};
ANeuralNetworksOperandType output = {
.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 3,
.dimensions = outputDimensions,
};
OperationTestBase test(operationCode, {input0, axis}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, ARGMIN) {
argMinMaxTest(ANEURALNETWORKS_ARGMIN, ANEURALNETWORKS_TENSOR_FLOAT16);
argMinMaxTest(ANEURALNETWORKS_ARGMIN, ANEURALNETWORKS_TENSOR_FLOAT32);
argMinMaxTest(ANEURALNETWORKS_ARGMIN, ANEURALNETWORKS_TENSOR_INT32);
argMinMaxTest(ANEURALNETWORKS_ARGMIN, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, ARGMAX) {
argMinMaxTest(ANEURALNETWORKS_ARGMAX, ANEURALNETWORKS_TENSOR_FLOAT16);
argMinMaxTest(ANEURALNETWORKS_ARGMAX, ANEURALNETWORKS_TENSOR_FLOAT32);
argMinMaxTest(ANEURALNETWORKS_ARGMAX, ANEURALNETWORKS_TENSOR_INT32);
argMinMaxTest(ANEURALNETWORKS_ARGMAX, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void dequantizeOpTest(int32_t inputOperandType, int32_t outputOperandType) {
std::string scope = "inputType: " + std::to_string(inputOperandType) +
", outputType: " + std::to_string(outputOperandType);
SCOPED_TRACE(scope);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType output = getOpType(outputOperandType, 4, inputDimensions);
OperationTestBase dequantizeTest(ANEURALNETWORKS_DEQUANTIZE, {input}, {output});
dequantizeTest.testOpsValidations();
}
TEST(OperationValidationTest, DEQUANTIZE) {
dequantizeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_FLOAT16);
dequantizeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_FLOAT32);
dequantizeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_SYMM, ANEURALNETWORKS_TENSOR_FLOAT16);
dequantizeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_SYMM, ANEURALNETWORKS_TENSOR_FLOAT32);
dequantizeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL,
ANEURALNETWORKS_TENSOR_FLOAT16);
dequantizeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL,
ANEURALNETWORKS_TENSOR_FLOAT32);
}
void expandDimsTest(int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input0 = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType axis = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
};
uint32_t outputDimensions[5] = {2, 2, 2, 2, 2};
ANeuralNetworksOperandType output = getOpType(inputOperandType, 5, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_EXPAND_DIMS, {input0, axis}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, EXPAND_DIMS) {
expandDimsTest(ANEURALNETWORKS_TENSOR_FLOAT16);
expandDimsTest(ANEURALNETWORKS_TENSOR_FLOAT32);
expandDimsTest(ANEURALNETWORKS_TENSOR_INT32);
expandDimsTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void gatherTest(int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input0 = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType axis = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
};
ANeuralNetworksOperandType input2 = {
.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 4,
.dimensions = inputDimensions,
};
uint32_t outputDimensions[7] = {2, 2, 2, 2, 2, 2, 2};
ANeuralNetworksOperandType output = getOpType(inputOperandType, 7, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_GATHER, {input0, axis, input2}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, GATHER) {
gatherTest(ANEURALNETWORKS_TENSOR_FLOAT16);
gatherTest(ANEURALNETWORKS_TENSOR_FLOAT32);
gatherTest(ANEURALNETWORKS_TENSOR_INT32);
gatherTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void quantizeOpTest(int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = {
.type = operandCode, .dimensionCount = 4, .dimensions = inputDimensions};
ANeuralNetworksOperandType output = {.type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
.dimensionCount = 4,
.dimensions = inputDimensions,
.scale = 1.0f,
.zeroPoint = 0};
OperationTestBase test(ANEURALNETWORKS_QUANTIZE, {input}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, QUANTIZE_float16) {
quantizeOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, QUANTIZE_float32) {
quantizeOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, QUANTIZED_16BIT_LSTM) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType int32Tensor1D = {
.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0000318,
.zeroPoint = 0,
};
ANeuralNetworksOperandType quant8Tensor2D = {
.type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.00408021,
.zeroPoint = 100,
};
ANeuralNetworksOperandType quant16Tensor2D = {
.type = ANEURALNETWORKS_TENSOR_QUANT16_SYMM,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 1.0 / 2048,
.zeroPoint = 0,
};
ANeuralNetworksOperandType input = quant8Tensor2D;
ANeuralNetworksOperandType input_to_input_weights = quant8Tensor2D;
ANeuralNetworksOperandType input_to_forget_weights = quant8Tensor2D;
ANeuralNetworksOperandType input_to_cell_weights = quant8Tensor2D;
ANeuralNetworksOperandType input_to_output_weights = quant8Tensor2D;
ANeuralNetworksOperandType recurrent_to_input_weights = quant8Tensor2D;
ANeuralNetworksOperandType recurrent_to_forget_weights = quant8Tensor2D;
ANeuralNetworksOperandType recurrent_to_cell_weights = quant8Tensor2D;
ANeuralNetworksOperandType recurrent_to_output_weights = quant8Tensor2D;
ANeuralNetworksOperandType input_gate_bias = int32Tensor1D;
ANeuralNetworksOperandType forget_gate_bias = int32Tensor1D;
ANeuralNetworksOperandType cell_gate_bias = int32Tensor1D;
ANeuralNetworksOperandType output_gate_bias = int32Tensor1D;
ANeuralNetworksOperandType prev_cell_state = quant16Tensor2D;
ANeuralNetworksOperandType prev_output = quant8Tensor2D;
ANeuralNetworksOperandType cell_state_out = quant16Tensor2D;
ANeuralNetworksOperandType output = quant8Tensor2D;
OperationTestBase test(
ANEURALNETWORKS_QUANTIZED_16BIT_LSTM,
{input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights,
input_to_output_weights, recurrent_to_input_weights, recurrent_to_forget_weights,
recurrent_to_cell_weights, recurrent_to_output_weights, input_gate_bias,
forget_gate_bias, cell_gate_bias, output_gate_bias, prev_cell_state, prev_output},
{cell_state_out, output});
test.testOpsValidations();
}
void splitTest(int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input0 = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType axis = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
};
ANeuralNetworksOperandType count = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
};
uint32_t outputDimensions[2] = {2, 2};
ANeuralNetworksOperandType output0 = getOpType(inputOperandType, 2, outputDimensions);
ANeuralNetworksOperandType output1 = getOpType(inputOperandType, 2, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_SPLIT, {input0, axis, count}, {output0, output1});
test.testOpsValidations();
}
TEST(OperationValidationTest, SPLIT) {
splitTest(ANEURALNETWORKS_TENSOR_FLOAT16);
splitTest(ANEURALNETWORKS_TENSOR_FLOAT32);
splitTest(ANEURALNETWORKS_TENSOR_INT32);
splitTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void tileTest(int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input0 = getOpType(inputOperandType, 4, inputDimensions);
uint32_t multiplesDimensions[1] = {4};
ANeuralNetworksOperandType multiples = {
.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = multiplesDimensions,
};
uint32_t outputDimensions[8] = {2, 2, 2, 2, 2, 2, 2, 2};
ANeuralNetworksOperandType output0 = getOpType(inputOperandType, 8, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_TILE, {input0, multiples}, {output0});
test.testOpsValidations();
}
TEST(OperationValidationTest, TILE) {
tileTest(ANEURALNETWORKS_TENSOR_FLOAT16);
tileTest(ANEURALNETWORKS_TENSOR_FLOAT32);
tileTest(ANEURALNETWORKS_TENSOR_INT32);
tileTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void topkV2Test(int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDimensions[4] = {4, 5, 6, 7};
ANeuralNetworksOperandType input = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType k = getOpType(ANEURALNETWORKS_INT32);
uint32_t outputDimensions[4] = {4, 5, 6, 3};
ANeuralNetworksOperandType outputValues = getOpType(inputOperandType, 4, outputDimensions);
ANeuralNetworksOperandType outputIndices =
getOpType(ANEURALNETWORKS_TENSOR_INT32, 4, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_TOPK_V2, {input, k}, {outputValues, outputIndices});
test.testOpsValidations();
}
TEST(OperationValidationTest, TOPK_V2) {
topkV2Test(ANEURALNETWORKS_TENSOR_FLOAT16);
topkV2Test(ANEURALNETWORKS_TENSOR_FLOAT32);
topkV2Test(ANEURALNETWORKS_TENSOR_INT32);
topkV2Test(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void simpleMathOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input1 = getOpType(operandCode, 4, inputDimensions);
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = input1;
ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase simpleMathTest(operationCode, {input1, input2, activation}, {output});
simpleMathTest.testOpsValidations();
}
TEST(OperationValidationTest, ADD_float16) {
simpleMathOpTest(ANEURALNETWORKS_ADD, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, ADD_float32) {
simpleMathOpTest(ANEURALNETWORKS_ADD, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, MUL_float16) {
simpleMathOpTest(ANEURALNETWORKS_MUL, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, MUL_float32) {
simpleMathOpTest(ANEURALNETWORKS_MUL, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SUB_float16) {
simpleMathOpTest(ANEURALNETWORKS_SUB, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SUB_float32) {
simpleMathOpTest(ANEURALNETWORKS_SUB, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SUB_quant8) {
simpleMathOpTest(ANEURALNETWORKS_SUB, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, DIV_float16) {
simpleMathOpTest(ANEURALNETWORKS_DIV, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, DIV_float32) {
simpleMathOpTest(ANEURALNETWORKS_DIV, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, ADD_quant8) {
simpleMathOpTest(ANEURALNETWORKS_ADD, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, MUL_quant8) {
simpleMathOpTest(ANEURALNETWORKS_MUL, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, MUL_quant8_bad_output_scale) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input1 =
getOpType(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, 4, inputDimensions);
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = input1;
input1.scale = 1.0f;
input2.scale = 1.0f;
output.scale = 0.5f;
ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase mulTest(ANEURALNETWORKS_MUL, {input1, input2, activation}, {output});
mulTest.testFailure(ANEURALNETWORKS_BAD_DATA);
}
void binaryOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[] = {2, 2, 2, 2, 2};
ANeuralNetworksOperandType input1 = getOpType(operandCode, 5, inputDimensions);
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = input1;
OperationTestBase test(operationCode, {input1, input2}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, MAXIMUM_float16) {
binaryOpTest(ANEURALNETWORKS_MAXIMUM, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, MAXIMUM_float32) {
binaryOpTest(ANEURALNETWORKS_MAXIMUM, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, MAXIMUM_int32) {
binaryOpTest(ANEURALNETWORKS_MAXIMUM, ANEURALNETWORKS_TENSOR_INT32);
}
TEST(OperationValidationTest, MAXIMUM_quant8) {
binaryOpTest(ANEURALNETWORKS_MAXIMUM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, MINIMUM_float16) {
binaryOpTest(ANEURALNETWORKS_MINIMUM, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, MINIMUM_float32) {
binaryOpTest(ANEURALNETWORKS_MINIMUM, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, MINIMUM_int32) {
binaryOpTest(ANEURALNETWORKS_MINIMUM, ANEURALNETWORKS_TENSOR_INT32);
}
TEST(OperationValidationTest, MINIMUM_quant8) {
binaryOpTest(ANEURALNETWORKS_MINIMUM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void activationOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(operandCode, 4, inputDimensions);
ANeuralNetworksOperandType output = input;
