/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CompilationBuilder.h"
#include "ExecutionPlan.h"
#include "HalInterfaces.h"
#include "Manager.h"
#include "ModelBuilder.h"
#include "NeuralNetworks.h"
#include "NeuralNetworksOEM.h"
#include "SampleDriver.h"
#include "TestNeuralNetworksWrapper.h"
#include "Utils.h"
#include "ValidateHal.h"
#include <gtest/gtest.h>
#include <filesystem>
#include <functional>
#include <map>
#include <queue>
#include <type_traits>
// Uncomment the following line to generate some debugging output that
// may be useful when analyzing failures:
//
// #define VERBOSE VERBOSE
// These tests do whitebox testing of the graph partitioning
// algorithm. It is "whitebox" in the sense that we're not evaluating
// whether a particular partitioning is legal, or "good enough"
// according to some metric, but whether it exactly matches the
// expected behavior of the current partitioning algorithm.
//
// A key part of the current partitioning algorithm is to determine
// which device among the available devices should be the one to
// execute a particular operation from the graph. This determination
// is made "locally" -- i.e., it does not depend on the graph
// topology, only on the properties of the operation in question.
// IDevice::getSupportedOperations() indicates which operations in a
// graph can be executed on a device, and IDevice::getCapabilities()
// indicates how "good" that device is for executing particular kinds
// of operations. For each operation, the partitioning algorithm
// picks the "best" device that is capable of executing that
// operation; if no device can do so, then the algorithm picks the
// cpu.
//
// As part of this testing approach, we want to make it easy to
// specify which operations in a test graph can be executed on which
// devices. We accomplish this in the following way:
// - A unary OEM operation is available.
// - There is a collection of operations (each of which has two inputs
// and one output):
// - Eight kinds of operations available at driver version V1_0 or
// later. They are represented in the graph as ADD or MUL with a
// particular activation function -- two opcodes times four
// activation functions means eight available operation kinds.
// This is a low-level representation detail -- when we specify the
// behavior of the device or build a graph, we do so in terms of
// operation encodings 0..7.
// - Eight kinds of operations available at driver version V1_1 or
// later. They are represented in the graph as DIV or SUB with
// a particular activation function, exactly analogous to ADD
// and MUL above. We use operation encodings 8..15 for them.
// - Four kinds of operations available at driver version V1_2 or
// later. They are represented in the graph as MAXIMUM,
// MINIMUM, POW, or PRELU. These operations take no activation
// function, so we only get 4 operation kinds, for which we
// use operation encodings 16..19.
// When we instantiate a device for testing purposes, we specify what subset of
// those operations the device is able to execute.
//
// In order to determine whether or not a partitioning matches the
// expected partitioning, we check the number of partitions, check
// which device each partition targets, and compare each partition's
// subgraph, model inputs, model outputs, submodel inputs, and
// submodel outputs against what is expected. In order to perform
// that comparison, we build a model to compare against a partition's
// submodel and run a graph comparison algorithm on it. The graph
// comparison and the inputs and outputs comparisons are syntactic
// rather than semantic comparisons -- they don't allow for
// reorderings of inputs and outputs. Because of this, we need to
// know exactly how the partitioning algorithm orders inputs and
// outputs in order to construct the models and operand lists to
// compare against. Here are some relevant behaviors of the
// partitioning algorithm:
//
// - It builds a subgraph by walking operations in forward topological
// order, and adding each operation's input operands and output
// operands in index order (input followed by output) when that
// operation is added. (It does not add an input that has already
// been added.)
// - It finds model inputs, model outputs, and submodel inputs in
// the order the corresponding operands were added to the subgraph
// (see ExecutionStep methods getModelInputs(), getModelOutputs(),
// getTempsAsSubModelInputs(), getOutputsAsSubModelInputs()).
// - It finds temps as submodel outputs in numerical order of corresponding
// operand number in the original model (see ExecutionStep method
// getTempsAsSubModelOutputs()).
// - When it calls identifyInputsAndOutputs() on the submodel, it
// passes inputs from getModelInputs() in order, followed by temps as
// submodel inputs from getTempsAsSubModelInputs() in order,
// followed by outputs as submodel inputs from
// getOutputsAsSubModelInputs() in order; and it passes outputs from
// getModelOutputs() in order followed by submodel outputs from
// getTempsAsSubModelOutputs() in order.
//
// TODO: Maybe the logic for comparing a partition to an expected
// model should be changed to tolerate reorderings of inputs and
// outputs, so that when we build models and lists to compare
// against, we don't need to worry about input and output
// orderings. But is there a way to do this that still lets us
// verify that we have the correct relationships between
// an (original) model's inputs and outputs and each submodel's
// inputs and outputs, as well as the correct relationship
// between submodel inputs and outputs across partitions?
namespace {
const Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
using CompilationBuilder = ::android::nn::CompilationBuilder;
using Device = ::android::nn::Device;
using DeviceManager = ::android::nn::DeviceManager;
using ExecutePreference = ::android::nn::test_wrapper::ExecutePreference;
using ExecutionPlan = ::android::nn::ExecutionPlan;
using ExecutionStep = ::android::nn::ExecutionStep;
using HalVersion = ::android::nn::HalVersion;
using HidlModel = ::android::hardware::neuralnetworks::V1_2::Model;
using HidlToken =
::android::hardware::hidl_array<uint8_t, ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN>;
using ModelBuilder = ::android::nn::ModelBuilder;
using Result = ::android::nn::test_wrapper::Result;
using SampleDriver = ::android::nn::sample_driver::SampleDriver;
using WrapperSymmPerChannelQuantParams = ::android::nn::test_wrapper::SymmPerChannelQuantParams;
using WrapperCompilation = ::android::nn::test_wrapper::Compilation;
using WrapperModel = ::android::nn::test_wrapper::Model;
using WrapperOperandType = ::android::nn::test_wrapper::OperandType;
using WrapperType = ::android::nn::test_wrapper::Type;
template <typename T> using sp = ::android::sp<T>;
template <typename T>
using MQDescriptorSync = ::android::hardware::MQDescriptorSync<T>;
Capabilities makeCapabilities(float perf) {
PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
return {.relaxedFloat32toFloat16PerformanceScalar = perfInfo,
.relaxedFloat32toFloat16PerformanceTensor = perfInfo,
.operandPerformance = ::android::nn::nonExtensionOperandPerformance(perfInfo)};
};
void update(Capabilities* capabilities, OperandType type, float perf) {
PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
::android::nn::update(&capabilities->operandPerformance, type, perfInfo);
}
float lookupExecTime(const Capabilities& capabilities, OperandType type) {
return ::android::nn::lookup(capabilities.operandPerformance, type).execTime;
}
const uint32_t kNumFuseCodes = 4;
const uint32_t kBadOperation = ~0;
// V1_0 operations
const uint32_t kFirstEncodingADD = 0;
const uint32_t kFirstEncodingMUL = kFirstEncodingADD + kNumFuseCodes;
const uint32_t kFirstEncodingV1_0 = kFirstEncodingADD;
const uint32_t kLastEncodingV1_0 = kFirstEncodingMUL + kNumFuseCodes - 1;
// V1_1 operations
const uint32_t kFirstEncodingDIV = kLastEncodingV1_0 + 1;
const uint32_t kFirstEncodingSUB = kFirstEncodingDIV + kNumFuseCodes;
const uint32_t kFirstEncodingV1_1 = kFirstEncodingDIV;
const uint32_t kLastEncodingV1_1 = kFirstEncodingSUB + kNumFuseCodes - 1;
// V1_2 operations
const uint32_t kFirstEncodingMAXIMUM = kLastEncodingV1_1 + 1;
const uint32_t kFirstEncodingMINIMUM = kFirstEncodingMAXIMUM + 1;
const uint32_t kFirstEncodingPOW = kFirstEncodingMINIMUM + 1;
const uint32_t kFirstEncodingPRELU = kFirstEncodingPOW + 1;
const uint32_t kFirstEncodingV1_2 = kFirstEncodingMAXIMUM;
const uint32_t kLastEncodingV1_2 = kFirstEncodingPRELU;
const std::map<OperationType, uint32_t> operationToFirstEncoding = {
{OperationType::ADD, kFirstEncodingADD},
{OperationType::MUL, kFirstEncodingMUL},
{OperationType::DIV, kFirstEncodingDIV},
{OperationType::SUB, kFirstEncodingSUB},
{OperationType::MAXIMUM, kFirstEncodingMAXIMUM},
{OperationType::MINIMUM, kFirstEncodingMINIMUM},
{OperationType::POW, kFirstEncodingPOW},
{OperationType::PRELU, kFirstEncodingPRELU},
};
// Sorted in reverse order (std::greater) so that we can use map::lower_bound to
// find an entry whose key is numerically less than or equal to a search value.
