/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef NDEBUG
#include "Callbacks.h"
#include "CompilationBuilder.h"
#include "Manager.h"
#include "ModelBuilder.h"
#include "NeuralNetworks.h"
#include "SampleDriver.h"
#include "TestNeuralNetworksWrapper.h"
#include "ValidateHal.h"
#include <algorithm>
#include <cassert>
#include <vector>
#include <gtest/gtest.h>
namespace android {
using CompilationBuilder = nn::CompilationBuilder;
using Device = nn::Device;
using DeviceManager = nn::DeviceManager;
using HidlModel = hardware::neuralnetworks::V1_2::Model;
using HidlToken = hardware::hidl_array<uint8_t, ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN>;
using PreparedModelCallback = hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
using Result = nn::test_wrapper::Result;
using SampleDriver = nn::sample_driver::SampleDriver;
using WrapperCompilation = nn::test_wrapper::Compilation;
using WrapperEvent = nn::test_wrapper::Event;
using WrapperExecution = nn::test_wrapper::Execution;
using WrapperModel = nn::test_wrapper::Model;
using WrapperOperandType = nn::test_wrapper::OperandType;
using WrapperType = nn::test_wrapper::Type;
template <typename T>
using MQDescriptorSync = ::android::hardware::MQDescriptorSync<T>;
namespace {
const Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
// Wraps an V1_2::IPreparedModel to allow dummying up the execution status.
class TestPreparedModel12 : public V1_2::IPreparedModel {
public:
// If errorStatus is NONE, then execute behaves normally (and sends back
// the actual execution status). Otherwise, don't bother to execute, and
// just send back errorStatus (as the execution status, not the launch
// status).
TestPreparedModel12(sp<V1_0::IPreparedModel> preparedModel, ErrorStatus errorStatus)
: mPreparedModelV1_0(preparedModel),
mPreparedModelV1_2(V1_2::IPreparedModel::castFrom(preparedModel).withDefault(nullptr)),
mErrorStatus(errorStatus) {}
Return<ErrorStatus> execute(const Request& request,
const sp<V1_0::IExecutionCallback>& callback) override {
CHECK(mPreparedModelV1_0 != nullptr) << "V1_0 prepared model is nullptr.";
if (mErrorStatus == ErrorStatus::NONE) {
return mPreparedModelV1_0->execute(request, callback);
} else {
callback->notify(mErrorStatus);
return ErrorStatus::NONE;
}
}
Return<ErrorStatus> execute_1_2(const Request& request, MeasureTiming measure,
const sp<V1_2::IExecutionCallback>& callback) override {
CHECK(mPreparedModelV1_2 != nullptr) << "V1_2 prepared model is nullptr.";
if (mErrorStatus == ErrorStatus::NONE) {
return mPreparedModelV1_2->execute_1_2(request, measure, callback);
} else if (mErrorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
OutputShape shape = {.dimensions = {1}, .isSufficient = false};
callback->notify_1_2(mErrorStatus, {shape}, kBadTiming);
return ErrorStatus::NONE;
} else {
callback->notify_1_2(mErrorStatus, {}, kBadTiming);
return ErrorStatus::NONE;
}
}
Return<void> executeSynchronously(const Request& request, MeasureTiming measure,
executeSynchronously_cb cb) override {
CHECK(mPreparedModelV1_2 != nullptr) << "V1_2 prepared model is nullptr.";
if (mErrorStatus == ErrorStatus::NONE) {
return mPreparedModelV1_2->executeSynchronously(
request, measure,
[&cb](ErrorStatus error, const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) { cb(error, outputShapes, timing); });
} else if (mErrorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
OutputShape shape = {.dimensions = {1}, .isSufficient = false};
cb(mErrorStatus, {shape}, kBadTiming);
return Void();
} else {
cb(mErrorStatus, {}, kBadTiming);
return Void();
}
}
Return<void> configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) override {
if (mErrorStatus == ErrorStatus::NONE) {
return mPreparedModelV1_2->configureExecutionBurst(callback, requestChannel,
resultChannel, cb);
} else {
cb(mErrorStatus, nullptr);
return Void();
}
}
private:
const sp<V1_0::IPreparedModel> mPreparedModelV1_0;
const sp<V1_2::IPreparedModel> mPreparedModelV1_2;
ErrorStatus mErrorStatus;
};
// Like TestPreparedModel12, but implementing 1.0
class TestPreparedModel10 : public V1_0::IPreparedModel {
public:
TestPreparedModel10(sp<V1_0::IPreparedModel> preparedModel, ErrorStatus errorStatus)
: m12PreparedModel(new TestPreparedModel12(preparedModel, errorStatus)) {}
Return<ErrorStatus> execute(const Request& request,
const sp<V1_0::IExecutionCallback>& callback) override {
return m12PreparedModel->execute(request, callback);
}
private:
const sp<V1_2::IPreparedModel> m12PreparedModel;
};
// Behaves like SampleDriver, except that it produces wrapped IPreparedModel.