OperationTestBase test(operationCode, {input}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, ABS_float16) {
activationOpTest(ANEURALNETWORKS_ABS, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, ABS_float32) {
activationOpTest(ANEURALNETWORKS_ABS, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, EXP_float16) {
activationOpTest(ANEURALNETWORKS_EXP, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, EXP_float32) {
activationOpTest(ANEURALNETWORKS_EXP, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, LOG_float16) {
activationOpTest(ANEURALNETWORKS_LOG, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LOG_float32) {
activationOpTest(ANEURALNETWORKS_LOG, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, RSQRT_float16) {
activationOpTest(ANEURALNETWORKS_RSQRT, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, RSQRT_float32) {
activationOpTest(ANEURALNETWORKS_RSQRT, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SIN_float16) {
activationOpTest(ANEURALNETWORKS_SIN, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SIN_float32) {
activationOpTest(ANEURALNETWORKS_SIN, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SQRT_float16) {
activationOpTest(ANEURALNETWORKS_SQRT, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SQRT_float32) {
activationOpTest(ANEURALNETWORKS_SQRT, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, NEG_float16) {
activationOpTest(ANEURALNETWORKS_NEG, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, NEG_float32) {
activationOpTest(ANEURALNETWORKS_NEG, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, NEG_int32) {
activationOpTest(ANEURALNETWORKS_NEG, ANEURALNETWORKS_TENSOR_INT32);
}
TEST(OperationValidationTest, FLOOR_float16) {
activationOpTest(ANEURALNETWORKS_FLOOR, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, FLOOR_float32) {
activationOpTest(ANEURALNETWORKS_FLOOR, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, LOGICAL_NOT_bool) {
activationOpTest(ANEURALNETWORKS_LOGICAL_NOT, ANEURALNETWORKS_TENSOR_BOOL8);
}
TEST(OperationValidationTest, TANH_float16) {
activationOpTest(ANEURALNETWORKS_TANH, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, TANH_float32) {
activationOpTest(ANEURALNETWORKS_TANH, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, TANH_quant8) {
activationOpTest(ANEURALNETWORKS_TANH, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, RELU_float16) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, RELU1_float16) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, RELU6_float16) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, RELU_float32) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, RELU1_float32) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, RELU6_float32) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, LOGISTIC_float16) {
activationOpTest(ANEURALNETWORKS_LOGISTIC, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LOGISTIC_float32) {
activationOpTest(ANEURALNETWORKS_LOGISTIC, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, RELU_quant8) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, RELU1_quant8) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, RELU6_quant8) {
activationOpTest(ANEURALNETWORKS_RELU, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, LOGISTIC_quant8) {
activationOpTest(ANEURALNETWORKS_LOGISTIC, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void reshapeOpTest(int32_t inputOperandCode) {
SCOPED_TRACE(inputOperandCode);
uint32_t inputDimensions[3] = {2, 3, 4};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 3, inputDimensions);
uint32_t shapeDims[1] = {2};
ANeuralNetworksOperandType shape = getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, shapeDims);
uint32_t outputDimensions[2] = {4, 6};
ANeuralNetworksOperandType output = getOpType(inputOperandCode, 2, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_RESHAPE, {input, shape}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, RESHAPE) {
reshapeOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
reshapeOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
reshapeOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void logSoftmaxOpTest(int32_t inputOperandCode) {
uint32_t inputDimensions[3] = {2, 2, 2};
ANeuralNetworksOperandType input = {.type = inputOperandCode,
.dimensionCount = 3,
.dimensions = inputDimensions,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType beta = {.type = (inputOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32)
? ANEURALNETWORKS_FLOAT32
: ANEURALNETWORKS_FLOAT16,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType axis = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType output = {.type = inputOperandCode,
.dimensionCount = 3,
.dimensions = inputDimensions,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase test(ANEURALNETWORKS_LOG_SOFTMAX, {input, beta, axis}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, LOG_SOFTMAX_float16) {
logSoftmaxOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LOG_SOFTMAX_float32) {
logSoftmaxOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
void meanOpTest(int32_t inputOperandCode) {
uint32_t inputDimensions[3] = {2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 3, inputDimensions);
ANeuralNetworksOperandType dims = getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, inputDimensions);
ANeuralNetworksOperandType keepDims = getOpType(ANEURALNETWORKS_INT32);
ANeuralNetworksOperandType output = getOpType(inputOperandCode, 3, inputDimensions);
OperationTestBase test(ANEURALNETWORKS_MEAN, {input, dims, keepDims}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, MEAN_float16) {
meanOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, MEAN_float32) {
meanOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, MEAN_quant8) {
meanOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void padOpTest(int32_t inputOperandCode) {
SCOPED_TRACE(inputOperandCode);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inputDimensions);
uint32_t padSizeDimensions[1] = {4};
ANeuralNetworksOperandType padSize =
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, padSizeDimensions);
uint32_t outputDimensions[4] = {4, 3, 4, 3};
ANeuralNetworksOperandType output = getOpType(inputOperandCode, 4, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_PAD, {input, padSize}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, PAD) {
padOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
padOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
padOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void padV2OpTest(int32_t inputOperandCode) {
SCOPED_TRACE(inputOperandCode);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inputDimensions);
uint32_t padSizeDimensions[1] = {4};
ANeuralNetworksOperandType padSize =
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, padSizeDimensions);
ANeuralNetworksOperandType padValue = getOpType(ANEURALNETWORKS_FLOAT32);
if (inputOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16) {
padValue = getOpType(ANEURALNETWORKS_FLOAT16);
} else if (inputOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
padValue = getOpType(ANEURALNETWORKS_INT32);
}
uint32_t outputDimensions[4] = {4, 3, 4, 3};
ANeuralNetworksOperandType output = getOpType(inputOperandCode, 4, outputDimensions);
OperationTestBase test(ANEURALNETWORKS_PAD_V2, {input, padSize, padValue}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, PAD_V2) {
padV2OpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
padV2OpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
padV2OpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void softmaxOpTest(int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(operandCode, 4, inputDimensions);
ANeuralNetworksOperandType output = input;
ANeuralNetworksOperandType beta = getOpType(ANEURALNETWORKS_FLOAT32);
if (operandCode == ANEURALNETWORKS_TENSOR_FLOAT16) {
beta = getOpType(ANEURALNETWORKS_FLOAT16);
}
OperationTestBase softmaxTest(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output});
softmaxTest.testOpsValidations();
ANeuralNetworksOperandType axis = getOpType(ANEURALNETWORKS_INT32);
OperationTestBase softmaxAxisTest(ANEURALNETWORKS_SOFTMAX, {input, beta, axis}, {output});
softmaxAxisTest.testOpsValidations();
}
TEST(OperationValidationTest, SOFTMAX_float16) {
softmaxOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SOFTMAX_float32) {
softmaxOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SOFTMAX_quant8) {
softmaxOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void poolingOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 4, 4, 2};
ANeuralNetworksOperandType input = getOpType(operandCode, 4, inputDimensions);
ANeuralNetworksOperandType output = input;
ANeuralNetworksOperandType scalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType padLeft = scalar;
ANeuralNetworksOperandType padRight = scalar;
ANeuralNetworksOperandType padTop = scalar;
ANeuralNetworksOperandType padBottom = scalar;
ANeuralNetworksOperandType strideWidth = scalar;
ANeuralNetworksOperandType strideHeight = scalar;
ANeuralNetworksOperandType filterWidth = scalar;
ANeuralNetworksOperandType filterHeight = scalar;
ANeuralNetworksOperandType activation = scalar;
OperationTestBase explicitPoolingTest(operationCode,
{input, padLeft, padRight, padTop, padBottom, strideWidth,
strideHeight, filterWidth, filterHeight, activation},
{output});
explicitPoolingTest.testOpsValidations();
ANeuralNetworksOperandType padImplicit = scalar;
OperationTestBase implicitPoolingTest(
operationCode,
{input, padImplicit, strideWidth, strideHeight, filterWidth, filterHeight, activation},
{output});
implicitPoolingTest.testOpsValidations();
ANeuralNetworksOperandType layout = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase explicitNchwPoolingTest(
operationCode,
{input, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight, filterWidth,
filterHeight, activation, layout},
{output});
explicitNchwPoolingTest.testOpsValidations();
OperationTestBase implicitNchwPoolingTest(operationCode,
{input, padImplicit, strideWidth, strideHeight,
filterWidth, filterHeight, activation, layout},
{output});
implicitNchwPoolingTest.testOpsValidations();
}
TEST(OperationValidationTest, AVERAGE_POOL_2D_float16) {
poolingOpTest(ANEURALNETWORKS_AVERAGE_POOL_2D, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, AVERAGE_POOL_2D_float32) {
poolingOpTest(ANEURALNETWORKS_AVERAGE_POOL_2D, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, MAX_POOL_2D_float32) {
poolingOpTest(ANEURALNETWORKS_MAX_POOL_2D, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, MAX_POOL_2D_float16) {
poolingOpTest(ANEURALNETWORKS_MAX_POOL_2D, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, L2_POOL_2D_float16) {
poolingOpTest(ANEURALNETWORKS_L2_POOL_2D, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, L2_POOL_2D_float32) {
poolingOpTest(ANEURALNETWORKS_L2_POOL_2D, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, AVERAGE_POOL_2D_quant8) {
poolingOpTest(ANEURALNETWORKS_AVERAGE_POOL_2D, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, MAX_POOL_2D_quant8) {
poolingOpTest(ANEURALNETWORKS_MAX_POOL_2D, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void spaceDepthOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(operandCode, 4, inputDimensions);
ANeuralNetworksOperandType block_size = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType output = input;
OperationTestBase spaceDepthTest(operationCode, {input, block_size}, {output});
spaceDepthTest.testOpsValidations();
ANeuralNetworksOperandType layout = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase spaceDepthNchwTest(operationCode, {input, block_size, layout}, {output});
spaceDepthNchwTest.testOpsValidations();
}
TEST(OperationValidationTest, SPACE_TO_DEPTH_float16) {
spaceDepthOpTest(ANEURALNETWORKS_SPACE_TO_DEPTH, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, DEPTH_TO_SPACE_float16) {