// mapped_type is (OperandCode, hasFuseCode).
const std::map<uint32_t, std::pair<uint32_t, bool>, std::greater<>> firstEncodingToOperation = {
{kFirstEncodingADD, {ANEURALNETWORKS_ADD, true}},
{kFirstEncodingMUL, {ANEURALNETWORKS_MUL, true}},
{kFirstEncodingDIV, {ANEURALNETWORKS_DIV, true}},
{kFirstEncodingSUB, {ANEURALNETWORKS_SUB, true}},
{kFirstEncodingMAXIMUM, {ANEURALNETWORKS_MAXIMUM, false}},
{kFirstEncodingMINIMUM, {ANEURALNETWORKS_MINIMUM, false}},
{kFirstEncodingPOW, {ANEURALNETWORKS_POW, false}},
{kFirstEncodingPRELU, {ANEURALNETWORKS_PRELU, false}},
};
// Look up the operation with the specified index in a graph, and return the
// operation encoding; or, if for some reason this is not one of the encoded
// operations, then return kBadOperation.
uint32_t lookupOperation(std::function<const Operation&(uint32_t)> getOperation,
std::function<const Operand&(uint32_t)> getOperand,
std::function<const uint8_t*(uint32_t)> getValue,
uint32_t operationIndex) {
const Operation& operation = getOperation(operationIndex);
switch (operation.type) {
case OperationType::ADD:
case OperationType::MUL:
case OperationType::DIV:
case OperationType::SUB: {
// input2 is the fused activation function
const Operand& input2 = getOperand(operation.inputs[2]);
if ((input2.type == OperandType::INT32) &&
(input2.lifetime == OperandLifeTime::CONSTANT_COPY)) {
int32_t value;
CHECK_EQ(sizeof(value), input2.location.length);
memcpy(&value,
getValue(input2.location.offset),
input2.location.length);
return value + operationToFirstEncoding.at(operation.type);
}
break;
}
default: {
auto it = operationToFirstEncoding.find(operation.type);
if (it != operationToFirstEncoding.end()) {
return it->second;
}
break;
}
}
return kBadOperation;
}
uint32_t lookupOperation(const HidlModel& model, uint32_t operationIndex) {
return lookupOperation(
[&model](uint32_t index) -> const Operation& {
return model.operations[index];
},
[&model](uint32_t index) -> const Operand& {
return model.operands[index];
},
[&model](uint32_t offset) {return &model.operandValues[offset];},
operationIndex);
}
#ifdef VERBOSE
// This is a debugging utility function
void dump(const char* name, const ModelBuilder* model) {
HidlModel hidlModel;
model->setHidlModel(&hidlModel);
std::cout << name << ": " << toString(hidlModel) << std::endl;
std::cout << "inputs: " << toString(hidlModel.inputIndexes) << std::endl;
std::cout << "outputs: " << toString(hidlModel.outputIndexes) << std::endl;
for (size_t i = 0, e = hidlModel.operations.size(); i < e; i++) {
std::cout << "operation[" << i << "]: " << toString(hidlModel.operations[i]) << std::endl;
}
}
#endif
// This is an IDevice for testing purposes. It only has a few
// interesting properties, all of which are specified as constructor
// arguments: device capabilities; which subset of operation kinds
// (0..19) does the device support; does the device support the OEM
// operation. The subset is represented with a bitmask, in which
// operation kind K corresponds to the bit (1 << K).
class PartitioningDriver : public SampleDriver {
private:
// Dummy class -- a prepared model must not be nullptr.
class PartitioningPreparedModel : public IPreparedModel {
public:
Return<ErrorStatus> execute(const Request&, const sp<V1_0::IExecutionCallback>&) override {
return ErrorStatus::DEVICE_UNAVAILABLE;
}
Return<ErrorStatus> execute_1_2(const Request&, MeasureTiming,
const sp<V1_2::IExecutionCallback>&) override {
return ErrorStatus::DEVICE_UNAVAILABLE;
}
Return<void> executeSynchronously(const Request&, MeasureTiming,
executeSynchronously_cb cb) override {
cb(ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming);
return Void();
}
Return<void> configureExecutionBurst(
const sp<V1_2::IBurstCallback>& /*callback*/,
const MQDescriptorSync<V1_2::FmqRequestDatum>& /*requestChannel*/,
const MQDescriptorSync<V1_2::FmqResultDatum>& /*resultChannel*/,
configureExecutionBurst_cb cb) override {
cb(ErrorStatus::DEVICE_UNAVAILABLE, nullptr);
return Void();
}
};
public:
enum OEM {
OEMNo, // rejected by getSupportedOperations and prepareModel
OEMIndecisive, // accepted by getSupportedOperations but not prepareModel
OEMYes, // accepted by getSupportedOperations and prepareModel
};
PartitioningDriver(const char* name, const char* version, Capabilities capabilities,
uint32_t operationMask, OEM oem = OEMNo)
: SampleDriver(name),
mVersionString(version),
mCapabilities(capabilities),
mOperationMask(operationMask),
mOEM(oem) {}
~PartitioningDriver() override {}
Return<void> getVersionString(getVersionString_cb cb) override {
cb(ErrorStatus::NONE, mVersionString);
return Void();
}
Return<ErrorStatus> prepareModel_1_2(const Model& model, ExecutionPreference,
const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&,
const HidlToken&,
const sp<IPreparedModelCallback>& cb) override {
ErrorStatus status = ErrorStatus::NONE;
if (mOEM != OEMYes) {
for (const auto& operation : model.operations) {
if (operation.type == OperationType::OEM_OPERATION) {
status = ErrorStatus::INVALID_ARGUMENT;
break;
}
}
}
cb->notify_1_2(status, new PartitioningPreparedModel);
return status;
}
Return<DeviceStatus> getStatus() override {
return DeviceStatus::AVAILABLE;
}
Return<void> getCapabilities_1_2(getCapabilities_1_2_cb cb) override {
cb(ErrorStatus::NONE, mCapabilities);
return Void();
}
Return<void> getSupportedOperations_1_2(const Model& model,
getSupportedOperations_cb cb) override {
if (!android::nn::validateModel(model)) {
cb(ErrorStatus::INVALID_ARGUMENT, std::vector<bool>());
return Void();
}
const size_t count = model.operations.size();
std::vector<bool> supported(count);
for (size_t i = 0; i < count; i++) {
if (model.operations[i].type == OperationType::OEM_OPERATION) {
supported[i] = (mOEM != OEMNo);
continue;
}
supported[i] = false;
uint32_t operation = lookupOperation(model, i);
if ((operation != kBadOperation) && (mOperationMask & (1 << operation))) {
supported[i] = true;
}
}
cb(ErrorStatus::NONE, supported);
return Void();
}
Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) override {
cb(ErrorStatus::NONE, /*numModelCache=*/1, /*numDataCache=*/1);
return Void();
}
Return<ErrorStatus> prepareModelFromCache(
const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const HidlToken&,
const sp<V1_2::IPreparedModelCallback>& callback) override {
callback->notify_1_2(ErrorStatus::NONE, new PartitioningPreparedModel);
return ErrorStatus::NONE;
}
private:
std::string mVersionString;
Capabilities mCapabilities;
uint32_t mOperationMask;
OEM mOEM;
};
// Like PartitioningDriver, but implementing 1.1
class PartitioningDriverV1_1 : public V1_1::IDevice {
public:
PartitioningDriverV1_1(const char* name, const char* version, Capabilities capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: mDriverV1_2(new PartitioningDriver(name, version, capabilities, operationMask, oem)) {}
Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
return mDriverV1_2->getCapabilities_1_1(_hidl_cb);
}
Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
getSupportedOperations_1_1_cb _hidl_cb) override {
return mDriverV1_2->getSupportedOperations_1_1(model, _hidl_cb);
}
Return<ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mDriverV1_2->prepareModel_1_1(model, preference, actualCallback);
}
Return<DeviceStatus> getStatus() override { return mDriverV1_2->getStatus(); }
Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return mDriverV1_2->getCapabilities(_hidl_cb);
}
Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return mDriverV1_2->getSupportedOperations(model, _hidl_cb);
}
Return<ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mDriverV1_2->prepareModel(model, actualCallback);
}
private:
const sp<V1_2::IDevice> mDriverV1_2;
};
// Like PartitioningDriver, but implementing 1.0
class PartitioningDriverV1_0 : public V1_0::IDevice {
public:
PartitioningDriverV1_0(const char* name, const char* version, Capabilities capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: mDriverV1_2(new PartitioningDriver(name, version, capabilities, operationMask, oem)) {}
Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return mDriverV1_2->getCapabilities(_hidl_cb);
}
Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return mDriverV1_2->getSupportedOperations(model, _hidl_cb);
}
Return<ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mDriverV1_2->prepareModel(model, actualCallback);
}
Return<DeviceStatus> getStatus() override { return mDriverV1_2->getStatus(); }
private:
const sp<V1_2::IDevice> mDriverV1_2;
};
// This class adds some simple abstractions and utilities on top of
// WrapperModel. For example, it provides methods that work in terms of
// operation kind (0..7); and because we care about graph topology rather than
// details of operand types and values, it greatly simplifies the process of
// creating operands.
class PartitioningModel : private WrapperModel {
public:
using WrapperModel::finish;
using WrapperModel::getHandle;
using WrapperModel::identifyInputsAndOutputs;
using WrapperModel::isValid;
using WrapperModel::relaxComputationFloat32toFloat16;
// Create a tensor operand of the specified type, and return the
// corresponding operand index.
uint32_t addFloatOperand() { return addOperand(WrapperType::TENSOR_FLOAT32); }
uint32_t addQuantOperand() { return addOperand(WrapperType::TENSOR_QUANT8_ASYMM); }
// Create an operand of the specified type, and return the corresponding
// operand index.