class TestDriver12 : public SampleDriver {
public:
// Allow dummying up the error status for execution of all models
// prepared from this driver. If errorStatus is NONE, then
// execute behaves normally (and sends back the actual execution
// status). Otherwise, don't bother to execute, and just send
// back errorStatus (as the execution status, not the launch
// status).
TestDriver12(const std::string& name, ErrorStatus errorStatus)
: SampleDriver(name.c_str()), mErrorStatus(errorStatus) {}
Return<void> getCapabilities_1_2(getCapabilities_1_2_cb _hidl_cb) override {
android::nn::initVLogMask();
const PerformanceInfo kPerf = {.execTime = 0.75f, .powerUsage = 0.75f};
Capabilities capabilities = {
.relaxedFloat32toFloat16PerformanceScalar = kPerf,
.relaxedFloat32toFloat16PerformanceTensor = kPerf,
.operandPerformance = nn::nonExtensionOperandPerformance(kPerf)};
_hidl_cb(ErrorStatus::NONE, capabilities);
return Void();
}
Return<void> getSupportedOperations_1_2(const HidlModel& model,
getSupportedOperations_1_2_cb cb) override {
if (nn::validateModel(model)) {
std::vector<bool> supported(model.operations.size(), true);
cb(ErrorStatus::NONE, supported);
} else {
std::vector<bool> supported;
cb(ErrorStatus::INVALID_ARGUMENT, supported);
}
return Void();
}
Return<ErrorStatus> prepareModel_1_2(
const HidlModel& model, ExecutionPreference preference,
const hidl_vec<hidl_handle>& modelCache, const hidl_vec<hidl_handle>& dataCache,
const HidlToken& token, const sp<IPreparedModelCallback>& actualCallback) override {
sp<PreparedModelCallback> localCallback = new PreparedModelCallback;
Return<ErrorStatus> prepareModelReturn = SampleDriver::prepareModel_1_2(
model, preference, modelCache, dataCache, token, localCallback);
if (!prepareModelReturn.isOkUnchecked()) {
return prepareModelReturn;
}
if (prepareModelReturn != ErrorStatus::NONE) {
actualCallback->notify_1_2(
localCallback->getStatus(),
V1_2::IPreparedModel::castFrom(localCallback->getPreparedModel()));
return prepareModelReturn;
}
localCallback->wait();
if (localCallback->getStatus() != ErrorStatus::NONE) {
actualCallback->notify_1_2(
localCallback->getStatus(),
V1_2::IPreparedModel::castFrom(localCallback->getPreparedModel()));
} else {
actualCallback->notify_1_2(
ErrorStatus::NONE,
new TestPreparedModel12(localCallback->getPreparedModel(), mErrorStatus));
}
return prepareModelReturn;
}
Return<ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
sp<PreparedModelCallback> localCallback = new PreparedModelCallback;
Return<ErrorStatus> prepareModelReturn =
SampleDriver::prepareModel_1_1(model, preference, localCallback);
if (!prepareModelReturn.isOkUnchecked()) {
return prepareModelReturn;
}
if (prepareModelReturn != ErrorStatus::NONE) {
actualCallback->notify(localCallback->getStatus(), localCallback->getPreparedModel());
return prepareModelReturn;
}
localCallback->wait();
if (localCallback->getStatus() != ErrorStatus::NONE) {
actualCallback->notify(localCallback->getStatus(), localCallback->getPreparedModel());
} else {
actualCallback->notify(
ErrorStatus::NONE,
new TestPreparedModel10(localCallback->getPreparedModel(), mErrorStatus));
}
return prepareModelReturn;
}
Return<ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return prepareModel_1_1(nn::convertToV1_1(model), ExecutionPreference::FAST_SINGLE_ANSWER,
actualCallback);
}
private:
ErrorStatus mErrorStatus;
};
// Like TestDriver, but implementing 1.1
class TestDriver11 : public V1_1::IDevice {
public:
TestDriver11(const std::string& name, ErrorStatus errorStatus)
: m12Driver(new TestDriver12(name, errorStatus)) {}
Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
return m12Driver->getCapabilities_1_1(_hidl_cb);
}
Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