spaceDepthOpTest(ANEURALNETWORKS_DEPTH_TO_SPACE, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SPACE_TO_DEPTH_float32) {
spaceDepthOpTest(ANEURALNETWORKS_SPACE_TO_DEPTH, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, DEPTH_TO_SPACE_float32) {
spaceDepthOpTest(ANEURALNETWORKS_DEPTH_TO_SPACE, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SPACE_TO_DEPTH_quant8) {
spaceDepthOpTest(ANEURALNETWORKS_SPACE_TO_DEPTH, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, DEPTH_TO_SPACE_quant8) {
spaceDepthOpTest(ANEURALNETWORKS_DEPTH_TO_SPACE, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void spaceBatchOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(operandCode, 4, inputDimensions);
uint32_t blockDimensions[1] = {2};
ANeuralNetworksOperandType blockShape = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = blockDimensions,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType layout = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType padding = blockShape;
ANeuralNetworksOperandType output = input;
if (operationCode == ANEURALNETWORKS_SPACE_TO_BATCH_ND) {
OperationTestBase spaceBatchTest(operationCode, {input, blockShape, padding}, {output});
spaceBatchTest.testOpsValidations();
OperationTestBase spaceBatchNchwTest(operationCode, {input, blockShape, padding, layout},
{output});
spaceBatchNchwTest.testOpsValidations();
} else {
OperationTestBase spaceBatchTest(operationCode, {input, blockShape}, {output});
spaceBatchTest.testOpsValidations();
OperationTestBase spaceBatchNchwTest(operationCode, {input, blockShape, layout}, {output});
spaceBatchNchwTest.testOpsValidations();
}
}
TEST(OperationValidationTest, SPACE_TO_BATCH_ND_float16) {
spaceBatchOpTest(ANEURALNETWORKS_SPACE_TO_BATCH_ND, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, BATCH_TO_SPACE_ND_float16) {
spaceBatchOpTest(ANEURALNETWORKS_BATCH_TO_SPACE_ND, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SPACE_TO_BATCH_ND_float32) {
spaceBatchOpTest(ANEURALNETWORKS_SPACE_TO_BATCH_ND, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, BATCH_TO_SPACE_ND_float32) {
spaceBatchOpTest(ANEURALNETWORKS_BATCH_TO_SPACE_ND, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SPACE_TO_BATCH_ND_quant8) {
spaceBatchOpTest(ANEURALNETWORKS_SPACE_TO_BATCH_ND, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, BATCH_TO_SPACE_ND_quant8) {
spaceBatchOpTest(ANEURALNETWORKS_BATCH_TO_SPACE_ND, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void transposeAndSqueezeOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(operandCode, 4, inputDimensions);
uint32_t blockDimensions[1] = {4};
ANeuralNetworksOperandType dims = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = blockDimensions,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType output = input;
OperationTestBase transposeAndSqueezeTest(operationCode, {input, dims}, {output});
transposeAndSqueezeTest.testOpsValidations();
}
TEST(OperationValidationTest, TRANSPOSE_float16) {
transposeAndSqueezeOpTest(ANEURALNETWORKS_TRANSPOSE, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, SQUEEZE_float16) {
transposeAndSqueezeOpTest(ANEURALNETWORKS_SQUEEZE, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, TRANSPOSE_float32) {
transposeAndSqueezeOpTest(ANEURALNETWORKS_TRANSPOSE, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SQUEEZE_float32) {
transposeAndSqueezeOpTest(ANEURALNETWORKS_SQUEEZE, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, TRANSPOSE_quant8) {
transposeAndSqueezeOpTest(ANEURALNETWORKS_TRANSPOSE, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, SQUEEZE_quant8) {
transposeAndSqueezeOpTest(ANEURALNETWORKS_SQUEEZE, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void convOpTest(int32_t inputOperandCode, int32_t filterOperandCode) {
uint32_t inputDimensions[4] = {2, 4, 4, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inputDimensions);
ANeuralNetworksOperandType output = input;
float filterScales[2] = {0.5f, 1.0f};
ANeuralNetworksOperandType filter = getOpType(filterOperandCode, 4, inputDimensions);
ANeuralNetworksSymmPerChannelQuantParams filterChannelQuantParams = {
.channelDim = 0,
.scaleCount = 2,
.scales = filterScales,
};
uint32_t biasDimensions[1] = {2};
ANeuralNetworksOperandType bias = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = biasDimensions,
.scale = 0.0f,
.zeroPoint = 0};
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.25f;
}
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.0f;
}
ANeuralNetworksOperandType scalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType padLeft = scalar;
ANeuralNetworksOperandType padRight = scalar;
ANeuralNetworksOperandType padTop = scalar;
ANeuralNetworksOperandType padBottom = scalar;
ANeuralNetworksOperandType strideWidth = scalar;
ANeuralNetworksOperandType strideHeight = scalar;
ANeuralNetworksOperandType dilationHeightFactor = scalar;
ANeuralNetworksOperandType dilationWidthFactor = scalar;
ANeuralNetworksOperandType activation = scalar;
OperationTestBase explicitConvTest(ANEURALNETWORKS_CONV_2D,
{input, filter, bias, padLeft, padRight, padTop, padBottom,
strideWidth, strideHeight, activation},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
explicitConvTest.testOpsValidations();
ANeuralNetworksOperandType padImplicit = scalar;
OperationTestBase implicitConvTest(
ANEURALNETWORKS_CONV_2D,
{input, filter, bias, padImplicit, strideWidth, strideHeight, activation}, {output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
implicitConvTest.testOpsValidations();
ANeuralNetworksOperandType layout = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase explicitNchwConvTest(
ANEURALNETWORKS_CONV_2D,
{input, filter, bias, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight,
activation, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitNchwConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
explicitNchwConvTest.testOpsValidations();
OperationTestBase implicitNchwConvTest(
ANEURALNETWORKS_CONV_2D,
{input, filter, bias, padImplicit, strideWidth, strideHeight, activation, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitNchwConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
implicitNchwConvTest.testOpsValidations();
OperationTestBase explicitDilateConvTest(
ANEURALNETWORKS_CONV_2D,
{input, filter, bias, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight,
activation, layout, dilationWidthFactor, dilationHeightFactor},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitDilateConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
explicitDilateConvTest.testOpsValidations();
OperationTestBase implicitDilateConvTest(
ANEURALNETWORKS_CONV_2D,
{input, filter, bias, padImplicit, strideWidth, strideHeight, activation, layout,
dilationWidthFactor, dilationHeightFactor},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitDilateConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
implicitDilateConvTest.testOpsValidations();
}
TEST(OperationValidationTest, CONV_2D_float16) {
convOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, CONV_2D_float32) {
convOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, CONV_2D_quant8) {
convOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, CONV_2D_quant8_per_channel) {
convOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL);
}
void depthwiseConvOpTest(int32_t inputOperandCode, int32_t filterOperandCode) {
uint32_t inputDimensions[4] = {1, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inputDimensions);
ANeuralNetworksOperandType output = input;
float filterScales[2] = {0.5f, 1.0f};
ANeuralNetworksOperandType filter = getOpType(filterOperandCode, 4, inputDimensions);
ANeuralNetworksSymmPerChannelQuantParams filterChannelQuantParams = {
.channelDim = 3,
.scaleCount = 2,
.scales = filterScales,
};
uint32_t biasDimensions[1] = {2};
ANeuralNetworksOperandType bias = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = biasDimensions,
.scale = 0.0f,
.zeroPoint = 0};
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.25f;
}
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.0f;
}
ANeuralNetworksOperandType scalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType padLeft = scalar;
ANeuralNetworksOperandType padRight = scalar;
ANeuralNetworksOperandType padTop = scalar;
ANeuralNetworksOperandType padBottom = scalar;
ANeuralNetworksOperandType strideWidth = scalar;
ANeuralNetworksOperandType strideHeight = scalar;
ANeuralNetworksOperandType multiplier = scalar;
ANeuralNetworksOperandType activation = scalar;
OperationTestBase explicitDepthwiseConvTest(
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
{input, filter, bias, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight,
multiplier, activation},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitDepthwiseConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
explicitDepthwiseConvTest.testOpsValidations();
ANeuralNetworksOperandType padImplicit = scalar;
OperationTestBase implicitDepthwiseConvTest(
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
{input, filter, bias, padImplicit, strideWidth, strideHeight, multiplier, activation},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitDepthwiseConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
implicitDepthwiseConvTest.testOpsValidations();
ANeuralNetworksOperandType layout = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase explicitNchwDepthwiseConvTest(
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
{input, filter, bias, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight,
multiplier, activation, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitNchwDepthwiseConvTest.setInputSymmPerChannelQuantParams(1,
filterChannelQuantParams);
}
explicitNchwDepthwiseConvTest.testOpsValidations();
OperationTestBase implicitNchwDepthwiseConvTest(ANEURALNETWORKS_DEPTHWISE_CONV_2D,
{input, filter, bias, padImplicit, strideWidth,
strideHeight, multiplier, activation, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitNchwDepthwiseConvTest.setInputSymmPerChannelQuantParams(1,
filterChannelQuantParams);
}
implicitNchwDepthwiseConvTest.testOpsValidations();
ANeuralNetworksOperandType dilationHeightFactor = scalar;
ANeuralNetworksOperandType dilationWidthFactor = scalar;
OperationTestBase explicitDilationDepthwiseConvTest(
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
{input, filter, bias, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight,
multiplier, activation, layout, dilationWidthFactor, dilationHeightFactor},
{output});
explicitDilationDepthwiseConvTest.testOpsValidations();
OperationTestBase implicitDilationDepthwiseConvTest(
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
{input, filter, bias, padImplicit, strideWidth, strideHeight, multiplier, activation,
layout, dilationWidthFactor, dilationHeightFactor},
{output});
implicitDilationDepthwiseConvTest.testOpsValidations();
}
TEST(OperationValidationTest, DEPTHWISE_CONV_2D_float32) {
depthwiseConvOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, DEPTHWISE_CONV_2D_float16) {
depthwiseConvOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, DEPTHWISE_CONV_2D_quant8) {
depthwiseConvOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, DEPTHWISE_CONV_2D_quant8_per_channel) {
depthwiseConvOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL);
}
void fullyConnectedOpTest(int32_t operandCode) {
uint32_t inputDimensions[2] = {5, 5};
ANeuralNetworksOperandType input = getOpType(operandCode, 2, inputDimensions);
ANeuralNetworksOperandType weights = input;
ANeuralNetworksOperandType output = input;
uint32_t biasDimensions[1] = {5};
ANeuralNetworksOperandType bias = {.type = operandCode,
.dimensionCount = 1,
.dimensions = biasDimensions,
.scale = 0.0f,
.zeroPoint = 0};
if (operandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.25f;
}
ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase fullyConnectedTest(ANEURALNETWORKS_FULLY_CONNECTED,
{input, weights, bias, activation}, {output});
fullyConnectedTest.testOpsValidations();
}
TEST(OperationValidationTest, FULLY_CONNECTED_float16) {
fullyConnectedOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, FULLY_CONNECTED_float32) {
fullyConnectedOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, FULLY_CONNECTED_quant8) {
fullyConnectedOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void concatenationTest(int32_t operandCode) {
uint32_t inputDimensions[2] = {5, 5};
ANeuralNetworksOperandType input1 = getOpType(operandCode, 2, inputDimensions);
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = input1;
ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase concat2Test(ANEURALNETWORKS_CONCATENATION, {input1, input2, activation},
{output});
concat2Test.testOpsValidations();
OperationTestBase concat1Test(ANEURALNETWORKS_CONCATENATION, {input1, activation}, {output});
concat1Test.testOpsValidations();
}
TEST(OperationValidationTest, CONCATENATION_float16) {
concatenationTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, CONCATENATION_float32) {
concatenationTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, CONCATENATION_quant8) {
concatenationTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void resizeBilinearOpTest(int32_t inputOperandCode, int32_t scalarOperandCode) {
SCOPED_TRACE(inputOperandCode);
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inputDimensions);
ANeuralNetworksOperandType height = getOpType(scalarOperandCode);
ANeuralNetworksOperandType width = height;
ANeuralNetworksOperandType output = input;
OperationTestBase resizeTest(ANEURALNETWORKS_RESIZE_BILINEAR, {input, height, width}, {output});
resizeTest.testOpsValidations();
ANeuralNetworksOperandType layout = getOpType(ANEURALNETWORKS_BOOL);
OperationTestBase resizeNchwTest(ANEURALNETWORKS_RESIZE_BILINEAR,
{input, height, width, layout}, {output});
resizeNchwTest.testOpsValidations();
}
TEST(OperationValidationTest, RESIZE_BILINEAR) {
resizeBilinearOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_INT32);
resizeBilinearOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_INT32);
resizeBilinearOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_INT32);
resizeBilinearOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_FLOAT16);
resizeBilinearOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_FLOAT32);
resizeBilinearOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_FLOAT32);
}
void embeddingLookupTest(int32_t operandCode) {
uint32_t lookupDimensions[1] = {5};
ANeuralNetworksOperandType lookup = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = lookupDimensions,
.scale = 0.0f,
.zeroPoint = 0};
uint32_t inputDimensions[2] = {5, 5};
ANeuralNetworksOperandType input = getOpType(operandCode, 2, inputDimensions);
ANeuralNetworksOperandType output = input;
OperationTestBase embedLookupTest(ANEURALNETWORKS_EMBEDDING_LOOKUP, {lookup, input}, {output});
embedLookupTest.testOpsValidations();
}
TEST(OperationValidationTest, EMBEDDING_LOOKUP_float32) {
embeddingLookupTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, EMBEDDING_LOOKUP_int32) {
embeddingLookupTest(ANEURALNETWORKS_TENSOR_INT32);
}
TEST(OperationValidationTest, EMBEDDING_LOOKUP_quant8) {
embeddingLookupTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void hashtableLookupTest(int32_t operandCode) {
uint32_t lookupDimensions[1] = {5};
ANeuralNetworksOperandType lookup = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = lookupDimensions,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType keys = lookup;
uint32_t valuesDimensions[2] = {5, 5};
ANeuralNetworksOperandType values = getOpType(operandCode, 2, valuesDimensions);
ANeuralNetworksOperandType output = values;
ANeuralNetworksOperandType hits = lookup;
hits.type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM;
hits.scale = 1.0f;
OperationTestBase hashLookupTest(ANEURALNETWORKS_HASHTABLE_LOOKUP, {lookup, keys, values},
{output, hits});
hashLookupTest.testOpsValidations();
}
TEST(OperationValidationTest, HASHTABLE_LOOKUP_float32) {
hashtableLookupTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, HASHTABLE_LOOKUP_int32) {
hashtableLookupTest(ANEURALNETWORKS_TENSOR_INT32);
}
TEST(OperationValidationTest, HASHTABLE_LOOKUP_quant8) {
hashtableLookupTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void lshProjectionTest(int32_t operandCode, int32_t hashAndWeightOperandCode) {
uint32_t inputDimensions[2] = {5, 5};
ANeuralNetworksOperandType hash = getOpType(hashAndWeightOperandCode, 2, inputDimensions);
ANeuralNetworksOperandType input = getOpType(operandCode, 2, inputDimensions);
uint32_t weightDimensions[1] = {5};
ANeuralNetworksOperandType weight = getOpType(hashAndWeightOperandCode, 1, weightDimensions);
ANeuralNetworksOperandType type = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType output = weight;
output.type = ANEURALNETWORKS_TENSOR_INT32;
OperationTestBase lshProjTest(ANEURALNETWORKS_LSH_PROJECTION, {hash, input, weight, type},
{output});
lshProjTest.testOpsValidations();
}
TEST(OperationValidationTest, LSH_PROJECTION_float16) {
lshProjectionTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT32);
lshProjectionTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LSH_PROJECTION_float32) {
lshProjectionTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
lshProjectionTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LSH_PROJECTION_quant8) {
lshProjectionTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_FLOAT32);
lshProjectionTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LSH_PROJECTION_int32) {
lshProjectionTest(ANEURALNETWORKS_TENSOR_INT32, ANEURALNETWORKS_TENSOR_FLOAT32);
lshProjectionTest(ANEURALNETWORKS_TENSOR_INT32, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LSTM_float32) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType floatTensor1D = {.type = ANEURALNETWORKS_TENSOR_FLOAT32,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatTensor2D = {.type = ANEURALNETWORKS_TENSOR_FLOAT32,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatScalar = {.type = ANEURALNETWORKS_FLOAT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor2D;
ANeuralNetworksOperandType inputToInput = floatTensor2D;
ANeuralNetworksOperandType inputToForget = floatTensor2D;
ANeuralNetworksOperandType inputToCell = floatTensor2D;
ANeuralNetworksOperandType inputToOutput = floatTensor2D;
ANeuralNetworksOperandType recurrentToInput = floatTensor2D;
ANeuralNetworksOperandType recurrentToForget = floatTensor2D;
ANeuralNetworksOperandType recurrentToCell = floatTensor2D;
ANeuralNetworksOperandType recurrentToOutput = floatTensor2D;
ANeuralNetworksOperandType cellToInput = floatTensor1D;
ANeuralNetworksOperandType cellToForget = floatTensor1D;
ANeuralNetworksOperandType cellToOutput = floatTensor1D;
ANeuralNetworksOperandType inputGateBias = floatTensor1D;
ANeuralNetworksOperandType forgetGateBias = floatTensor1D;
ANeuralNetworksOperandType cellBias = floatTensor1D;
ANeuralNetworksOperandType outputGateBias = floatTensor1D;
ANeuralNetworksOperandType projWeights = floatTensor2D;
ANeuralNetworksOperandType projBias = floatTensor1D;
ANeuralNetworksOperandType outputStateIn = floatTensor2D;
ANeuralNetworksOperandType cellStateIn = floatTensor2D;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType clipCellState = floatScalar;
ANeuralNetworksOperandType clipProjLayer = floatScalar;
ANeuralNetworksOperandType scratch = floatTensor2D;
ANeuralNetworksOperandType outputStateOut = floatTensor2D;
ANeuralNetworksOperandType cellStateOut = floatTensor2D;
ANeuralNetworksOperandType output = floatTensor2D;
OperationTestBase lstmTest(ANEURALNETWORKS_LSTM,
{input,
inputToInput,
inputToForget,
inputToCell,
inputToOutput,
recurrentToInput,
recurrentToForget,
recurrentToCell,
recurrentToOutput,
cellToInput,
cellToForget,
cellToOutput,
inputGateBias,
forgetGateBias,
cellBias,
outputGateBias,
projWeights,
projBias,
outputStateIn,
cellStateIn,
activation,
clipCellState,
clipProjLayer},
{scratch, outputStateOut, cellStateOut, output});
lstmTest.testOpsValidations();
}
void lstmTestV1_2(int32_t operandCode) {
SCOPED_TRACE(operandCode);
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType floatTensor1D = {.type = operandCode,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatTensor2D = {.type = operandCode,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatScalar = {
.type = (operandCode == ANEURALNETWORKS_TENSOR_FLOAT32) ? ANEURALNETWORKS_FLOAT32
: ANEURALNETWORKS_FLOAT16,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor2D;
ANeuralNetworksOperandType inputToInput = floatTensor2D;
ANeuralNetworksOperandType inputToForget = floatTensor2D;
ANeuralNetworksOperandType inputToCell = floatTensor2D;
ANeuralNetworksOperandType inputToOutput = floatTensor2D;
ANeuralNetworksOperandType recurrentToInput = floatTensor2D;
ANeuralNetworksOperandType recurrentToForget = floatTensor2D;
ANeuralNetworksOperandType recurrentToCell = floatTensor2D;
ANeuralNetworksOperandType recurrentToOutput = floatTensor2D;
ANeuralNetworksOperandType cellToInput = floatTensor1D;
ANeuralNetworksOperandType cellToForget = floatTensor1D;
ANeuralNetworksOperandType cellToOutput = floatTensor1D;
ANeuralNetworksOperandType inputGateBias = floatTensor1D;
ANeuralNetworksOperandType forgetGateBias = floatTensor1D;
ANeuralNetworksOperandType cellBias = floatTensor1D;
ANeuralNetworksOperandType outputGateBias = floatTensor1D;
ANeuralNetworksOperandType projWeights = floatTensor2D;
ANeuralNetworksOperandType projBias = floatTensor1D;
ANeuralNetworksOperandType outputStateIn = floatTensor2D;
ANeuralNetworksOperandType cellStateIn = floatTensor2D;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType clipCellState = floatScalar;
ANeuralNetworksOperandType clipProjLayer = floatScalar;
ANeuralNetworksOperandType inputLayerNormWeights = floatTensor1D;
ANeuralNetworksOperandType forgetLayerNormWeights = floatTensor1D;
ANeuralNetworksOperandType cellLayerNormWeights = floatTensor1D;
ANeuralNetworksOperandType outputLayerNormWeights = floatTensor1D;
ANeuralNetworksOperandType scratch = floatTensor2D;
ANeuralNetworksOperandType outputStateOut = floatTensor2D;
ANeuralNetworksOperandType cellStateOut = floatTensor2D;
ANeuralNetworksOperandType output = floatTensor2D;
OperationTestBase lstmTest(ANEURALNETWORKS_LSTM,
{input,
inputToInput,
inputToForget,
inputToCell,
inputToOutput,
recurrentToInput,
recurrentToForget,
recurrentToCell,
recurrentToOutput,
cellToInput,
cellToForget,
cellToOutput,
inputGateBias,
forgetGateBias,
cellBias,
outputGateBias,
projWeights,
projBias,
outputStateIn,
cellStateIn,
activation,
clipCellState,
clipProjLayer,
inputLayerNormWeights,
forgetLayerNormWeights,
cellLayerNormWeights,
outputLayerNormWeights},
{scratch, outputStateOut, cellStateOut, output});
lstmTest.testOpsValidations();
}
TEST(OperationValidationTest, LSTM_V1_2) {
lstmTestV1_2(ANEURALNETWORKS_TENSOR_FLOAT32);
lstmTestV1_2(ANEURALNETWORKS_TENSOR_FLOAT16);
}
void lstmBidirectionalSequence(int32_t operandCode) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
uint32_t threeDimensional[3] = {5, 5, 5};
ANeuralNetworksOperandType floatTensor1D = {
.type = operandCode,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType floatTensor2D = {
.type = operandCode,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType floatTensor3D = {
.type = operandCode,
.dimensionCount = 3,
.dimensions = threeDimensional,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType intScalar = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType floatScalar = {
.type = operandCode == ANEURALNETWORKS_TENSOR_FLOAT32 ? ANEURALNETWORKS_FLOAT32
: ANEURALNETWORKS_FLOAT16,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType boolScalar = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor3D;