uint32_t addOperand(WrapperType wrapperType) {
switch (static_cast<int>(wrapperType)) {
case ANEURALNETWORKS_BOOL:
case ANEURALNETWORKS_FLOAT16:
case ANEURALNETWORKS_FLOAT32:
case ANEURALNETWORKS_INT32:
case ANEURALNETWORKS_UINT32:
case ANEURALNETWORKS_OEM_SCALAR: {
WrapperOperandType wrapperOperandType(wrapperType, {});
mWrapperOperandType.push_back(wrapperOperandType);
return WrapperModel::addOperand(&wrapperOperandType);
}
case ANEURALNETWORKS_TENSOR_BOOL8:
case ANEURALNETWORKS_TENSOR_FLOAT16:
case ANEURALNETWORKS_TENSOR_FLOAT32:
case ANEURALNETWORKS_TENSOR_OEM_BYTE: {
WrapperOperandType wrapperOperandType(wrapperType, {1});
mWrapperOperandType.push_back(wrapperOperandType);
return WrapperModel::addOperand(&wrapperOperandType);
}
case ANEURALNETWORKS_TENSOR_INT32:
case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM:
case ANEURALNETWORKS_TENSOR_QUANT8_SYMM:
case ANEURALNETWORKS_TENSOR_QUANT16_ASYMM:
case ANEURALNETWORKS_TENSOR_QUANT16_SYMM: {
WrapperOperandType wrapperOperandType(wrapperType, {1}, 1.0f);
mWrapperOperandType.push_back(wrapperOperandType);
return WrapperModel::addOperand(&wrapperOperandType);
}
case ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL: {
WrapperOperandType wrapperOperandType(wrapperType, {1}, 0.0f, 0,
WrapperSymmPerChannelQuantParams({1.0f}, 0));
mWrapperOperandType.push_back(wrapperOperandType);
return WrapperModel::addOperand(&wrapperOperandType);
}
default:
ADD_FAILURE() << "Unexpected type " << static_cast<uint32_t>(wrapperType);
return ~uint32_t(0);
}
}
enum class Dimensioned { NO, YES };
// Create a V1_0 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_0 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1V1_0(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_0 - kFirstEncodingV1_0);
return addOperation2To1(operation + kFirstEncodingV1_0, input0, input1, dimensionedOutput);
}
// Create a V1_1 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_1 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1V1_1(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_1 - kFirstEncodingV1_1);
return addOperation2To1(operation + kFirstEncodingV1_1, input0, input1, dimensionedOutput);
}
// Create a V1_2 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_2 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1V1_2(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_2 - kFirstEncodingV1_2);
return addOperation2To1(operation + kFirstEncodingV1_2, input0, input1, dimensionedOutput);
}
// Create an OEM operation with one input and one output,
// specifying the input operand index. Returns the output operand
// index.
uint32_t addOperationOEM1To1(const uint32_t input,
Dimensioned dimensionedOutput = Dimensioned::YES) {
uint32_t output = addOperandOfSameType(input, dimensionedOutput);
addOperation(ANEURALNETWORKS_OEM_OPERATION, { input }, { output });
return output;
}
// Run the partitioning algorithm to create an ExecutionPlan.
int partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices,
ExecutePreference preference, ExecutionPlan* plan) {
return reinterpret_cast<ModelBuilder*>(getHandle())->partitionTheWork(
devices, static_cast<uint32_t>(preference), plan);
}
#ifdef VERBOSE
// This is a debugging utility function.
void dump(const char* name) const {
const ModelBuilder* mb = reinterpret_cast<const ModelBuilder*>(getHandle());
::dump(name, mb);
}
#endif
private:
// Create an operation with two inputs and one output, specifying
// the operation kind and the input operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
auto it = firstEncodingToOperation.lower_bound(operation);
CHECK(it != firstEncodingToOperation.end());
ANeuralNetworksOperationType type = it->second.first;
if (it->second.second) {
int32_t fuseCode = operation - it->first;
uint32_t input2 = addIntOperand(fuseCode);
uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
addOperation(type, {input0, input1, input2}, {output});
return output;
} else {
uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
addOperation(type, {input0, input1}, {output});
return output;
}
}
// Create a scalar integer operand of the specified value, and
// return the corresponding operand index.
uint32_t addIntOperand(int32_t value) {
uint32_t operand = addOperand(WrapperType::INT32);
setOperandValue(operand, &value, sizeof(value));
return operand;
}
// Create an operand of the same type as the specified operand,
// and return the operand index of the new operand.
uint32_t addOperandOfSameType(uint32_t operand, Dimensioned dimensioned = Dimensioned::YES) {
WrapperOperandType type = mWrapperOperandType.at(operand);
for (auto& dimension : type.dimensions) {
dimension = (dimensioned == Dimensioned::YES);
}
mWrapperOperandType.push_back(type);
return WrapperModel::addOperand(&type);
}
// operand index to operand type
std::vector<WrapperOperandType> mWrapperOperandType;
};
// This class adds some utilities on top of WrapperCompilation.
class PartitioningCompilation : public WrapperCompilation {
public:
PartitioningCompilation(const PartitioningModel* model,
const std::vector<std::shared_ptr<Device>>& devices) {
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model->getHandle());
CompilationBuilder* c = nullptr;
int result = m->createCompilation(&c, devices);
EXPECT_EQ(result, 0);
mCompilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
}
Result setPartitioning(uint32_t partitioning) {
return static_cast<Result>(builder()->setPartitioning(partitioning));
}
using WrapperCompilation::finish;
const ExecutionPlan& getExecutionPlan() const {
return builder()->forTest_getExecutionPlan();
}
private:
CompilationBuilder* builder() {
return reinterpret_cast<CompilationBuilder*>(getHandle());
}
const CompilationBuilder* builder() const {
return reinterpret_cast<const CompilationBuilder*>(getHandle());
}
};
#ifdef VERBOSE
#define RETURN_TRUE() \
{ \
std::cerr << "returning true from " << __LINE__ << std::endl; \
return true; \
}
#else
#define RETURN_TRUE() \
{ \
return true; \
}
#endif
#ifdef VERBOSE
#define RETURN_FALSE(MESSAGE) \
{ \
std::cerr << "returning false from " << __LINE__ MESSAGE << std::endl; \
return false; \
}
#else
#define RETURN_FALSE(MESSAGE) \
{ \
return false; \
}
#endif
class PartitioningTest : public ::testing::Test {
protected:
using RemapVectorType = ExecutionStep::RemapVectorType;
using SubModelOutputSetType = ExecutionStep::SubModelOutputSetType;
virtual void SetUp() {
}
// From a vector of DeviceSpecification, create a vector of
// Devices.
struct DeviceSpecification {
DeviceSpecification(const std::string& name, const Capabilities& capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: mName(name),
mVersionString(kVersionString),
mCapabilities(capabilities),
mOperationMask(operationMask),
mOEM(oem) {}
DeviceSpecification(const std::string& name, float perf, uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: DeviceSpecification(name, perf, perf, operationMask, oem) {}
DeviceSpecification(const std::string& name, float perf, float perfRelaxed,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: DeviceSpecification(name, kVersionString, perf, perfRelaxed, operationMask, oem) {}
DeviceSpecification(const std::string& name, const std::string& version, float perf,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: DeviceSpecification(name, version, perf, perf, operationMask, oem) {}
DeviceSpecification(const std::string& name, const std::string& version, float perf,
float perfRelaxed, uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: mName(name), mVersionString(version), mOperationMask(operationMask), mOEM(oem) {
PerformanceInfo perfRelaxedInfo = {.execTime = perfRelaxed, .powerUsage = perfRelaxed};
mCapabilities = {.relaxedFloat32toFloat16PerformanceScalar = perfRelaxedInfo,
.relaxedFloat32toFloat16PerformanceTensor = perfRelaxedInfo,
.operandPerformance = ::android::nn::nonExtensionOperandPerformance(
{.execTime = perf, .powerUsage = perf})};
}
DeviceSpecification(const std::string& name, float perf, HalVersion halVersion,
uint32_t operationMaskV1_0, uint32_t operationMaskV1_1 = 0,
uint32_t operationMaskV1_2 = 0)
: DeviceSpecification(name, perf, perf,
makeOperationMask(halVersion, operationMaskV1_0,
operationMaskV1_1, operationMaskV1_2)) {
mHalVersion = halVersion;
}
std::string mName;
std::string mVersionString;
Capabilities mCapabilities;
HalVersion mHalVersion = HalVersion::LATEST;
uint32_t mOperationMask;
PartitioningDriver::OEM mOEM = PartitioningDriver::OEMNo;
static constexpr char kVersionString[] = "JUST_AN_EXAMPLE";
private:
// This function takes three operation masks aligned at the low-order
// bit -- one mask each for V1_0, V1_1, and V1_2 -- and produces a single
// composite operation mask, formed by shifting each of the input
// operation masks appropriately and ORing the results together.
//
// For convenience, any bits of an input mask that are too high order
// for that mask are discarded -- this allows ~0 to be a legal input
// mask.
//
// For the sake of example, assume that each low order mask is 4 bits
// wide, and take some artistic license to write literals in binary.