getSupportedOperations_1_1_cb _hidl_cb) override {
return m12Driver->getSupportedOperations_1_1(model, _hidl_cb);
}
Return<ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return m12Driver->prepareModel_1_1(model, preference, actualCallback);
}
Return<DeviceStatus> getStatus() override { return m12Driver->getStatus(); }
Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return m12Driver->getCapabilities(_hidl_cb);
}
Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return m12Driver->getSupportedOperations(model, _hidl_cb);
}
Return<ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return m12Driver->prepareModel(model, actualCallback);
}
private:
const sp<V1_2::IDevice> m12Driver;
};
// Like TestDriver, but implementing 1.0
class TestDriver10 : public V1_0::IDevice {
public:
TestDriver10(const std::string& name, ErrorStatus errorStatus)
: m12Driver(new TestDriver12(name, errorStatus)) {}
Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return m12Driver->getCapabilities(_hidl_cb);
}
Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return m12Driver->getSupportedOperations(model, _hidl_cb);
}
Return<ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return m12Driver->prepareModel(model, actualCallback);
}
Return<DeviceStatus> getStatus() override { return m12Driver->getStatus(); }
private:
const sp<V1_2::IDevice> m12Driver;
};
// This class adds some simple utilities on top of WrapperCompilation in order
// to provide access to certain features from CompilationBuilder that are not
// exposed by the base class.
template<typename DriverClass>
class TestCompilation : public WrapperCompilation {
public:
// Allow dummying up the error status for all executions from this
// compilation. If errorStatus is NONE, then execute behaves
// normally (and sends back the actual execution status).
// Otherwise, don't bother to execute, and just send back
// errorStatus (as the execution status, not the launch status).
TestCompilation(const WrapperModel* model, const std::string& deviceName,
ErrorStatus errorStatus) {
std::vector<std::shared_ptr<Device>> devices;
auto device = DeviceManager::forTest_makeDriverDevice(
deviceName, new DriverClass(deviceName, errorStatus));
devices.push_back(device);
nn::ModelBuilder* m = reinterpret_cast<nn::ModelBuilder*>(model->getHandle());
CompilationBuilder* c = nullptr;
int result = m->createCompilation(&c, devices);
EXPECT_EQ(result, 0);
// We need to ensure that we use our TestDriver and do not
// fall back to CPU. (If we allow CPU fallback, then when our
// TestDriver reports an execution failure, we'll re-execute
// on CPU, and will not see the failure.)
c->setPartitioning(DeviceManager::kPartitioningWithoutFallback);
mCompilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
}
};
// This class has roughly the same functionality as TestCompilation class.
// The major difference is that Introspection API is used to select the device.
class TestIntrospectionCompilation : public WrapperCompilation {
public:
TestIntrospectionCompilation(const WrapperModel* model, const std::string& deviceName) {
std::vector<ANeuralNetworksDevice*> mDevices;
uint32_t numDevices = 0;
EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
EXPECT_GE(numDevices, (uint32_t)1);
for (uint32_t i = 0; i < numDevices; i++) {
ANeuralNetworksDevice* device = nullptr;
EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR);
const char* buffer = nullptr;
int result = ANeuralNetworksDevice_getName(device, &buffer);
if (result == ANEURALNETWORKS_NO_ERROR && deviceName.compare(buffer) == 0) {
mDevices.push_back(device);
}
}
// In CPU only mode, DeviceManager::getDrivers() will not be able to
// provide the actual device list. We will not be able to find the test
// driver with specified deviceName.