ANeuralNetworksOperandType inputToInputFw = floatTensor2D;
ANeuralNetworksOperandType inputToForgetFw = floatTensor2D;
ANeuralNetworksOperandType inputToCellFw = floatTensor2D;
ANeuralNetworksOperandType inputToOutputFw = floatTensor2D;
ANeuralNetworksOperandType recurrentToInputFw = floatTensor2D;
ANeuralNetworksOperandType recurrentToForgetFw = floatTensor2D;
ANeuralNetworksOperandType recurrentToCellFw = floatTensor2D;
ANeuralNetworksOperandType recurrentToOutputFw = floatTensor2D;
ANeuralNetworksOperandType cellToInputFw = floatTensor1D;
ANeuralNetworksOperandType cellToForgetFw = floatTensor1D;
ANeuralNetworksOperandType cellToOutputFw = floatTensor1D;
ANeuralNetworksOperandType inputGateBiasFw = floatTensor1D;
ANeuralNetworksOperandType forgetGateBiasFw = floatTensor1D;
ANeuralNetworksOperandType cellBiasFw = floatTensor1D;
ANeuralNetworksOperandType outputGateBiasFw = floatTensor1D;
ANeuralNetworksOperandType projWeightsFw = floatTensor2D;
ANeuralNetworksOperandType projBiasFw = floatTensor1D;
ANeuralNetworksOperandType outputStateInFw = floatTensor2D;
ANeuralNetworksOperandType cellStateInFw = floatTensor2D;
ANeuralNetworksOperandType inputToInputBw = floatTensor2D;
ANeuralNetworksOperandType inputToForgetBw = floatTensor2D;
ANeuralNetworksOperandType inputToCellBw = floatTensor2D;
ANeuralNetworksOperandType inputToOutputBw = floatTensor2D;
ANeuralNetworksOperandType recurrentToInputBw = floatTensor2D;
ANeuralNetworksOperandType recurrentToForgetBw = floatTensor2D;
ANeuralNetworksOperandType recurrentToCellBw = floatTensor2D;
ANeuralNetworksOperandType recurrentToOutputBw = floatTensor2D;
ANeuralNetworksOperandType cellToInputBw = floatTensor1D;
ANeuralNetworksOperandType cellToForgetBw = floatTensor1D;
ANeuralNetworksOperandType cellToOutputBw = floatTensor1D;
ANeuralNetworksOperandType inputGateBiasBw = floatTensor1D;
ANeuralNetworksOperandType forgetGateBiasBw = floatTensor1D;
ANeuralNetworksOperandType cellBiasBw = floatTensor1D;
ANeuralNetworksOperandType outputGateBiasBw = floatTensor1D;
ANeuralNetworksOperandType projWeightsBw = floatTensor2D;
ANeuralNetworksOperandType projBiasBw = floatTensor1D;
ANeuralNetworksOperandType outputStateInBw = floatTensor2D;
ANeuralNetworksOperandType cellStateInBw = floatTensor2D;
ANeuralNetworksOperandType auxInput = floatTensor3D;
ANeuralNetworksOperandType auxInputToInputFw = floatTensor2D;
ANeuralNetworksOperandType auxInputToForgetFw = floatTensor2D;
ANeuralNetworksOperandType auxInputToCellFw = floatTensor2D;
ANeuralNetworksOperandType auxInputToOutputFw = floatTensor2D;
ANeuralNetworksOperandType auxInputToInputBw = floatTensor2D;
ANeuralNetworksOperandType auxInputToForgetBw = floatTensor2D;
ANeuralNetworksOperandType auxInputToCellBw = floatTensor2D;
ANeuralNetworksOperandType auxInputToOutputBw = floatTensor2D;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType clipCellState = floatScalar;
ANeuralNetworksOperandType clipProjLayer = floatScalar;
ANeuralNetworksOperandType mergeOutputs = boolScalar;
ANeuralNetworksOperandType timeMajor = boolScalar;
ANeuralNetworksOperandType inputLayerNormWeightsFw = floatTensor1D;
ANeuralNetworksOperandType forgetLayerNormWeightsFw = floatTensor1D;
ANeuralNetworksOperandType cellLayerNormWeightsFw = floatTensor1D;
ANeuralNetworksOperandType outputLayerNormWeightsFw = floatTensor1D;
ANeuralNetworksOperandType inputLayerNormWeightsBw = floatTensor1D;
ANeuralNetworksOperandType forgetLayerNormWeightsBw = floatTensor1D;
ANeuralNetworksOperandType cellLayerNormWeightsBw = floatTensor1D;
ANeuralNetworksOperandType outputLayerNormWeightsBw = floatTensor1D;
ANeuralNetworksOperandType outputFw = floatTensor2D;
ANeuralNetworksOperandType outputBw = floatTensor2D;
OperationTestBase lstmTest(ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM,
{
input,
inputToInputFw,
inputToForgetFw,
inputToCellFw,
inputToOutputFw,
recurrentToInputFw,
recurrentToForgetFw,
recurrentToCellFw,
recurrentToOutputFw,
cellToInputFw,
cellToForgetFw,
cellToOutputFw,
inputGateBiasFw,
forgetGateBiasFw,
cellBiasFw,
outputGateBiasFw,
projWeightsFw,
projBiasFw,
outputStateInFw,
cellStateInFw,
inputToInputBw,
inputToForgetBw,
inputToCellBw,
inputToOutputBw,
recurrentToInputBw,
recurrentToForgetBw,
recurrentToCellBw,
recurrentToOutputBw,
cellToInputBw,
cellToForgetBw,
cellToOutputBw,
inputGateBiasBw,
forgetGateBiasBw,
cellBiasBw,
outputGateBiasBw,
projWeightsBw,
projBiasBw,
outputStateInBw,
cellStateInBw,
auxInput,
auxInputToInputFw,
auxInputToForgetFw,
auxInputToCellFw,
auxInputToOutputFw,
auxInputToInputBw,
auxInputToForgetBw,
auxInputToCellBw,
auxInputToOutputBw,
activation,
clipCellState,
clipProjLayer,
mergeOutputs,
timeMajor,
inputLayerNormWeightsFw,
forgetLayerNormWeightsFw,
cellLayerNormWeightsFw,
outputLayerNormWeightsFw,
inputLayerNormWeightsBw,
forgetLayerNormWeightsBw,
cellLayerNormWeightsBw,
outputLayerNormWeightsBw,
},
{
outputFw,
outputBw,
});
lstmTest.testOpsValidations();
}
TEST(OperationValidationTest, LSTM_BIDIRECTIONAL_SEQUENCE) {
lstmBidirectionalSequence(ANEURALNETWORKS_TENSOR_FLOAT32);
lstmBidirectionalSequence(ANEURALNETWORKS_TENSOR_FLOAT16);
}
void randomMultinomialOpTest(int32_t operandCode) {
uint32_t inputDims[2] = {5, 5};
ANeuralNetworksOperandType input = {.type = operandCode,
.dimensionCount = 2,
.dimensions = inputDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType sample_count = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
uint32_t seedDims[1] = {2};
ANeuralNetworksOperandType seed = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = seedDims,
.scale = 0.0f,
.zeroPoint = 0};
uint32_t outputDims[2] = {5, 7};
ANeuralNetworksOperandType output = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 2,
.dimensions = outputDims,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase multinomialTest(ANEURALNETWORKS_RANDOM_MULTINOMIAL,
{input, sample_count, seed}, {output});
multinomialTest.testOpsValidations();
}
TEST(OperationValidationTest, RANDOM_MULTINOMIAL_float16) {
randomMultinomialOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, RANDOM_MULTINOMIAL_float32) {
randomMultinomialOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, RNN_float16) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType floatTensor1D = {.type = ANEURALNETWORKS_TENSOR_FLOAT16,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatTensor2D = {.type = ANEURALNETWORKS_TENSOR_FLOAT16,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor2D;
ANeuralNetworksOperandType weights = floatTensor2D;
ANeuralNetworksOperandType recurrentWeights = floatTensor2D;
ANeuralNetworksOperandType bias = floatTensor1D;
ANeuralNetworksOperandType hiddenStateIn = floatTensor2D;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType hiddenStateOut = floatTensor2D;
ANeuralNetworksOperandType output = floatTensor2D;
OperationTestBase rnnTest(ANEURALNETWORKS_RNN,
{input, weights, recurrentWeights, bias, hiddenStateIn, activation},
{hiddenStateOut, output});
rnnTest.testOpsValidations();
}
TEST(OperationValidationTest, RNN_float32) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType floatTensor1D = {.type = ANEURALNETWORKS_TENSOR_FLOAT32,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatTensor2D = {.type = ANEURALNETWORKS_TENSOR_FLOAT32,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor2D;
ANeuralNetworksOperandType weights = floatTensor2D;
ANeuralNetworksOperandType recurrentWeights = floatTensor2D;
ANeuralNetworksOperandType bias = floatTensor1D;
ANeuralNetworksOperandType hiddenStateIn = floatTensor2D;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType hiddenStateOut = floatTensor2D;
ANeuralNetworksOperandType output = floatTensor2D;
OperationTestBase rnnTest(ANEURALNETWORKS_RNN,
{input, weights, recurrentWeights, bias, hiddenStateIn, activation},
{hiddenStateOut, output});
rnnTest.testOpsValidations();
}
TEST(OperationValidationTest, SVDF_float32) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType floatTensor1D = {.type = ANEURALNETWORKS_TENSOR_FLOAT32,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatTensor2D = {.type = ANEURALNETWORKS_TENSOR_FLOAT32,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor2D;
ANeuralNetworksOperandType weightsFeature = floatTensor2D;
ANeuralNetworksOperandType weightsTime = floatTensor2D;
ANeuralNetworksOperandType bias = floatTensor1D;
ANeuralNetworksOperandType stateIn = floatTensor2D;
ANeuralNetworksOperandType rank = intScalar;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType stateOut = floatTensor2D;
ANeuralNetworksOperandType output = floatTensor2D;
OperationTestBase svdfTest(
ANEURALNETWORKS_SVDF,
{input, weightsFeature, weightsTime, bias, stateIn, rank, activation},
{stateOut, output});
svdfTest.testOpsValidations();
}
TEST(OperationValidationTest, SVDF_float16) {
uint32_t oneDimensional[1] = {5};
uint32_t twoDimensional[2] = {5, 5};
ANeuralNetworksOperandType floatTensor1D = {.type = ANEURALNETWORKS_TENSOR_FLOAT16,
.dimensionCount = 1,
.dimensions = oneDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType floatTensor2D = {.type = ANEURALNETWORKS_TENSOR_FLOAT16,
.dimensionCount = 2,
.dimensions = twoDimensional,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input = floatTensor2D;
ANeuralNetworksOperandType weightsFeature = floatTensor2D;
ANeuralNetworksOperandType weightsTime = floatTensor2D;
ANeuralNetworksOperandType bias = floatTensor1D;
ANeuralNetworksOperandType stateIn = floatTensor2D;
ANeuralNetworksOperandType rank = intScalar;
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType stateOut = floatTensor2D;
ANeuralNetworksOperandType output = floatTensor2D;
OperationTestBase svdfTest(
ANEURALNETWORKS_SVDF,
{input, weightsFeature, weightsTime, bias, stateIn, rank, activation},
{stateOut, output});
svdfTest.testOpsValidations();
}
void stridedSliceOpTest(int32_t operandCode) {
uint32_t inputDimensions[2] = {5, 5};
ANeuralNetworksOperandType input = getOpType(operandCode, 2, inputDimensions);
ANeuralNetworksOperandType output = input;
uint32_t beginsDimensions[1] = {2};
ANeuralNetworksOperandType begins = {.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = beginsDimensions,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType ends = begins;
ANeuralNetworksOperandType strides = begins;
ANeuralNetworksOperandType beginMask = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType endMask = beginMask;
ANeuralNetworksOperandType shrinkAxisMask = beginMask;
OperationTestBase stridedSliceTest(
ANEURALNETWORKS_STRIDED_SLICE,
{input, begins, ends, strides, beginMask, endMask, shrinkAxisMask}, {output});
stridedSliceTest.testOpsValidations();
}
TEST(OperationValidationTest, STRIDED_SLICE_float32) {
stridedSliceOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, STRIDED_SLICE_float16) {
stridedSliceOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, STRIDED_SLICE_quant8) {
stridedSliceOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void roiAlignOpTest(int32_t inputOperandCode, int32_t roiOperandCode, int32_t scalarOperandCode) {
uint32_t inDim[] = {1, 4, 4, 1}, roiDim[] = {4, 4}, batchSplitDim[] = {1};
uint32_t outDim[] = {4, 2, 2, 1};
OperationTestBase roiAlignTest(
ANEURALNETWORKS_ROI_ALIGN,
{getOpType(inputOperandCode, 4, inDim), getOpType(roiOperandCode, 2, roiDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, batchSplitDim),
getOpType(ANEURALNETWORKS_INT32), getOpType(ANEURALNETWORKS_INT32),
getOpType(scalarOperandCode), getOpType(scalarOperandCode),
getOpType(ANEURALNETWORKS_INT32), getOpType(ANEURALNETWORKS_INT32),
getOpType(ANEURALNETWORKS_BOOL)},
{getOpType(inputOperandCode, 4, outDim)});
roiAlignTest.testOpsValidations();
}
TEST(OperationValidationTest, ROI_ALIGN_float16) {
roiAlignOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_FLOAT16);
}
TEST(OperationValidationTest, ROI_ALIGN_float32) {
roiAlignOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32,