// Then:
//
// assert(makeOperationMask(HalVersion::V1_2, 0b0110, 0b1001, 0b0101) ==
// 0b 0101 1001 0110);
//
// This is used by a DeviceSpecification constructor to build a mask of
// operations to be supported by the device.
static uint32_t makeOperationMask(HalVersion halVersion, uint32_t operationMaskV1_0,
uint32_t operationMaskV1_1, uint32_t operationMaskV1_2) {
if (halVersion < HalVersion::V1_2) {
CHECK(!operationMaskV1_2);
}
if (halVersion < HalVersion::V1_1) {
CHECK(!operationMaskV1_1);
}
auto maskOfWidth = [](uint32_t width) -> uint32_t { return (1U << width) - 1; };
static const uint32_t kOperationMaskV1_0 =
maskOfWidth(kLastEncodingV1_0 - kFirstEncodingV1_0 + 1);
static const uint32_t kOperationMaskV1_1 =
maskOfWidth(kLastEncodingV1_1 - kFirstEncodingV1_1 + 1);
static const uint32_t kOperationMaskV1_2 =
maskOfWidth(kLastEncodingV1_2 - kFirstEncodingV1_2 + 1);
return ((operationMaskV1_0 & kOperationMaskV1_0) << kFirstEncodingV1_0) |
((operationMaskV1_1 & kOperationMaskV1_1) << kFirstEncodingV1_1) |
((operationMaskV1_2 & kOperationMaskV1_2) << kFirstEncodingV1_2);
}
};
static std::vector<std::shared_ptr<Device>> makeDevices(
std::vector<DeviceSpecification> specifications) {
std::vector<std::shared_ptr<Device>> devices;
for (const auto& specification : specifications) {
V1_0::IDevice* halDriver = nullptr;
switch (specification.mHalVersion) {
case HalVersion::V1_2:
halDriver = new PartitioningDriver(
specification.mName.c_str(), specification.mVersionString.c_str(),
specification.mCapabilities, specification.mOperationMask,
specification.mOEM);
break;
case HalVersion::V1_1:
halDriver = new PartitioningDriverV1_1(
specification.mName.c_str(), specification.mVersionString.c_str(),
specification.mCapabilities, specification.mOperationMask,
specification.mOEM);
break;
case HalVersion::V1_0:
halDriver = new PartitioningDriverV1_0(
specification.mName.c_str(), specification.mVersionString.c_str(),
specification.mCapabilities, specification.mOperationMask,
specification.mOEM);
break;
default:
ADD_FAILURE() << "Unexpected";
}
auto device = DeviceManager::forTest_makeDriverDevice(specification.mName, halDriver);
devices.push_back(device);
}
devices.push_back(DeviceManager::getCpuDevice());
return devices;
}
/*-- Graph comparision ----------------------------------------------------------------*/
// An operand with certain values for its lifetime does not have a
// defining operation in the graph. For the purposes of the graph
// comparison algorithm, we encode the "defining operation" index of
// such an operand as follows:
// - NO_VALUE kPseudoDefiningOperationNoValue
// - MODEL_INPUT kPseudoDefiningOperationModelInput0 + (position in list of inputs)
// - CONSTANT_COPY kPseudoDefiningOperationConstantCopy0 + (constant value)
// Note: For the graphs we build in this test, we
// only expect to see 4-byte constants within
// a very restricted range, so we only make
// room for such constants in our encoding
// space.
// We do not expect to see CONSTANT_REFERENCE, and so we do not handle
// it.
//
// The encoding is intended to be relatively human readable; it is not
// designed to represent some optimal balance of ranges for the items
// within its scope (actual operations, inputs, constants).
enum PseudoDefiningOperationEncodings : uint32_t {
kPseudoDefiningOperationModelInput0 = 0x80000000U,
kPseudoDefiningOperationConstantCopy0 = 0x90000000U,
kPseudoDefiningOperationNoValue = 0xeeeeeeeeU,
// lowest value for special encoding
kPseudoDefiningOperationBase = 0x80000000U,
// range of encoded input or constant
kPseudoDefiningOperationRange = 0x10000000U,
};
// Build a map from operand to defining operation.
// TODO: Replace map with vector?
void buildDefinitionMap(const ModelBuilder* model,
std::map<uint32_t, uint32_t>* defMap) {
// actual definitions
ASSERT_LT(model->operationCount(), kPseudoDefiningOperationBase);
for (uint32_t i = 0, e = model->operationCount(); i < e; i++) {
const Operation& operation = model->getOperation(i);
for (uint32_t output : operation.outputs) {
(*defMap)[output] = i;
}
}
// inputs
ASSERT_LT(model->inputCount(), kPseudoDefiningOperationRange);
for (uint32_t i = 0, e = model->inputCount(); i < e; i++) {
(*defMap)[model->getInputOperandIndex(i)] = kPseudoDefiningOperationModelInput0 + i;
}
// look for NO_VALUE and CONSTANT_COPY
for (uint32_t i = 0, e = model->operandCount(); i < e; i++) {
const Operand& operand = model->getOperand(i);
switch (operand.lifetime) {
case OperandLifeTime::NO_VALUE:
(*defMap)[i] = kPseudoDefiningOperationNoValue;
break;
case OperandLifeTime::CONSTANT_COPY: {
ASSERT_EQ(operand.location.length, sizeof(uint32_t));
uint32_t value;
memcpy(&value, model->getPointerToOperandValue(operand.location.offset), sizeof(uint32_t));
ASSERT_LT(value, kPseudoDefiningOperationNoValue);
(*defMap)[i] = kPseudoDefiningOperationConstantCopy0 + value;
break;
}
case OperandLifeTime::TEMPORARY_VARIABLE:
case OperandLifeTime::MODEL_INPUT:
case OperandLifeTime::MODEL_OUTPUT:
// already handled
break;
default:
FAIL();
break;
}
}
// sanity check
ASSERT_EQ(model->operandCount(), defMap->size());
}
#ifdef VERBOSE
void dump(const char* name, const std::map<uint32_t, uint32_t>* aMap) {
auto writeNum = [](uint32_t num) {
if (num >= kPseudoDefiningOperationBase) {
std::cout << "0x" << std::hex << num << std::dec;
} else {
std::cout << num;
}
};
std::cout << name << ": { ";
bool gotOne = false;
for (const auto& entry : *aMap) {
if (gotOne) {
std::cout << ", ";
} else {
gotOne = true;
}
std::cout << "(";
writeNum(entry.first);
std::cout << ", ";
writeNum(entry.second);
std::cout << ")";
}
std::cout << " }" << std::endl;
}
#endif
bool compare(const Operand& operandA, const Operand& operandB) {
if (operandA.type != operandB.type ||
operandA.dimensions != operandB.dimensions ||
operandA.numberOfConsumers != operandB.numberOfConsumers ||
operandA.scale != operandB.scale ||
operandA.zeroPoint != operandB.zeroPoint) {
return false;
}
return true;
}
// Compare two graphs. We ignore operand and operation indexes (i.e.,
// two nodes can be the same even if they are numbered differently)
// but we also ignore semantics (e.g., even if an operation kind is
// such that the operand is commutative, we still pay attention to the
// order of its input operands).
//
// The comparison algorithm works by walking modelA from outputs
// towards inputs, along the edge from each operand to its
// defining operation, and then along the edges to the operation's
// input operands. At each step along the way, we try to match up
// operands and operations from modelA with equivalent operands
// and operations from modelB.
//
// We start by assuming that modelA's outputs and modelB's outputs
// match positionally (e.g., modelA's first output operand is
// equivalent to modelB's first output operand). Once we've
// discovered two equivalent operands (such as those outputs), we
// place them in a work queue. We repeatedly pull operands off
// the queue and compare their defining operations and those
// operations' input operands, to discover more pairs of
// equivalent operands. If we ever find operations that do not
// match (e.g., because operation kind differs), or operands that
// do not match (e.g., because operand type differs); or if we
// ever find a conflict (we've already decided that operand A's
// equivalent operand is B0, but it looks like we need its
// equivalent operand to be B1); then the graphs compare unequal.
// Otherwise, we'll eventually exhaust the work queue, and
// conclude that the graphs compare equal.
//
// As a side effect of the comparison, we produce a map
// *inputsAndOutputsBToA that maps from each of the model input and output
// operand numbers of modelB to the corresponding operand numbers of modelA.
// If the comparison returns false, the contents of the map are undefined.
bool compare(const ModelBuilder* modelA, const ModelBuilder* modelB,
std::map<uint32_t, uint32_t>* inputsAndOutputsBToA) {
CHECK(inputsAndOutputsBToA != nullptr);
EXPECT_TRUE(inputsAndOutputsBToA->empty());
#ifdef VERBOSE
::dump("compare(A)", modelA);
::dump("compare(B)", modelB);
#endif
if (modelA->operandCount() != modelB->operandCount() ||
modelA->operationCount() != modelB->operationCount() ||
modelA->inputCount() != modelB->inputCount() ||
modelA->outputCount() != modelB->outputCount()) {
RETURN_FALSE();
}
// Maps from operand index to index of defining operation.
std::map<uint32_t, uint32_t> defsA, defsB;
buildDefinitionMap(modelA, &defsA);
buildDefinitionMap(modelB, &defsB);
if (HasFatalFailure()) return false;
// Maps from operand index in modelA to equivalent operand index
// in modelB; and from operation index in modelA to equivalent
// operation index in modelB.
std::map<uint32_t, uint32_t> equivalentOperandsAToB;
std::map<uint32_t, uint32_t> equivalentOperationsAToB;
// Queue of operand indexes from modelA, each of whose defining
// operations are to be checked for equivalence with modelB.
std::queue<uint32_t> workQueueOperandsA;
// Seed operand equivalence map and work queue from model outputs.
for (uint32_t i = 0, e = modelA->outputCount(); i < e; i++) {
uint32_t outputA = modelA->getOutputOperandIndex(i);
uint32_t outputB = modelB->getOutputOperandIndex(i);
if (!compare(modelA->getOperand(outputA), modelB->getOperand(outputB))) {
RETURN_FALSE();
}
equivalentOperandsAToB[outputA] = outputB;
workQueueOperandsA.push(outputA);
}
#ifdef VERBOSE
dump("defsA", &defsA);
dump("defsB", &defsB);
#endif
// Process the queue.