if (!DeviceManager::get()->getUseCpuOnly()) {
EXPECT_EQ(mDevices.size(), (uint32_t)1);
int result = ANeuralNetworksCompilation_createForDevices(
model->getHandle(), mDevices.data(), mDevices.size(), &mCompilation);
EXPECT_EQ(result, ANEURALNETWORKS_NO_ERROR);
}
}
};
template <class DriverClass>
class ExecutionTestTemplate
: public ::testing::TestWithParam<std::tuple<ErrorStatus, Result, bool>> {
public:
ExecutionTestTemplate()
: kName(toString(std::get<0>(GetParam()))),
kForceErrorStatus(std::get<0>(GetParam())),
kExpectResult(std::get<1>(GetParam())),
kUseIntrospectionAPI(std::get<2>(GetParam())),
mModel(makeModel()) {
if (kUseIntrospectionAPI) {
DeviceManager::get()->forTest_registerDevice(kName.c_str(),
new DriverClass(kName, kForceErrorStatus));
mCompilation = TestIntrospectionCompilation(&mModel, kName);
} else {
mCompilation = TestCompilation<DriverClass>(&mModel, kName, kForceErrorStatus);
}
}
protected:
// Unit test method
void TestWait();
virtual void TearDown() {
// Reinitialize the device list since Introspection API path altered it.
if (kUseIntrospectionAPI) {
DeviceManager::get()->forTest_reInitializeDeviceList();
}
}
const std::string kName;
// Allow dummying up the error status for execution. If
// kForceErrorStatus is NONE, then execution behaves normally (and
// sends back the actual execution status). Otherwise, don't
// bother to execute, and just send back kForceErrorStatus (as the
// execution status, not the launch status).
const ErrorStatus kForceErrorStatus;
// What result do we expect from the execution? (The Result
// equivalent of kForceErrorStatus.)
const Result kExpectResult;
// Whether mCompilation is created via Introspection API or not.
const bool kUseIntrospectionAPI;
WrapperModel mModel;
WrapperCompilation mCompilation;
void setInputOutput(WrapperExecution* execution) {
mInputBuffer = kInputBuffer;
mOutputBuffer = kOutputBufferInitial;
ASSERT_EQ(execution->setInput(0, &mInputBuffer, sizeof(mInputBuffer)), Result::NO_ERROR);
ASSERT_EQ(execution->setOutput(0, &mOutputBuffer, sizeof(mOutputBuffer)), Result::NO_ERROR);
}
const float kInputBuffer = 3.14;
const float kOutputBufferInitial = 0;
float mInputBuffer;
float mOutputBuffer;
const float kOutputBufferExpected = 3;
const std::vector<uint32_t> kOutputDimensionsExpected = {1};
private:
static WrapperModel makeModel() {
static const WrapperOperandType tensorType(WrapperType::TENSOR_FLOAT32, { 1 });
WrapperModel model;
uint32_t input = model.addOperand(&tensorType);
uint32_t output = model.addOperand(&tensorType);
model.addOperation(ANEURALNETWORKS_FLOOR, { input }, { output });
model.identifyInputsAndOutputs({ input }, { output } );
assert(model.finish() == Result::NO_ERROR);
return model;
}
};
template<class DriverClass> void ExecutionTestTemplate<DriverClass>::TestWait() {
SCOPED_TRACE(kName);
// Skip Introspection API tests when CPU only flag is forced on.
if (kUseIntrospectionAPI && DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
ASSERT_EQ(mCompilation.finish(), Result::NO_ERROR);
{
SCOPED_TRACE("startCompute");
WrapperExecution execution(&mCompilation);
ASSERT_NO_FATAL_FAILURE(setInputOutput(&execution));
WrapperEvent event;
ASSERT_EQ(execution.startCompute(&event), Result::NO_ERROR);
ASSERT_EQ(event.wait(), kExpectResult);
if (kExpectResult == Result::NO_ERROR) {
ASSERT_EQ(mOutputBuffer, kOutputBufferExpected);
}
std::vector<uint32_t> dimensions;
if (kExpectResult == Result::OUTPUT_INSUFFICIENT_SIZE) {
// Only one output operand, hardcoded as index 0.