ANEURALNETWORKS_FLOAT32);
}
TEST(OperationValidationTest, ROI_ALIGN_quant8) {
roiAlignOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT16_ASYMM,
ANEURALNETWORKS_FLOAT32);
}
void roiPoolingOpTest(int32_t inputOperandCode, int32_t roiOperandCode, int32_t scalarOperandCode) {
uint32_t inDim[] = {1, 4, 4, 1}, roiDim[] = {4, 4}, batchSplitDim[] = {1};
uint32_t outDim[] = {4, 2, 2, 1};
OperationTestBase roiPoolingTest(
ANEURALNETWORKS_ROI_POOLING,
{getOpType(inputOperandCode, 4, inDim), getOpType(roiOperandCode, 2, roiDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, batchSplitDim),
getOpType(ANEURALNETWORKS_INT32), getOpType(ANEURALNETWORKS_INT32),
getOpType(scalarOperandCode), getOpType(scalarOperandCode),
getOpType(ANEURALNETWORKS_BOOL)},
{getOpType(inputOperandCode, 4, outDim)});
roiPoolingTest.testOpsValidations();
}
TEST(OperationValidationTest, ROI_POOLING_float16) {
roiPoolingOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_FLOAT16);
}
TEST(OperationValidationTest, ROI_POOLING_float32) {
roiPoolingOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32,
ANEURALNETWORKS_FLOAT32);
}
TEST(OperationValidationTest, ROI_POOLING_quant8) {
roiPoolingOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT16_ASYMM,
ANEURALNETWORKS_FLOAT32);
}
void heatmapMaxKeypointOpTest(int32_t heatmapOperandCode, int32_t roiOperandCode) {
uint32_t heatmapDim[] = {6, 4, 4, 1}, boxDim[] = {6, 4}, outScoreDim[] = {6, 1},
outKeypointDim[] = {6, 1, 2};
OperationTestBase heatmapMaxKeypointTest(
ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT,
{getOpType(heatmapOperandCode, 4, heatmapDim), getOpType(roiOperandCode, 2, boxDim),
getOpType(ANEURALNETWORKS_BOOL)},
{getOpType(heatmapOperandCode, 2, outScoreDim),
getOpType(roiOperandCode, 3, outKeypointDim)});
heatmapMaxKeypointTest.testOpsValidations();
}
TEST(OperationValidationTest, HEATMAP_MAX_KEYPOINT_float16) {
heatmapMaxKeypointOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, HEATMAP_MAX_KEYPOINT_float32) {
heatmapMaxKeypointOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, HEATMAP_MAX_KEYPOINT_quant) {
heatmapMaxKeypointOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT16_ASYMM);
}
void instanceNormalizationOpTest(int32_t inputOperandType) {
SCOPED_TRACE(inputOperandType);
uint32_t inputDims[4] = {4, 4, 4, 4};
ANeuralNetworksOperandType input = getOpType(inputOperandType, 4, inputDims);
ANeuralNetworksOperandType floatScalar = getOpType(ANEURALNETWORKS_FLOAT32);
if (inputOperandType == ANEURALNETWORKS_TENSOR_FLOAT16) {
floatScalar = getOpType(ANEURALNETWORKS_FLOAT16);
}
ANeuralNetworksOperandType gamma = floatScalar;
ANeuralNetworksOperandType beta = floatScalar;
ANeuralNetworksOperandType epsilon = floatScalar;
ANeuralNetworksOperandType isNCHW = getOpType(ANEURALNETWORKS_BOOL);
ANeuralNetworksOperandType output = input;
OperationTestBase test(ANEURALNETWORKS_INSTANCE_NORMALIZATION,
{input, gamma, beta, epsilon, isNCHW}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, INSTANCE_NORMALIZATION) {
instanceNormalizationOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
instanceNormalizationOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
void groupedConvOpTest(int32_t inputOperandCode, int32_t filterOperandCode) {
uint32_t inDim[] = {1, 3, 3, 2}, filterDim[] = {2, 2, 2, 1}, biasDim[] = {2};
uint32_t outDim[] = {1, 2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inDim);
float filterScales[2] = {0.5f, 1.0f};
ANeuralNetworksOperandType filter = getOpType(filterOperandCode, 4, filterDim);
ANeuralNetworksSymmPerChannelQuantParams filterChannelQuantParams = {
.channelDim = 0,
.scaleCount = 2,
.scales = filterScales,
};
ANeuralNetworksOperandType bias = getOpType(inputOperandCode, 1, biasDim);
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.25f;
}
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.0f;
}
ANeuralNetworksOperandType scalar = getOpType(ANEURALNETWORKS_INT32);
ANeuralNetworksOperandType layout = getOpType(ANEURALNETWORKS_BOOL);
ANeuralNetworksOperandType output = getOpType(inputOperandCode, 4, outDim);
OperationTestBase explicitGroupedConvTest(ANEURALNETWORKS_GROUPED_CONV_2D,
{input, filter, bias, scalar, scalar, scalar, scalar,
scalar, scalar, scalar, scalar, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitGroupedConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
explicitGroupedConvTest.testOpsValidations();
OperationTestBase implicitGroupedConvTest(
ANEURALNETWORKS_GROUPED_CONV_2D,
{input, filter, bias, scalar, scalar, scalar, scalar, scalar, layout}, {output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitGroupedConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
implicitGroupedConvTest.testOpsValidations();
}
TEST(OperationValidationTest, GROUPED_CONV_2D_float16) {
groupedConvOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, GROUPED_CONV_2D_float32) {
groupedConvOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, GROUPED_CONV_2D_quant8) {
groupedConvOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, GROUPED_CONV_2D_quant8_per_channel) {
groupedConvOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL);
}
void transposeConvOpTest(int32_t inputOperandCode, int32_t filterOperandCode) {
uint32_t inDim[] = {1, 2, 2, 2}, filterDim[] = {2, 3, 3, 1}, biasDim[] = {2};
uint32_t outDim[] = {1, 5, 5, 2}, outShapeDim[] = {4};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 4, inDim);
ANeuralNetworksOperandType filter = getOpType(filterOperandCode, 4, filterDim);
float filterScales[2] = {0.5f, 1.0f};
ANeuralNetworksSymmPerChannelQuantParams filterChannelQuantParams = {
.channelDim = 0,
.scaleCount = 2,
.scales = filterScales,
};
ANeuralNetworksOperandType bias = getOpType(inputOperandCode, 1, biasDim);
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.25f;
}
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
bias.type = ANEURALNETWORKS_TENSOR_INT32;
bias.scale = 0.0f;
}
ANeuralNetworksOperandType scalar = getOpType(ANEURALNETWORKS_INT32);
ANeuralNetworksOperandType layout = getOpType(ANEURALNETWORKS_BOOL);
ANeuralNetworksOperandType output = getOpType(inputOperandCode, 4, outDim);
OperationTestBase explicitTransposeConvTest(
ANEURALNETWORKS_TRANSPOSE_CONV_2D,
{input, filter, bias, scalar, scalar, scalar, scalar, scalar, scalar, scalar, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
explicitTransposeConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
explicitTransposeConvTest.testOpsValidations();
OperationTestBase implicitTransposeConvTest(
ANEURALNETWORKS_TRANSPOSE_CONV_2D,
{input, filter, bias, getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, outShapeDim), scalar,
scalar, scalar, scalar, layout},
{output});
if (filterOperandCode == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
implicitTransposeConvTest.setInputSymmPerChannelQuantParams(1, filterChannelQuantParams);
}
implicitTransposeConvTest.testOpsValidations();
}
TEST(OperationValidationTest, TRANSPOSE_CONV_2D_float16) {
transposeConvOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, TRANSPOSE_CONV_2D_float32) {
transposeConvOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, TRANSPOSE_CONV_2D_quant8) {
transposeConvOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, TRANSPOSE_CONV_2D_quant8_per_channel) {
transposeConvOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL);
}
void channelShuffleOpTest(int32_t operandCode) {
uint32_t inoutDim[] = {2, 2, 3, 12};
OperationTestBase channelShuffleTest(
ANEURALNETWORKS_CHANNEL_SHUFFLE,
{getOpType(operandCode, 2, inoutDim), getOpType(ANEURALNETWORKS_INT32),
getOpType(ANEURALNETWORKS_INT32)},
{getOpType(operandCode, 2, inoutDim)});
channelShuffleTest.testOpsValidations();
}
TEST(OperationValidationTest, CHANNEL_SHUFFLE_float16) {
channelShuffleOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, CHANNEL_SHUFFLE_float32) {
channelShuffleOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, CHANNEL_SHUFFLE_quant8) {
channelShuffleOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void detectionPostprocessingOpTest(int32_t inputOperandCode) {
SCOPED_TRACE(inputOperandCode);
const int numBatches = 2;
const int numAnchors = 10;
const int numClasses = 5;
const int lengthBoxEncoding = 4;
uint32_t inputDims[3] = {numBatches, numAnchors, numClasses};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 3, inputDims);
uint32_t deltasDims[3] = {numBatches, numAnchors, lengthBoxEncoding};
ANeuralNetworksOperandType deltas = getOpType(inputOperandCode, 3, deltasDims);
uint32_t anchorsDims[2] = {numAnchors, 4};
ANeuralNetworksOperandType anchors = getOpType(inputOperandCode, 2, anchorsDims);
ANeuralNetworksOperandType scaleScalar = getOpType(ANEURALNETWORKS_FLOAT32);
if (inputOperandCode == ANEURALNETWORKS_TENSOR_FLOAT16) {
scaleScalar = getOpType(ANEURALNETWORKS_FLOAT16);
}
ANeuralNetworksOperandType isRegularNMS = getOpType(ANEURALNETWORKS_BOOL);
ANeuralNetworksOperandType maxNumDetections = getOpType(ANEURALNETWORKS_INT32);
ANeuralNetworksOperandType numOfClassesPerDetection = maxNumDetections;
ANeuralNetworksOperandType numOfDetections = numOfClassesPerDetection;
ANeuralNetworksOperandType scoreThreshold = scaleScalar;
ANeuralNetworksOperandType iouThreshold = scaleScalar;
ANeuralNetworksOperandType includeBackground = getOpType(ANEURALNETWORKS_BOOL);
// Outputs
const int maxNumDetectionsValue = 5;
uint32_t outputScoreDims[2] = {numBatches, maxNumDetectionsValue};
ANeuralNetworksOperandType outputScore = getOpType(inputOperandCode, 2, outputScoreDims);
uint32_t boundingBoxesDims[3] = {numBatches, maxNumDetectionsValue, 4};
ANeuralNetworksOperandType boundingBoxes = getOpType(inputOperandCode, 3, boundingBoxesDims);
ANeuralNetworksOperandType classLabel =
getOpType(ANEURALNETWORKS_TENSOR_INT32, 2, outputScoreDims);
uint32_t numValidDims[1] = {numBatches};
ANeuralNetworksOperandType numValid = getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, numValidDims);
OperationTestBase test(ANEURALNETWORKS_DETECTION_POSTPROCESSING,
{input, deltas, anchors, scaleScalar, scaleScalar, scaleScalar,
scaleScalar, isRegularNMS, maxNumDetections, numOfClassesPerDetection,
numOfDetections, scoreThreshold, iouThreshold, includeBackground},
{outputScore, boundingBoxes, classLabel, numValid});
test.testOpsValidations();
}
TEST(OperationValidationTest, DETECTION_POSTPROCESSING) {
detectionPostprocessingOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
detectionPostprocessingOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
void preluOpTest(int32_t operandCode) {
uint32_t inoutDim[] = {1, 2, 2, 3}, alphaDim[] = {1, 1, 3};
OperationTestBase preluTest(
ANEURALNETWORKS_PRELU,
{getOpType(operandCode, 4, inoutDim), getOpType(operandCode, 3, alphaDim)},
{getOpType(operandCode, 4, inoutDim)});
preluTest.testOpsValidations();
}
TEST(OperationValidationTest, PRELU_float16) {
preluOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, PRELU_float32) {
preluOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, PRELU_quant8) {
preluOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void normalizationOpTest(ANeuralNetworksOperationType operationCode, int32_t operandCode) {
uint32_t inputDim[] = {2, 2, 2, 2};
OperationTestBase normalizationTest(operationCode, {getOpType(operandCode, 4, inputDim)},
{getOpType(operandCode, 4, inputDim)});
normalizationTest.testOpsValidations();
OperationTestBase normalizationAxisTest(
operationCode, {getOpType(operandCode, 4, inputDim), getOpType(ANEURALNETWORKS_INT32)},
{getOpType(operandCode, 4, inputDim)});
normalizationAxisTest.testOpsValidations();
}
TEST(OperationValidationTest, L2_NORMALIZATION_float16) {
normalizationOpTest(ANEURALNETWORKS_L2_NORMALIZATION, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, L2_NORMALIZATION_float32) {
normalizationOpTest(ANEURALNETWORKS_L2_NORMALIZATION, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, L2_NORMALIZATION_quant8) {