uint32_t pseudoDefinitionCount = 0;
while (!workQueueOperandsA.empty()) {
#ifdef VERBOSE
dump("equivalentOperandsAToB", &equivalentOperandsAToB);
dump("equivalentOperationsAToB", &equivalentOperationsAToB);
#endif
uint32_t operandIndexA = workQueueOperandsA.front();
#ifdef VERBOSE
std::cout << "operandIndexA: " << operandIndexA << std::endl;
#endif
workQueueOperandsA.pop();
uint32_t operandIndexB = equivalentOperandsAToB.at(operandIndexA);
uint32_t operationIndexA = defsA.at(operandIndexA);
uint32_t operationIndexB = defsB.at(operandIndexB);
auto it = equivalentOperationsAToB.find(operationIndexA);
if (it != equivalentOperationsAToB.end()) {
if (it->second != operationIndexB) {
RETURN_FALSE();
}
continue;
}
// We haven't identified an equivalent operation for
// operationIndexA.
if ((operationIndexA >= kPseudoDefiningOperationBase) !=
(operationIndexB >= kPseudoDefiningOperationBase)) {
RETURN_FALSE();
}
// Either both operands have pseudo-definitions, or neither
// does.
if (operationIndexA >= kPseudoDefiningOperationBase) {
// Both operands have pseudo-definitions.
if (operationIndexA != operationIndexB) {
RETURN_FALSE();
}
equivalentOperationsAToB[operationIndexA] = operationIndexB;
++pseudoDefinitionCount;
continue;
}
// If we get here, neither operation A nor operation B is a
// pseudo-definition.
const Operation& operationA = modelA->getOperation(operationIndexA);
const Operation& operationB = modelB->getOperation(operationIndexB);
if (operationA.type != operationB.type ||
operationA.inputs.size() != operationB.inputs.size() ||
operationA.outputs.size() != operationB.outputs.size()) {
RETURN_FALSE();
}
equivalentOperationsAToB[operationIndexA] = operationIndexB;
for (uint32_t i = 0, e = operationA.inputs.size(); i < e; i++) {
uint32_t inputA = operationA.inputs[i];
uint32_t inputB = operationB.inputs[i];
auto it = equivalentOperandsAToB.find(inputA);
if (it != equivalentOperandsAToB.end()) {
if (it->second != inputB) {
RETURN_FALSE();
}
continue;
}
// We haven't identified an equivalent operand for inputA.
if (!compare(modelA->getOperand(inputA), modelB->getOperand(inputB))) {
RETURN_FALSE();
}
equivalentOperandsAToB[inputA] = inputB;
workQueueOperandsA.push(inputA);
}
}
// Sanity check
if (modelA->operandCount() != defsA.size() ||
modelA->operandCount() != defsB.size() ||
modelA->operandCount() != equivalentOperandsAToB.size() ||
modelA->operationCount() + pseudoDefinitionCount != equivalentOperationsAToB.size()) {
RETURN_FALSE();
}
// Build *inputsAndOutputsBToA
for (uint32_t aInputIndex : modelA->getInputOperandIndexes()) {
(*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aInputIndex)] = aInputIndex;
}
for (uint32_t aOutputIndex : modelA->getOutputOperandIndexes()) {
(*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aOutputIndex)] = aOutputIndex;
}
RETURN_TRUE();
}
/*-------------------------------------------------------------------------------------*/
// As a side effect of the comparison, we produce a map
// *inputsAndOutputsModelToStep that maps from each of the model input and
// output operand numbers of "model" to the corresponding operand numbers of
// the submodel from "step". If the comparison returns false, the contents
// of the map are undefined.
bool compare(std::shared_ptr<const ExecutionStep> step, const PartitioningModel* model,
std::shared_ptr<Device> device,
std::map<uint32_t, uint32_t>* inputsAndOutputsModelToStep) {
return (step->getDevice() == device) &&
compare(step->getSubModel(),
reinterpret_cast<const ModelBuilder*>(model->getHandle()),
inputsAndOutputsModelToStep);
}
void compare(std::shared_ptr<const ExecutionStep> step, const PartitioningModel* model,
std::shared_ptr<Device> device, const RemapVectorType& modelInputs,
const RemapVectorType& modelOutputs, const RemapVectorType& tempsAsSubModelInputs,
const SubModelOutputSetType& tempsAsSubModelOutputs,
const RemapVectorType& outputsAsSubModelInputs) {
std::map<uint32_t, uint32_t> inputsAndOutputsModelToStep;
ASSERT_NO_FATAL_FAILURE(
ASSERT_TRUE(compare(step, model, device, &inputsAndOutputsModelToStep)));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelInputs(),
modelInputs));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelOutputs(),
modelOutputs));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep,
step->getTempsAsSubModelInputs(), tempsAsSubModelInputs));
ASSERT_TRUE(compareSubModelOutputSets(inputsAndOutputsModelToStep,
step->getTempsAsSubModelOutputs(),
tempsAsSubModelOutputs));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep,
step->getOutputsAsSubModelInputs(),
outputsAsSubModelInputs));
}
private:
static bool compareRemapVectors(const std::map<uint32_t, uint32_t>& inputsAndOutputsModelToStep,
const RemapVectorType& step, RemapVectorType model) {
std::transform(model.begin(), model.end(), model.begin(),
[&inputsAndOutputsModelToStep](const RemapVectorType::value_type& val) {
return std::make_pair(val.first,
inputsAndOutputsModelToStep.at(val.second));
});
return step == model;
}
static bool compareSubModelOutputSets(
const std::map<uint32_t, uint32_t>& inputsAndOutputsModelToStep,
const SubModelOutputSetType& step, const SubModelOutputSetType& model) {
SubModelOutputSetType modelTransformed;
std::transform(
model.begin(), model.end(), std::inserter(modelTransformed, modelTransformed.end()),
[&inputsAndOutputsModelToStep](const SubModelOutputSetType::value_type& val) {
return std::make_pair(val.first, inputsAndOutputsModelToStep.at(val.second));
});
return step == modelTransformed;
}
};
TEST_F(PartitioningTest, SimpleModel) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model.addFloatOperand();
uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3);
model.identifyInputsAndOutputs({ opnd0, opnd1, opnd3 }, { opnd4 });
model.finish();
ASSERT_TRUE(model.isValid());
// Simple partition (two devices are each capable of everything, one is the best).
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesA = makeDevices({{"bad", 0.9, ~0U}, {"good", 0.5, ~0U}});
ExecutionPlan planA;
ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER, &planA),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr);
ASSERT_STREQ(planA.forTest_simpleGetDevice()->getName(), "good");
// Simple partition (two devices are each capable of everything, none better than CPU).
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesC = makeDevices({{"bad", 1.1, ~0U}, {"bad2", 1.0, ~0U}});
ExecutionPlan planC;
ASSERT_EQ(model.partitionTheWork(devicesC, ExecutePreference::PREFER_LOW_POWER, &planC),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(planC.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(planC.forTest_simpleGetDevice(), DeviceManager::getCpuDevice());
// Compound partition (two devices, each is capable of one of the
// two operations). We could do more extensive checking here --
// for example, verify that each step within the plan has the
// correct (model and submodel)x(inputs and outputs).
const auto devicesB = makeDevices({{"0", 0.9, 1 << 0}, {"1", 0.5, 1 << 1}});
ExecutionPlan planB;
ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER, &planB),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& stepsB = planB.forTest_compoundGetSteps();
ASSERT_EQ(stepsB.size(), size_t(2));
{
// Build a model to compare against the submodel from stepsB[0].
PartitioningModel modelB0;
uint32_t b0Opnd0 = modelB0.addFloatOperand();
uint32_t b0Opnd1 = modelB0.addFloatOperand();
uint32_t b0Opnd2 = modelB0.addOperation2To1V1_0(0, b0Opnd0, b0Opnd1);
modelB0.identifyInputsAndOutputs({ b0Opnd0, b0Opnd1 }, { b0Opnd2 });
modelB0.finish();
ASSERT_TRUE(modelB0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[0], &modelB0, devicesB[0],
RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}}, // modelInputs
RemapVectorType{}, // modelOutputs
RemapVectorType{}, // tempsAsSubModelInputs
SubModelOutputSetType{{opnd2, b0Opnd2}}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs;
}
{
// Build a model to compare against the submodel from stepsB[1].
PartitioningModel modelB1;
uint32_t b1Opnd2 = modelB1.addFloatOperand();
uint32_t b1Opnd3 = modelB1.addFloatOperand();
uint32_t b1Opnd4 = modelB1.addOperation2To1V1_0(1, b1Opnd2, b1Opnd3);
// Note: In the partitioning algorithm, submodel inputs follow
// model inputs. In the original model "model", opnd2 is not
// an input; so in the submodel "modelB1", the corresponding
// input b1Opnd2 is a submodel input, and must follow the
// model input b1Opnd3.
modelB1.identifyInputsAndOutputs({ b1Opnd3, b1Opnd2 }, { b1Opnd4 });
modelB1.finish();
ASSERT_TRUE(modelB1.isValid());
ASSERT_NO_FATAL_FAILURE(compare(stepsB[1], &modelB1, devicesB[1],
RemapVectorType{{opnd3, b1Opnd3}}, // modelInputs
RemapVectorType{{opnd4, b1Opnd4}}, // modelOutputs
RemapVectorType{{opnd2, b1Opnd2}}, // tempsAsSubModelInputs
SubModelOutputSetType{}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
}
TEST_F(PartitioningTest, SliceModel) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd0, opnd1);
uint32_t opnd4 = model.addOperation2To1V1_1(0, opnd0, opnd1);
uint32_t opnd5 = model.addOperation2To1V1_2(0, opnd2, opnd3);
model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd4, opnd5});
model.finish();
ASSERT_TRUE(model.isValid());
// Simple partition (V1_0, V1_1, V1_2 devices are available; V1_2 has best perf).