ASSERT_EQ(execution.getOutputOperandDimensions(0, &dimensions),
Result::OUTPUT_INSUFFICIENT_SIZE);
} else {
ASSERT_EQ(execution.getOutputOperandDimensions(0, &dimensions), Result::NO_ERROR);
}
if (kExpectResult == Result::NO_ERROR ||
kExpectResult == Result::OUTPUT_INSUFFICIENT_SIZE) {
ASSERT_EQ(dimensions, kOutputDimensionsExpected);
}
}
{
SCOPED_TRACE("compute");
WrapperExecution execution(&mCompilation);
ASSERT_NO_FATAL_FAILURE(setInputOutput(&execution));
ASSERT_EQ(execution.compute(), kExpectResult);
if (kExpectResult == Result::NO_ERROR) {
ASSERT_EQ(mOutputBuffer, kOutputBufferExpected);
}
std::vector<uint32_t> dimensions;
if (kExpectResult == Result::OUTPUT_INSUFFICIENT_SIZE) {
// Only one output operand, hardcoded as index 0.
ASSERT_EQ(execution.getOutputOperandDimensions(0, &dimensions),
Result::OUTPUT_INSUFFICIENT_SIZE);
} else {
ASSERT_EQ(execution.getOutputOperandDimensions(0, &dimensions), Result::NO_ERROR);
}
if (kExpectResult == Result::NO_ERROR ||
kExpectResult == Result::OUTPUT_INSUFFICIENT_SIZE) {
ASSERT_EQ(dimensions, kOutputDimensionsExpected);
}
}
}
auto kTestValues = ::testing::Values(
std::make_tuple(ErrorStatus::NONE, Result::NO_ERROR, /* kUseIntrospectionAPI */ false),
std::make_tuple(ErrorStatus::DEVICE_UNAVAILABLE, Result::UNAVAILABLE_DEVICE,
/* kUseIntrospectionAPI */ false),
std::make_tuple(ErrorStatus::GENERAL_FAILURE, Result::OP_FAILED,
/* kUseIntrospectionAPI */ false),
std::make_tuple(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, Result::OUTPUT_INSUFFICIENT_SIZE,
/* kUseIntrospectionAPI */ false),
std::make_tuple(ErrorStatus::INVALID_ARGUMENT, Result::BAD_DATA,
/* kUseIntrospectionAPI */ false));
class ExecutionTest12 : public ExecutionTestTemplate<TestDriver12> {};
TEST_P(ExecutionTest12, Wait) {
TestWait();
}
INSTANTIATE_TEST_CASE_P(Flavor, ExecutionTest12, kTestValues);
class ExecutionTest11 : public ExecutionTestTemplate<TestDriver11> {};
TEST_P(ExecutionTest11, Wait) {
if (kForceErrorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) return;
TestWait();
}
INSTANTIATE_TEST_CASE_P(Flavor, ExecutionTest11, kTestValues);
class ExecutionTest10 : public ExecutionTestTemplate<TestDriver10> {};
TEST_P(ExecutionTest10, Wait) {
if (kForceErrorStatus == ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) return;
TestWait();
}
INSTANTIATE_TEST_CASE_P(Flavor, ExecutionTest10, kTestValues);
auto kIntrospectionTestValues = ::testing::Values(
std::make_tuple(ErrorStatus::NONE, Result::NO_ERROR, /* kUseIntrospectionAPI */ true),
std::make_tuple(ErrorStatus::DEVICE_UNAVAILABLE, Result::UNAVAILABLE_DEVICE,
/* kUseIntrospectionAPI */ true),
std::make_tuple(ErrorStatus::GENERAL_FAILURE, Result::OP_FAILED,
/* kUseIntrospectionAPI */ true),
std::make_tuple(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, Result::OUTPUT_INSUFFICIENT_SIZE,
/* kUseIntrospectionAPI */ true),
std::make_tuple(ErrorStatus::INVALID_ARGUMENT, Result::BAD_DATA,
/* kUseIntrospectionAPI */ true));
INSTANTIATE_TEST_CASE_P(IntrospectionFlavor, ExecutionTest12, kIntrospectionTestValues);
} // namespace
} // namespace android