normalizationOpTest(ANEURALNETWORKS_L2_NORMALIZATION, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void localResponseNormOpTest(int32_t operandCode) {
int32_t floatScalarType = (operandCode == ANEURALNETWORKS_TENSOR_FLOAT32)
? ANEURALNETWORKS_FLOAT32
: ANEURALNETWORKS_FLOAT16;
uint32_t inputDim[] = {2, 2, 2, 6};
OperationTestBase lrnTest(
ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION,
{getOpType(operandCode, 4, inputDim), getOpType(ANEURALNETWORKS_INT32),
getOpType(floatScalarType), getOpType(floatScalarType), getOpType(floatScalarType)},
{getOpType(operandCode, 4, inputDim)});
lrnTest.testOpsValidations();
OperationTestBase lrnAxisTest(
ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION,
{getOpType(operandCode, 4, inputDim), getOpType(ANEURALNETWORKS_INT32),
getOpType(floatScalarType), getOpType(floatScalarType), getOpType(floatScalarType),
getOpType(ANEURALNETWORKS_INT32)},
{getOpType(operandCode, 4, inputDim)});
lrnAxisTest.testOpsValidations();
}
TEST(OperationValidationTest, LOCAL_RESPONSE_NORMALIZATION_float16) {
localResponseNormOpTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, LOCAL_RESPONSE_NORMALIZATION_float32) {
localResponseNormOpTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
void axisAlignedBBoxTransformOpTest(int32_t roiOperandCode, int32_t deltaOperandCode) {
uint32_t roiDim[] = {5, 4}, deltaDim[] = {5, 8}, bsDim[] = {5}, imageDim[] = {5, 2};
uint32_t outDim[] = {5, 8};
OperationTestBase axisAlignedBBoxTransformTest(
ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM,
{getOpType(roiOperandCode, 2, roiDim), getOpType(deltaOperandCode, 2, deltaDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, bsDim),
getOpType(roiOperandCode, 2, imageDim)},
{getOpType(roiOperandCode, 2, outDim)});
axisAlignedBBoxTransformTest.testOpsValidations();
}
TEST(OperationValidationTest, AXIS_ALIGNED_BBOX_TRANSFORM_float16) {
axisAlignedBBoxTransformOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16);
}
TEST(OperationValidationTest, AXIS_ALIGNED_BBOX_TRANSFORM_float32) {
axisAlignedBBoxTransformOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, AXIS_ALIGNED_BBOX_TRANSFORM_quant) {
axisAlignedBBoxTransformOpTest(ANEURALNETWORKS_TENSOR_QUANT16_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void sliceTest(int32_t operandCode) {
uint32_t inputDim[] = {3, 3, 3};
uint32_t startDim[] = {3};
uint32_t sizeDim[] = {3};
uint32_t outputDim[] = {1, 2, 3};
OperationTestBase sliceTest(ANEURALNETWORKS_SLICE,
{getOpType(operandCode, 3, inputDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, startDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, sizeDim)},
{getOpType(operandCode, 3, outputDim)});
sliceTest.testOpsValidations();
}
TEST(OperationValidationTest, SLICE_float32) {
sliceTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, SLICE_int32) {
sliceTest(ANEURALNETWORKS_TENSOR_INT32);
}
TEST(OperationValidationTest, SLICE_uint8) {
sliceTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, SLICE_float16) {
sliceTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
void logicalTest(ANeuralNetworksOperationType operationCode) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input1 = {.type = ANEURALNETWORKS_TENSOR_BOOL8,
.dimensionCount = 4,
.dimensions = inputDimensions,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = input1;
OperationTestBase test(operationCode, {input1, input2}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, LOGICAL_AND) {
logicalTest(ANEURALNETWORKS_LOGICAL_AND);
}
TEST(OperationValidationTest, LOGICAL_OR) {
logicalTest(ANEURALNETWORKS_LOGICAL_OR);
}
void comparisonTest(ANeuralNetworksOperationType operationCode, int32_t inputOperandType) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input1 = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = {.type = ANEURALNETWORKS_TENSOR_BOOL8,
.dimensionCount = 4,
.dimensions = inputDimensions,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase test(operationCode, {input1, input2}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, LESS) {
comparisonTest(ANEURALNETWORKS_LESS, ANEURALNETWORKS_TENSOR_BOOL8);
comparisonTest(ANEURALNETWORKS_LESS, ANEURALNETWORKS_TENSOR_FLOAT16);
comparisonTest(ANEURALNETWORKS_LESS, ANEURALNETWORKS_TENSOR_FLOAT32);
comparisonTest(ANEURALNETWORKS_LESS, ANEURALNETWORKS_TENSOR_INT32);
comparisonTest(ANEURALNETWORKS_LESS, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, LESS_EQUAL) {
comparisonTest(ANEURALNETWORKS_LESS_EQUAL, ANEURALNETWORKS_TENSOR_BOOL8);
comparisonTest(ANEURALNETWORKS_LESS_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT16);
comparisonTest(ANEURALNETWORKS_LESS_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT32);
comparisonTest(ANEURALNETWORKS_LESS_EQUAL, ANEURALNETWORKS_TENSOR_INT32);
comparisonTest(ANEURALNETWORKS_LESS_EQUAL, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, EQUAL) {
comparisonTest(ANEURALNETWORKS_EQUAL, ANEURALNETWORKS_TENSOR_BOOL8);
comparisonTest(ANEURALNETWORKS_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT16);
comparisonTest(ANEURALNETWORKS_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT32);
comparisonTest(ANEURALNETWORKS_EQUAL, ANEURALNETWORKS_TENSOR_INT32);
comparisonTest(ANEURALNETWORKS_EQUAL, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, NOT_EQUAL) {
comparisonTest(ANEURALNETWORKS_NOT_EQUAL, ANEURALNETWORKS_TENSOR_BOOL8);
comparisonTest(ANEURALNETWORKS_NOT_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT16);
comparisonTest(ANEURALNETWORKS_NOT_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT32);
comparisonTest(ANEURALNETWORKS_NOT_EQUAL, ANEURALNETWORKS_TENSOR_INT32);
comparisonTest(ANEURALNETWORKS_NOT_EQUAL, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, GREATER) {
comparisonTest(ANEURALNETWORKS_GREATER, ANEURALNETWORKS_TENSOR_BOOL8);
comparisonTest(ANEURALNETWORKS_GREATER, ANEURALNETWORKS_TENSOR_FLOAT16);
comparisonTest(ANEURALNETWORKS_GREATER, ANEURALNETWORKS_TENSOR_FLOAT32);
comparisonTest(ANEURALNETWORKS_GREATER, ANEURALNETWORKS_TENSOR_INT32);
comparisonTest(ANEURALNETWORKS_GREATER, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, GREATER_EQUAL) {
comparisonTest(ANEURALNETWORKS_GREATER_EQUAL, ANEURALNETWORKS_TENSOR_BOOL8);
comparisonTest(ANEURALNETWORKS_GREATER_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT16);
comparisonTest(ANEURALNETWORKS_GREATER_EQUAL, ANEURALNETWORKS_TENSOR_FLOAT32);
comparisonTest(ANEURALNETWORKS_GREATER_EQUAL, ANEURALNETWORKS_TENSOR_INT32);
comparisonTest(ANEURALNETWORKS_GREATER_EQUAL, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void reduceOpTest(ANeuralNetworksOperationType operationCode, int32_t inputOperandType) {
bool isQuant = inputOperandType == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM;
float scale = isQuant ? 1.f / 256 : 0.0f;
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input1 = {
.type = inputOperandType,
.dimensionCount = 4,
.dimensions = inputDimensions,
.scale = scale,
.zeroPoint = 0,
};
uint32_t axesDimensions[1] = {2};
ANeuralNetworksOperandType input2 = {
.type = ANEURALNETWORKS_TENSOR_INT32,
.dimensionCount = 1,
.dimensions = axesDimensions,
};
ANeuralNetworksOperandType input3 = {
.type = ANEURALNETWORKS_BOOL,
.dimensions = {},
};
ANeuralNetworksOperandType output = {
.type = inputOperandType,
.dimensionCount = 4,
.dimensions = inputDimensions,
.scale = scale,
};
OperationTestBase test(operationCode, {input1, input2, input3}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, REDUCE_PROD) {
reduceOpTest(ANEURALNETWORKS_REDUCE_PROD, ANEURALNETWORKS_TENSOR_FLOAT16);
reduceOpTest(ANEURALNETWORKS_REDUCE_PROD, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, REDUCE_SUM) {
reduceOpTest(ANEURALNETWORKS_REDUCE_SUM, ANEURALNETWORKS_TENSOR_FLOAT16);
reduceOpTest(ANEURALNETWORKS_REDUCE_SUM, ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, REDUCE_MAX) {
reduceOpTest(ANEURALNETWORKS_REDUCE_MAX, ANEURALNETWORKS_TENSOR_FLOAT16);
reduceOpTest(ANEURALNETWORKS_REDUCE_MAX, ANEURALNETWORKS_TENSOR_FLOAT32);
reduceOpTest(ANEURALNETWORKS_REDUCE_MAX, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, REDUCE_MIN) {
reduceOpTest(ANEURALNETWORKS_REDUCE_MIN, ANEURALNETWORKS_TENSOR_FLOAT16);
reduceOpTest(ANEURALNETWORKS_REDUCE_MIN, ANEURALNETWORKS_TENSOR_FLOAT32);
reduceOpTest(ANEURALNETWORKS_REDUCE_MIN, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
TEST(OperationValidationTest, REDUCE_ANY) {
reduceOpTest(ANEURALNETWORKS_REDUCE_ANY, ANEURALNETWORKS_TENSOR_BOOL8);
}
TEST(OperationValidationTest, REDUCE_ALL) {
reduceOpTest(ANEURALNETWORKS_REDUCE_ALL, ANEURALNETWORKS_TENSOR_BOOL8);
}
void selectTest(ANeuralNetworksOperationType operationCode, int32_t inputOperandType) {
uint32_t inputDimensions[4] = {2, 2, 2, 2};
ANeuralNetworksOperandType input0 = getOpType(ANEURALNETWORKS_TENSOR_BOOL8, 4, inputDimensions);
ANeuralNetworksOperandType input1 = getOpType(inputOperandType, 4, inputDimensions);
ANeuralNetworksOperandType input2 = input1;
ANeuralNetworksOperandType output = input1;
OperationTestBase test(operationCode, {input0, input1, input2}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, SELECT) {
selectTest(ANEURALNETWORKS_SELECT, ANEURALNETWORKS_TENSOR_FLOAT16);
selectTest(ANEURALNETWORKS_SELECT, ANEURALNETWORKS_TENSOR_FLOAT32);
selectTest(ANEURALNETWORKS_SELECT, ANEURALNETWORKS_TENSOR_INT32);
selectTest(ANEURALNETWORKS_SELECT, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM);
}
void powTest(int32_t inputOperandType) {
const uint32_t inputDimensions[] = {3, 3};
ANeuralNetworksOperandType inputType = {.type = inputOperandType,
.dimensionCount = 2,
.dimensions = inputDimensions,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase test(ANEURALNETWORKS_POW, {inputType, inputType}, {inputType});
test.testOpsValidations();
}
TEST(OperationValidationTest, POW) {
powTest(ANEURALNETWORKS_TENSOR_FLOAT16);
powTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
void boxWithNmsLimitOpTest(int32_t scoreOperandCode, int32_t roiOperandCode,
int32_t scalarOperandCode) {
uint32_t scoreDim[] = {19, 3}, roiDim[] = {19, 12}, splitDim[] = {2};
uint32_t outScoreDim[] = {12}, outRoiDim[] = {12, 4}, outClassDim[] = {12}, outSplitDim[] = {2};
OperationTestBase boxWithNmsLimitTest(
ANEURALNETWORKS_BOX_WITH_NMS_LIMIT,
{getOpType(scoreOperandCode, 2, scoreDim), getOpType(roiOperandCode, 2, roiDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, splitDim), getOpType(scalarOperandCode),
getOpType(ANEURALNETWORKS_INT32), getOpType(ANEURALNETWORKS_INT32),
getOpType(scalarOperandCode), getOpType(scalarOperandCode),
getOpType(scalarOperandCode)},
{getOpType(scoreOperandCode, 1, outScoreDim), getOpType(roiOperandCode, 2, outRoiDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, outClassDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, outSplitDim)});
boxWithNmsLimitTest.testOpsValidations();
}
TEST(OperationValidationTest, BOX_WITH_NMS_LIMIT_float16) {
boxWithNmsLimitOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_FLOAT16);
}
TEST(OperationValidationTest, BOX_WITH_NMS_LIMIT_float32) {
boxWithNmsLimitOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32,
ANEURALNETWORKS_FLOAT32);
}
TEST(OperationValidationTest, BOX_WITH_NMS_LIMIT_quant) {
boxWithNmsLimitOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_TENSOR_QUANT16_ASYMM,
ANEURALNETWORKS_FLOAT32);
}
void castOpTest(int32_t inputOperandCode, int32_t outputOperandCode) {
uint32_t inputDimensions[3] = {2, 2, 2};
ANeuralNetworksOperandType input = getOpType(inputOperandCode, 3, inputDimensions);
ANeuralNetworksOperandType output = getOpType(outputOperandCode, 3, inputDimensions);
OperationTestBase test(ANEURALNETWORKS_CAST, {input}, {output});
test.testOpsValidations();
}
TEST(OperationValidationTest, CAST) {
std::vector<int32_t> inputTypes = {ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_INT32,