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesA = makeDevices({{"V1_0", 0.8, HalVersion::V1_0, ~0U},
{"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
{"V1_2", 0.6, HalVersion::V1_2, ~0U, ~0U, ~0U}});
ExecutionPlan planA;
ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER, &planA),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr);
ASSERT_STREQ(planA.forTest_simpleGetDevice()->getName(), "V1_2");
// Compound partition (V1_0, V1_1, V1_2 devices are available, in decreasing
// order of performance; model is distributed across all three devices).
const auto devicesB = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U},
{"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
{"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U}});
ExecutionPlan planB;
ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER, &planB),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& stepsB = planB.forTest_compoundGetSteps();
ASSERT_EQ(stepsB.size(), size_t(3));
{
// Build a model to compare against the submodel from stepsB[0].
PartitioningModel modelB0;
uint32_t b0Opnd0 = modelB0.addFloatOperand();
uint32_t b0Opnd1 = modelB0.addFloatOperand();
uint32_t b0Opnd2 = modelB0.addOperation2To1V1_1(0, b0Opnd0, b0Opnd1);
modelB0.identifyInputsAndOutputs({b0Opnd0, b0Opnd1}, {b0Opnd2});
modelB0.finish();
ASSERT_TRUE(modelB0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[0], &modelB0, devicesB[1],
RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}}, // modelInputs
RemapVectorType{{opnd4, b0Opnd2}}, // modelOutputs
RemapVectorType{}, // tempsAsSubModelInputs
SubModelOutputSetType{}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
{
// Build a model to compare against the submodel from stepsB[1].
PartitioningModel modelB1;
uint32_t b1Opnd0 = modelB1.addFloatOperand();
uint32_t b1Opnd1 = modelB1.addFloatOperand();
uint32_t b1Opnd2 = modelB1.addOperation2To1V1_0(0, b1Opnd0, b1Opnd1);
uint32_t b1Opnd3 = modelB1.addOperation2To1V1_0(1, b1Opnd0, b1Opnd1);
modelB1.identifyInputsAndOutputs({b1Opnd0, b1Opnd1}, {b1Opnd2, b1Opnd3});
modelB1.finish();
ASSERT_TRUE(modelB1.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[1], &modelB1, devicesB[0],
RemapVectorType{{opnd0, b1Opnd0}, {opnd1, b1Opnd1}}, // modelInputs
RemapVectorType{{opnd2, b1Opnd2}}, // modelOutputs
RemapVectorType{}, // tempsAsSubModelInputs
SubModelOutputSetType{{opnd3, b1Opnd3}}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
{
// Build a model to compare against the submodel from stepsB[2].
PartitioningModel modelB2;
uint32_t b2Opnd0 = modelB2.addFloatOperand();
uint32_t b2Opnd1 = modelB2.addFloatOperand();
uint32_t b2Opnd2 = modelB2.addOperation2To1V1_2(0, b2Opnd0, b2Opnd1);
// Note: In the partitioning algorithm, temps that are
// submodel inputs precede model outputs that are submodel
// inputs. In the original model "model", opnd3 is a temp and
// opnd2 is a model output; so in the submodel "modelB2", the
// corresponding inputs b2Opnd1 and b2Opnd0 must appear in
// that order.
modelB2.identifyInputsAndOutputs({b2Opnd1, b2Opnd0}, {b2Opnd2});
modelB2.finish();
ASSERT_TRUE(modelB2.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[2], &modelB2, devicesB[2], RemapVectorType{}, // modelInputs
RemapVectorType{{opnd5, b2Opnd2}}, // modelOutputs
RemapVectorType{{opnd3, b2Opnd1}}, // tempsAsSubModelInputs
SubModelOutputSetType{}, // tempsAsSubModelOutputs
RemapVectorType{{opnd2, b2Opnd0}})); // outputsAsSubModelInputs
}
// TODO: Make sure this still works when we have multiple devices
// of same version available for slicing. An easy (?) choice would
// be to route the two different V1_0 operations to different
// devices.
}
TEST_F(PartitioningTest, SliceModelToEmpty) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_2(0, opnd0, opnd1);
model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
model.finish();
ASSERT_TRUE(model.isValid());
// Only the V1_2 device can handle any operations in the model.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devices = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U},
{"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
{"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U}});
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(plan.forTest_simpleGetDevice().get(), nullptr);
ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), "V1_2");
}
TEST_F(PartitioningTest, Cpu) {
// Here's a model where some operations execute only on the Cpu.
// To make things interesting, we produce three partitions --
// device, cpu, same-device.
static const uint32_t kCpuOp = 1;
static const uint32_t kDevOp = 2;
const auto devices = makeDevices({{"1", 0.5, 1 << kDevOp}});
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd1);
uint32_t opnd3 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd2);
uint32_t opnd4 = model.addOperation2To1V1_0(kCpuOp, opnd0, opnd3);
uint32_t opnd5 = model.addOperation2To1V1_0(kCpuOp, opnd2, opnd4);
uint32_t opnd6 = model.addFloatOperand();
uint32_t opnd7 = model.addOperation2To1V1_0(kDevOp, opnd3, opnd5);
uint32_t opnd8 = model.addOperation2To1V1_0(kDevOp, opnd6, opnd7);
model.identifyInputsAndOutputs({ opnd0, opnd1, opnd6 }, { opnd4, opnd8 });
model.finish();
ASSERT_TRUE(model.isValid());
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& steps = plan.forTest_compoundGetSteps();
ASSERT_EQ(steps.size(), size_t(3));
{
const auto& step0 = steps[0];
// Build a model to compare against the submodel from steps[0].
PartitioningModel model0;
uint32_t m0Opnd0 = model0.addFloatOperand();
uint32_t m0Opnd1 = model0.addFloatOperand();
uint32_t m0Opnd2 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd1);
uint32_t m0Opnd3 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd2);
model0.identifyInputsAndOutputs({ m0Opnd0, m0Opnd1 }, { m0Opnd2, m0Opnd3 });
model0.finish();
ASSERT_TRUE(model0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(step0, &model0, devices[0],
RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}}, // modelInputs
RemapVectorType{}, // modelOutputs
RemapVectorType{}, // tempsAsSubModelInputs
SubModelOutputSetType{{opnd2, m0Opnd2},
{opnd3, m0Opnd3}}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
{
const auto& step1 = steps[1];
// Build a model to compare against the submodel from steps[1].
PartitioningModel model1;
uint32_t m1Opnd0 = model1.addFloatOperand();
uint32_t m1Opnd3 = model1.addFloatOperand();
uint32_t m1Opnd4 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd0, m1Opnd3);
uint32_t m1Opnd2 = model1.addFloatOperand();
uint32_t m1Opnd5 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd2, m1Opnd4);
model1.identifyInputsAndOutputs({ m1Opnd0, m1Opnd3, m1Opnd2 }, { m1Opnd4, m1Opnd5 });
model1.finish();
ASSERT_TRUE(model1.isValid());
ASSERT_NO_FATAL_FAILURE(compare(
step1, &model1, DeviceManager::getCpuDevice(),
RemapVectorType{{opnd0, m1Opnd0}}, // modelInputs
RemapVectorType{{opnd4, m1Opnd4}}, // modelOutputs
RemapVectorType{{opnd3, m1Opnd3}, {opnd2, m1Opnd2}}, // tempsAsSubModelInputs
SubModelOutputSetType{{opnd5, m1Opnd5}}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
{
const auto& step2 = steps[2];
// Build a model to compare against the submodel from steps[2].
PartitioningModel model2;
uint32_t m2Opnd3 = model2.addFloatOperand();
uint32_t m2Opnd5 = model2.addFloatOperand();
uint32_t m2Opnd7 = model2.addOperation2To1V1_0(kDevOp, m2Opnd3, m2Opnd5);
uint32_t m2Opnd6 = model2.addFloatOperand();
uint32_t m2Opnd8 = model2.addOperation2To1V1_0(kDevOp, m2Opnd6, m2Opnd7);
model2.identifyInputsAndOutputs({ m2Opnd6, m2Opnd3, m2Opnd5 }, { m2Opnd8 });
model2.finish();
ASSERT_TRUE(model2.isValid());
ASSERT_NO_FATAL_FAILURE(compare(
step2, &model2, devices[0], RemapVectorType{{opnd6, m2Opnd6}}, // modelInputs
RemapVectorType{{opnd8, m2Opnd8}}, // modelOutputs
RemapVectorType{{opnd3, m2Opnd3}, {opnd5, m2Opnd5}}, // tempsAsSubModelInputs
SubModelOutputSetType{}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
}
TEST_F(PartitioningTest, SetPartitioning) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 =
model.addOperation2To1V1_0(0, opnd0, opnd1, PartitioningModel::Dimensioned::NO);
uint32_t opnd3 = model.addFloatOperand();
uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3);
model.identifyInputsAndOutputs({ opnd0, opnd1, opnd3 }, { opnd4 });
model.finish();
ASSERT_TRUE(model.isValid());
// We expect that we cannot successfully partition, because we
// have an intermediate operand (opnd2) without dimensions, and
// this is not currently handled.
// One device that can and should execute operation 0.
const auto devices = makeDevices({{"hw", 0.5, (1 << 0)}});
// Test kPartitioningNo. We should not even attempt partitioning,
// so there should be a SIMPLE plan on CPU.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
PartitioningCompilation cPNo(&model, devices);
ASSERT_EQ(cPNo.setPartitioning(DeviceManager::kPartitioningNo), Result::NO_ERROR);
ASSERT_EQ(cPNo.finish(), Result::NO_ERROR);
ASSERT_EQ(cPNo.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(cPNo.getExecutionPlan().forTest_simpleGetDevice(), DeviceManager::getCpuDevice());
// Test kPartitioningWithFallback. We should attempt
// partitioning, reach the end of the partitioning process (so we
// have an unsuccessful execution plan), discover the dimensionless
// intermediate operand, then fallback to CPU with a SIMPLE plan, and
// finally return success.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
PartitioningCompilation cPWithFallback(&model, devices);
ASSERT_EQ(cPWithFallback.setPartitioning(DeviceManager::kPartitioningWithFallback), Result::NO_ERROR);
ASSERT_EQ(cPWithFallback.finish(), Result::NO_ERROR);
ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_simpleGetDevice(),
DeviceManager::getCpuDevice());
// Test kPartitioningWithoutFallback. We should attempt
// partitioning, and fail.
PartitioningCompilation cPWithoutFallback(&model, devices);
ASSERT_EQ(cPWithoutFallback.setPartitioning(DeviceManager::kPartitioningWithoutFallback), Result::NO_ERROR);
ASSERT_EQ(cPWithoutFallback.finish(), Result::OP_FAILED);
ASSERT_TRUE(cPWithoutFallback.getExecutionPlan().forTest_hasSubModelOutputsOfUnknownSize());
ASSERT_EQ(cPWithoutFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::ERROR);
}
// Regression test for http://b/69166603:
// "partitioned compilation and execution yields wrong results when model output is submodel input"
TEST_F(PartitioningTest, ModelOutputAsSubmodelInput) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd2, opnd2);
model.identifyInputsAndOutputs({ opnd0, opnd1 }, { opnd2, opnd3 });
model.finish();
ASSERT_TRUE(model.isValid());
// Compound partition (two devices, each is capable of one of the
// two operations). We could do more extensive checking here --
// for example, verify that each step within the plan has the
// correct (model and submodel)x(inputs and outputs).
const auto devices = makeDevices({{"0", 0.5, 1 << 0}, {"1", 0.5, 1 << 1}});
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& steps = plan.forTest_compoundGetSteps();
ASSERT_EQ(steps.size(), size_t(2));
{
// Build a model to compare against the submodel from steps[0].
PartitioningModel model0;
uint32_t m0Opnd0 = model0.addFloatOperand();
uint32_t m0Opnd1 = model0.addFloatOperand();
uint32_t m0Opnd2 = model0.addOperation2To1V1_0(0, m0Opnd0, m0Opnd1);
model0.identifyInputsAndOutputs({ m0Opnd0, m0Opnd1 }, { m0Opnd2 });
model0.finish();
ASSERT_TRUE(model0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(steps[0], &model0, devices[0],
RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}}, // modelInputs
RemapVectorType{{opnd2, m0Opnd2}}, // modelOutputs
RemapVectorType{}, // tempsAsSubModelInputs
SubModelOutputSetType{}, // tempsAsSubModelOutputs
RemapVectorType{})); // outputsAsSubModelInputs
}
{
// Build a model to compare against the submodel from steps[1].
PartitioningModel model1;
uint32_t m1Opnd2 = model1.addFloatOperand();
uint32_t m1Opnd3 = model1.addOperation2To1V1_0(1, m1Opnd2, m1Opnd2);
model1.identifyInputsAndOutputs({ m1Opnd2 }, { m1Opnd3 });
model1.finish();
ASSERT_TRUE(model1.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(steps[1], &model1, devices[1], RemapVectorType{}, // modelInputs
RemapVectorType{{opnd3, m1Opnd3}}, // modelOutputs
RemapVectorType{}, // tempsAsSubModelInputs
SubModelOutputSetType{}, // tempsAsSubModelOutputs
RemapVectorType{{opnd2, m1Opnd2}})); // outputsAsSubModelInputs
}
}
TEST_F(PartitioningTest, OemOperations) {
// Trivial model consisting solely of OEM operation.
PartitioningModel model;
uint32_t opndIn = model.addFloatOperand();
uint32_t opndOut = model.addOperationOEM1To1(opndIn);
model.identifyInputsAndOutputs({ opndIn }, { opndOut });
model.finish();
ASSERT_TRUE(model.isValid());
// Verify that the best driver than can run an OEM operation is
// used, even if it is not better than the CPU.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesBestOEM = makeDevices({{"badOEM", 1.5, ~0U, PartitioningDriver::OEMYes},
{"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo},
{"goodOEM", 1.2, ~0U, PartitioningDriver::OEMYes}});
PartitioningCompilation compilationBestOEM(&model, devicesBestOEM);
ASSERT_EQ(compilationBestOEM.finish(), Result::NO_ERROR);
const auto& planBestOEM = compilationBestOEM.getExecutionPlan();
ASSERT_EQ(planBestOEM.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(planBestOEM.forTest_simpleGetDevice().get(), nullptr);
ASSERT_STREQ(planBestOEM.forTest_simpleGetDevice()->getName(), "goodOEM");
// Verify that we get an error if no driver can run an OEM operation.
const auto devicesNoOEM = makeDevices({{"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo}});
PartitioningCompilation compilationNoOEM(&model, devicesNoOEM);
ASSERT_EQ(compilationNoOEM.finish(), Result::BAD_DATA);
// Verify that we get an error if a driver can SUPPORT but not PREPARE an OEM operation.
const auto devicesIndecisiveOEM =
makeDevices({{"indecisiveOEM", 0.5, ~0U, PartitioningDriver::OEMIndecisive}});
PartitioningCompilation compilationIndecisiveOEM(&model, devicesIndecisiveOEM);
ASSERT_NE(compilationIndecisiveOEM.finish(), Result::NO_ERROR);
// Verify that we get an error if there are no drivers (only CPU fallback).
PartitioningCompilation compilationNoDrivers(&model, makeDevices({}) /* no drivers */);
ASSERT_EQ(compilationNoDrivers.finish(), Result::BAD_DATA);
}
TEST_F(PartitioningTest, RelaxedFP) {
const auto devices = makeDevices({// Best choice for non-relaxed model.
{"f32", 0.8, 0.9 /* relaxed */, ~0U},
// Best choice for relaxed model.
{"f16", 0.9, 0.8 /* relaxed */, ~0U}});
auto TrivialTest = [&devices](bool doRelax, const char* expectDevice) {
// Trivial model consisting solely of one operation.
SCOPED_TRACE(expectDevice);
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
model.identifyInputsAndOutputs({ opnd0, opnd1 }, { opnd2 });
model.relaxComputationFloat32toFloat16(doRelax);
model.finish();
ASSERT_TRUE(model.isValid());
// Verify that the model will be executed on the appropriate device.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), expectDevice);
};
ASSERT_NO_FATAL_FAILURE(TrivialTest(false, "f32"));
ASSERT_NO_FATAL_FAILURE(TrivialTest(true, "f16"));
}
TEST_F(PartitioningTest, Perf) {
// The various type names used here are confusing.
//
// OperandType (from HAL file), WrapperType (from NeuralNetworksWrapper.h),
// and OperandCode (from NeuralNetworks.h) are different enums representing
// the same type kind -- e.g., OperandType::FLOAT32, WrapperType::FLOAT32,
// ANEURALNETWORKS_FLOAT32. Corresponding enumerators have the same value.
//
// WrapperOperandType is the NeuralNetworksWrapper.h representation of a
// full operand type (WrapperType plus dimensions plus other attributes).
auto TestType = [](OperandType operandType) {
SCOPED_TRACE(toString(operandType));
// Trivial model consisting solely of OEM operation. We
// pick OEM operation because this allows us to use
// inputs and outputs of any number and type.
PartitioningModel model;
uint32_t opndIn = model.addOperand(static_cast<WrapperType>(operandType));
uint32_t opndOut = model.addOperationOEM1To1(opndIn);
model.identifyInputsAndOutputs({opndIn}, {opndOut});
model.finish();
ASSERT_TRUE(model.isValid());
const Capabilities baseCapabilities = makeCapabilities(0.5);
{
// better than base
Capabilities goodCapabilities = baseCapabilities;
update(&goodCapabilities, operandType, 0.25);
const auto devices =
makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes},
{"good", goodCapabilities, ~0U, PartitioningDriver::OEMYes}});
// Verify that model will be executed on "good".
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), "good");
}
{
// worse than base
Capabilities badCapabilities = baseCapabilities;
update(&badCapabilities, operandType, 0.75);
const auto devices =
makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes},
{"bad", badCapabilities, ~0U, PartitioningDriver::OEMYes}});
// Verify that model will be executed on "base".
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), "base");
}
};
for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN);
type <= static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
TestType(static_cast<OperandType>(type));
}
for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::OEM_MIN);
type <= static_cast<uint32_t>(OperandTypeRange::OEM_MAX); ++type) {
TestType(static_cast<OperandType>(type));
}
}
// Test token rehashing during the compilation step.
class CacheTest : public PartitioningTest {
protected:
virtual void SetUp() override {
PartitioningTest::SetUp();
char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
char* cacheDir = mkdtemp(cacheDirTemp);
ASSERT_NE(cacheDir, nullptr);
mCacheDir = cacheDir;
}
virtual void TearDown() override {
if (!::testing::Test::HasFailure()) {
std::filesystem::remove_all(mCacheDir);
}
PartitioningTest::TearDown();
}
void expectUniqueTokens(const std::vector<std::vector<uint8_t>>& tokens) {
for (uint32_t i = 0; i < tokens.size(); i++) {
SCOPED_TRACE(i);
for (uint32_t j = i + 1; j < tokens.size(); j++) {
SCOPED_TRACE(j);
EXPECT_NE(tokens[i], tokens[j]);
}
}
}
// Launch a single run of the partitioner against the provided model and device list with
// cache token privided as tokenIn. Find the partition for the device with deviceName.