ANEURALNETWORKS_TENSOR_QUANT8_ASYMM};
std::vector<int32_t> outputTypes = inputTypes;
for (auto inputType : inputTypes) {
for (auto outputType : outputTypes) {
castOpTest(inputType, outputType);
}
}
}
void bidirectionlSequenceRNNTest(int32_t inputOperandCode) {
const uint32_t batchSize = 2;
const uint32_t maxTime = 3;
const uint32_t inputSize = 4;
const uint32_t numUnits = 5;
uint32_t inputDims[3] = {maxTime, batchSize, inputSize};
uint32_t weightsDims[2] = {inputSize, numUnits};
uint32_t recurrentWeightsDims[2] = {numUnits, numUnits};
uint32_t biasDims[1] = {numUnits};
uint32_t hiddenStateDims[2] = {batchSize, numUnits};
uint32_t outputDims[2] = {batchSize, numUnits};
ANeuralNetworksOperandType input = {.type = inputOperandCode,
.dimensionCount = 3,
.dimensions = inputDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType fwWeights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = weightsDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType bwWeights = fwWeights;
ANeuralNetworksOperandType fwRecurrentWeights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = recurrentWeightsDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType bwRecurrentWeights = fwRecurrentWeights;
ANeuralNetworksOperandType fwBias = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = biasDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType bwBias = fwBias;
ANeuralNetworksOperandType fwHiddenState = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = hiddenStateDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType bwHiddenState = fwHiddenState;
ANeuralNetworksOperandType output = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = outputDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType boolScalar = {.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType timeMajor = boolScalar;
ANeuralNetworksOperandType mergeOutputs = boolScalar;
OperationTestBase rnnTest(ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN,
{input, fwWeights, fwRecurrentWeights, fwBias, fwHiddenState,
bwWeights, bwRecurrentWeights, bwBias, bwHiddenState, input,
fwWeights, bwWeights, activation, timeMajor, mergeOutputs},
{output, output});
rnnTest.testOpsValidations();
}
TEST(OperationValidationTest, BIDIRECTIONAL_SEQUENCE_RNN_float32) {
bidirectionlSequenceRNNTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, BIDIRECTIONAL_SEQUENCE_RNN_float16) {
bidirectionlSequenceRNNTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
void unidirectionlSequenceRNNTest(int32_t inputOperandCode) {
const uint32_t batchSize = 2;
const uint32_t maxTime = 3;
const uint32_t inputSize = 4;
const uint32_t numUnits = 5;
uint32_t inputDims[3] = {maxTime, batchSize, inputSize};
uint32_t weightsDims[2] = {inputSize, numUnits};
uint32_t recurrentWeightsDims[2] = {numUnits, numUnits};
uint32_t biasDims[1] = {numUnits};
uint32_t hiddenStateDims[2] = {batchSize, numUnits};
uint32_t outputDims[2] = {batchSize, numUnits};
ANeuralNetworksOperandType input = {.type = inputOperandCode,
.dimensionCount = 3,
.dimensions = inputDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType weights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = weightsDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType recurrentWeights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = recurrentWeightsDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType bias = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = biasDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType hiddenState = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = hiddenStateDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType output = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = outputDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType timeMajor = intScalar;
OperationTestBase rnnTest(
ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN,
{input, weights, recurrentWeights, bias, hiddenState, activation, timeMajor}, {output});
rnnTest.testOpsValidations();
}
TEST(OperationValidationTest, UNIDIRECTIONAL_SEQUENCE_RNN_float32) {
unidirectionlSequenceRNNTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, UNIDIRECTIONAL_SEQUENCE_RNN_float16) {
unidirectionlSequenceRNNTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
void unidirectionalSequenceLSTMTest(int32_t inputOperandCode) {
const uint32_t maxTime = 2;
const uint32_t batchSize = 3;
const uint32_t numUnits = 4;
const uint32_t inputSize = 5;
const uint32_t outputSize = 6;
uint32_t inputDims[3] = {maxTime, batchSize, inputSize};
uint32_t inputWeightsDims[2] = {numUnits, inputSize};
uint32_t recurrentWeightsDims[2] = {numUnits, outputSize};
uint32_t diagonalDims[1] = {numUnits};
uint32_t projectionDims[2] = {outputSize, numUnits};
uint32_t projectionBiasDims[1] = {outputSize};
uint32_t outputStateDims[2] = {batchSize, outputSize};
uint32_t cellStateDims[2] = {batchSize, numUnits};
uint32_t outputDims[3] = {maxTime, batchSize, outputSize};
ANeuralNetworksOperandType input = {.type = inputOperandCode,
.dimensionCount = 3,
.dimensions = inputDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType inputToInputWeights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = inputWeightsDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType inputToForgetWeights = inputToInputWeights;
ANeuralNetworksOperandType inputToCellWeights = inputToInputWeights;
ANeuralNetworksOperandType inputToOutputWeights = inputToInputWeights;
ANeuralNetworksOperandType recurrentToInputWeights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = recurrentWeightsDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType recurrentToForgetWeights = recurrentToInputWeights;
ANeuralNetworksOperandType recurrentToCellWeights = recurrentToInputWeights;
ANeuralNetworksOperandType recurrentToOutputWeights = recurrentToInputWeights;
ANeuralNetworksOperandType cellToInputWeights = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = diagonalDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType cellToForgetWeights = cellToInputWeights;
ANeuralNetworksOperandType cellToOutputWeights = cellToInputWeights;
ANeuralNetworksOperandType inputGateBias = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = diagonalDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType forgetGateBias = inputGateBias;
ANeuralNetworksOperandType cellGateBias = inputGateBias;
ANeuralNetworksOperandType outputGateBias = inputGateBias;
ANeuralNetworksOperandType projectionWeights = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = projectionDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType projectionBias = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = projectionBiasDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType outputStateIn = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = outputStateDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType cellStateIn = {.type = inputOperandCode,
.dimensionCount = 2,
.dimensions = cellStateDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType intScalar = {
.type = ANEURALNETWORKS_INT32,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType activation = intScalar;
ANeuralNetworksOperandType floatScalar = {
.type = inputOperandCode == ANEURALNETWORKS_TENSOR_FLOAT32 ? ANEURALNETWORKS_FLOAT32
: ANEURALNETWORKS_FLOAT16,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType cellClip = floatScalar;
ANeuralNetworksOperandType projClip = floatScalar;
ANeuralNetworksOperandType boolScalar = {
.type = ANEURALNETWORKS_BOOL,
.dimensionCount = 0,
.dimensions = nullptr,
.scale = 0.0f,
.zeroPoint = 0,
};
ANeuralNetworksOperandType timeMajor = boolScalar;
ANeuralNetworksOperandType inputLayerNormWeights = {.type = inputOperandCode,
.dimensionCount = 1,
.dimensions = diagonalDims,
.scale = 0.0f,
.zeroPoint = 0};
ANeuralNetworksOperandType forgetLayerNormWeights = inputLayerNormWeights;
ANeuralNetworksOperandType cellLayerNormWeights = inputLayerNormWeights;
ANeuralNetworksOperandType outputLayerNormWeights = inputLayerNormWeights;
ANeuralNetworksOperandType output = {.type = inputOperandCode,
.dimensionCount = 3,
.dimensions = outputDims,
.scale = 0.0f,
.zeroPoint = 0};
OperationTestBase ulstmTest(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM,
{input,
inputToInputWeights,
inputToForgetWeights,
inputToCellWeights,
inputToOutputWeights,
recurrentToInputWeights,
recurrentToForgetWeights,
recurrentToCellWeights,
recurrentToOutputWeights,
cellToInputWeights,
cellToForgetWeights,
cellToOutputWeights,
inputGateBias,
forgetGateBias,
cellGateBias,
outputGateBias,
projectionWeights,
projectionBias,
outputStateIn,
cellStateIn,
activation,
cellClip,
projClip,
timeMajor,
inputLayerNormWeights,
forgetLayerNormWeights,
cellLayerNormWeights,
outputLayerNormWeights},
{output});
ulstmTest.testOpsValidations();
}
TEST(OperationValidationTest, UNIDIRECTIONAL_SEQUENCE_LSTM_float32) {
unidirectionalSequenceLSTMTest(ANEURALNETWORKS_TENSOR_FLOAT32);
}
TEST(OperationValidationTest, UNIDIRECTIONAL_SEQUENCE_LSTM_float16) {
unidirectionalSequenceLSTMTest(ANEURALNETWORKS_TENSOR_FLOAT16);
}
void generateProposalsOpTest(int32_t scoreOperandCode, int32_t deltaOperandCode,
int32_t anchorOperandCode, int32_t roiOperandCode,
int32_t scalarOperandCode) {
uint32_t scoreDim[] = {1, 2, 2, 2}, deltaDim[] = {1, 2, 2, 8}, anchorDim[] = {2, 4},
imageInfoDim[] = {1, 2};
uint32_t outScoreDim[] = {4}, outRoiDim[] = {4, 4}, outSplitDim[] = {1};
OperationTestBase generateProposalsTest(
ANEURALNETWORKS_GENERATE_PROPOSALS,
{getOpType(scoreOperandCode, 4, scoreDim), getOpType(deltaOperandCode, 4, deltaDim),
getOpType(anchorOperandCode, 2, anchorDim), getOpType(roiOperandCode, 2, imageInfoDim),
getOpType(scalarOperandCode), getOpType(scalarOperandCode),
getOpType(ANEURALNETWORKS_INT32), getOpType(ANEURALNETWORKS_INT32),
getOpType(scalarOperandCode), getOpType(scalarOperandCode),
getOpType(ANEURALNETWORKS_BOOL)},
{getOpType(scoreOperandCode, 1, outScoreDim), getOpType(roiOperandCode, 2, outRoiDim),
getOpType(ANEURALNETWORKS_TENSOR_INT32, 1, outSplitDim)});
generateProposalsTest.testOpsValidations();
}
TEST(OperationValidationTest, GENERATE_PROPOSALS_float16) {
generateProposalsOpTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16,
ANEURALNETWORKS_FLOAT16);
}
TEST(OperationValidationTest, GENERATE_PROPOSALS_float32) {
generateProposalsOpTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32,
ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32,
ANEURALNETWORKS_FLOAT32);
}
TEST(OperationValidationTest, GENERATE_PROPOSALS_quant) {
generateProposalsOpTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
ANEURALNETWORKS_TENSOR_QUANT16_SYMM,
ANEURALNETWORKS_TENSOR_QUANT16_ASYMM, ANEURALNETWORKS_FLOAT32);
}
void resizeNearestNeighborTest(int32_t inputCode, int32_t scalarCode) {
uint32_t inputDim[] = {1, 2, 2, 1}, outputDim[] = {1, 1, 1, 1};
OperationTestBase resizeImageOpTest(ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR,
{getOpType(inputCode, 4, inputDim), getOpType(scalarCode),
getOpType(scalarCode), getOpType(ANEURALNETWORKS_BOOL)},
{getOpType(inputCode, 4, outputDim)});
resizeImageOpTest.testOpsValidations();
}
TEST(OperationValidationTest, RESIZE_NEAREST_NEIGHBOR) {
resizeNearestNeighborTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_INT32);
resizeNearestNeighborTest(ANEURALNETWORKS_TENSOR_FLOAT32, ANEURALNETWORKS_FLOAT32);
}
TEST(OperationValidationTest, RESIZE_NEAREST_NEIGHBOR_float16) {
resizeNearestNeighborTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_INT32);
resizeNearestNeighborTest(ANEURALNETWORKS_TENSOR_FLOAT16, ANEURALNETWORKS_FLOAT16);
}
TEST(OperationValidationTest, RESIZE_NEAREST_NEIGHBOR_quant8) {
resizeNearestNeighborTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_INT32);
resizeNearestNeighborTest(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, ANEURALNETWORKS_FLOAT32);
}
} // end namespace