// Record the tranformed token into tokenOut.
// If tokenIn is empty, no caching information will be provided to the partitioner.
void getTransformedCacheTokenSingle(const PartitioningModel& model,
const std::vector<std::shared_ptr<Device>>& devices,
const char* deviceName, const std::vector<uint8_t>& tokenIn,
ExecutePreference preference,
std::vector<uint8_t>* tokenOut) {
// Compile the model and get the execution plan.
PartitioningCompilation compilation(&model, devices);
if (!tokenIn.empty()) {
compilation.setCaching(mCacheDir.c_str(), tokenIn);
}
compilation.setPreference(preference);
ASSERT_EQ(compilation.finish(), Result::NO_ERROR);
const ExecutionPlan& plan = compilation.getExecutionPlan();
// Find the cache info for the device.
const uint8_t* token = nullptr;
if (plan.forTest_getKind() == ExecutionPlan::Kind::SIMPLE) {
ASSERT_STREQ(plan.forTest_simpleGetDevice()->getName(), deviceName);
token = plan.forTest_simpleGetCacheToken();
} else if (plan.forTest_getKind() == ExecutionPlan::Kind::COMPOUND) {
const auto& steps = plan.forTest_compoundGetSteps();
bool found = false;
for (const auto& step : steps) {
// In general, two or more partitions can be on the same device. However, this will
// not happen on the test models with only 2 operations.
if (strcmp(step->getDevice()->getName(), deviceName) == 0) {
ASSERT_FALSE(found);
token = step->forTest_getCacheToken();
found = true;
}
}
ASSERT_TRUE(found);
} else {
FAIL();
}
// Retrieve the transformed token from the cache info.
if (token == nullptr) {
tokenOut->clear();
} else {
tokenOut->resize(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN);
std::copy(token, token + ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, tokenOut->begin());
}
}
// A wrapper of getTransformedCacheTokenSingle, which runs getTransformedCacheTokenSingle
// multiple times and checks if the transformation provides consistent result.
void getTransformedCacheToken(const PartitioningModel& model,
const std::vector<std::shared_ptr<Device>>& devices,
const char* deviceName, const std::vector<uint8_t>& tokenIn,
ExecutePreference preference, std::vector<uint8_t>* tokenOut) {
getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference, tokenOut);
// Test if the runtime maps to the same cache token every time for the same compilation
// setup.
for (uint32_t i = 0; i < 10; i++) {
std::vector<uint8_t> token;
SCOPED_TRACE(i);
getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference, &token);
EXPECT_EQ(*tokenOut, token);
}
}
void CreateModelForCachingTests(PartitioningModel* model) {
uint32_t opnd0 = model->addFloatOperand();
uint32_t opnd1 = model->addFloatOperand();
uint32_t opnd2 = model->addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model->addFloatOperand();
uint32_t opnd4 = model->addOperation2To1V1_0(1, opnd2, opnd3);
model->identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
model->finish();
ASSERT_TRUE(model->isValid());
}
std::string mCacheDir;
};
// Test the case when no token is provided by the application and the execution plan has a
// simple body.
TEST_F(CacheTest, CacheTokenNoneSimpleBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// deviceA can execute the whole model.
const auto deviceA = makeDevices({
{"deviceA", 0.5, ~0U},
});
std::vector<uint8_t> tokenIn, tokenOut;
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut);
EXPECT_TRUE(tokenOut.empty());
}
// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentDeviceNamesSimpleBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// Two devices that can both execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
const auto deviceB = makeDevices({{"deviceB", 0.5, ~0U}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceAToken, deviceBToken;
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceAToken);
getTransformedCacheToken(model, deviceB, "deviceB", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceBToken);
expectUniqueTokens({deviceAToken, deviceBToken});
}
// Test if the runtime maps to different cache tokens for devices with different version strings in
// execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsSimpleBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// Two devices that can both execute the whole model.
const auto deviceA_1_0 = makeDevices({{"deviceA", "1.0", 0.5, ~0U}});
const auto deviceA_1_1 = makeDevices({{"deviceA", "1.1", 0.5, ~0U}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceA_1_0_Token, deviceA_1_1_Token;
getTransformedCacheToken(model, deviceA_1_0, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_0_Token);
getTransformedCacheToken(model, deviceA_1_1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_1_Token);
expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token});
}
// Test if the runtime maps to different cache tokens for compilations with different preferences
// in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentPreferencesSimpleBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// One device that can execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
std::vector<uint8_t> fastToken, powerToken, sustainedToken;
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &fastToken);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_LOW_POWER, &powerToken);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_SUSTAINED_SPEED, &sustainedToken);
expectUniqueTokens({fastToken, powerToken, sustainedToken});
}
// Test if the runtime maps to different cache tokens for compilations with different tokens
// provided by application in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentTokensSimpleBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// One device that can execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
std::vector<uint8_t> tokenOut1, tokenOut2;
std::vector<uint8_t> tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn1,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut1);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn2,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut2);
expectUniqueTokens({tokenOut1, tokenOut2});
}
// Test the case when no token is provided by the application and the execution plan has a
// compound body.
TEST_F(CacheTest, CacheTokenNoneCompoundBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> tokenIn, tokenOut;
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut);
EXPECT_TRUE(tokenOut.empty());
getTransformedCacheToken(model, devices, "deviceB", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut);
EXPECT_TRUE(tokenOut.empty());
}
// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentDeviceNamesCompoundBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}});
// DeviceB executes the first operation only.
const auto devices2 = makeDevices({{"deviceB", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceAToken, deviceBToken;
getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceAToken);
getTransformedCacheToken(model, devices2, "deviceB", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceBToken);
expectUniqueTokens({deviceAToken, deviceBToken});
}
// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsCompoundBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices1 = makeDevices({{"deviceA", "1.0", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
// DeviceB executes the first operation only.
const auto devices2 = makeDevices({{"deviceA", "1.1", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceA_1_0_Token, deviceA_1_1_Token;
getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_0_Token);
getTransformedCacheToken(model, devices2, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &deviceA_1_1_Token);
expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token});
}
// Test if the runtime maps to different cache tokens for compilations with different preferences
// in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPreferencesCompoundBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> fastToken, powerToken, sustainedToken;
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &fastToken);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_LOW_POWER, &powerToken);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_SUSTAINED_SPEED, &sustainedToken);
expectUniqueTokens({fastToken, powerToken, sustainedToken});
}
// Test if the runtime maps to different cache tokens for compilations with different tokens
// provided by application in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentTokensCompoundBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> tokenOut1, tokenOut2;
std::vector<uint8_t> tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1);
getTransformedCacheToken(model, devices, "deviceA", tokenIn1,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut1);
getTransformedCacheToken(model, devices, "deviceA", tokenIn2,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut2);
expectUniqueTokens({tokenOut1, tokenOut2});
}
// Test if the runtime maps to different cache tokens for compilations with different partitioning
// outcome in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPartitionsCompoundBody) {
PartitioningModel model;
CreateModelForCachingTests(&model);
// DeviceA executes the whole model.
const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 0U}});
// DeviceA executes the first operation only.
const auto devices2 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
// DeviceA executes the second operation only.
const auto devices3 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 0}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenOut1, tokenOut2, tokenOut3;
getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut1);
getTransformedCacheToken(model, devices2, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut2);
getTransformedCacheToken(model, devices3, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, &tokenOut3);
expectUniqueTokens({tokenOut1, tokenOut2, tokenOut3});
}
// Very basic tests of some of the PerformanceInfo functionality.
// Placed in this file because partitioning is the consumer of this functionality.
class PerfTest : public ::testing::Test {};
TEST_F(PerfTest, Lookup) {
// Derive an arbitrary (but reproducible) performance value from an OperandType.
// We'll use this to ensure that we can save and then recover a type's performance.
auto typePerf = [](OperandType type) { return float(static_cast<uint32_t>(type)); };
Capabilities capabilities = makeCapabilities(-1.0f);
for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN);
type <= static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
OperandType operandType = static_cast<OperandType>(type);
update(&capabilities, operandType, typePerf(operandType));
}
for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::OEM_MIN);
type <= static_cast<uint32_t>(OperandTypeRange::OEM_MAX); ++type) {
OperandType operandType = static_cast<OperandType>(type);
update(&capabilities, operandType, typePerf(operandType));
}
// Make sure lookup retrieves the values stored by update
for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN);
type <= static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
OperandType operandType = static_cast<OperandType>(type);
SCOPED_TRACE(toString(operandType));
EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType));
}
for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::OEM_MIN);
type <= static_cast<uint32_t>(OperandTypeRange::OEM_MAX); ++type) {
OperandType operandType = static_cast<OperandType>(type);
SCOPED_TRACE(toString(operandType));
EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType));
}
// Check the behavior of a missing type
OperandType operandType =
static_cast<OperandType>(static_cast<uint32_t>(OperandTypeRange::BASE_MAX) + 1);
EXPECT_EQ(lookupExecTime(capabilities, operandType), FLT_MAX);
}
} // namespace