/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "CpuOperationUtils.h"
#include "HalInterfaces.h"
#include "OperationResolver.h"
#include "Tracing.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include <functional>
#include <vector>
namespace android {
namespace nn {
namespace resize_image {
constexpr uint32_t kNumInputs = 4;
constexpr uint32_t kInputTensor = 0;
// The following two scalars represent output shape if INT32, scale if floating point.
constexpr uint32_t kOutputWidthParamScalar = 1;
constexpr uint32_t kOutputHeightParamScalar = 2;
constexpr uint32_t kLayoutScalar = 3;
constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;
namespace {
template <typename T>
bool resizeImageOpNhwc(OperationType opType, const T* inputData, const Shape& inputShape,
T* outputData, const Shape& outputShape) {
NNTRACE_TRANS("resizeImageOpNhwc");
int32_t height = static_cast<int32_t>(getSizeOfDimension(outputShape, 1));
int32_t width = static_cast<int32_t>(getSizeOfDimension(outputShape, 2));
// We have to fake a tensor here, to satisfy tflite implementation.
int32_t outDimData[2] = {height, width};
Shape outDimShape;
outDimShape.dimensions = {2};
if (opType == OperationType::RESIZE_BILINEAR) {
NNTRACE_COMP_SWITCH("optimized_ops::ResizeBilinear");
tflite::reference_ops::ResizeBilinear({.align_corners = false},
convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outDimShape), outDimData,
convertShapeToTflshape(outputShape), outputData);
} else if (opType == OperationType::RESIZE_NEAREST_NEIGHBOR) {
// Align corners = true is not supported.
NNTRACE_COMP_SWITCH("optimized_ops::ResizeNearestNeighbor");
tflite::reference_ops::ResizeNearestNeighbor(
{.align_corners = false}, convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outDimShape), outDimData,
convertShapeToTflshape(outputShape), outputData);
}
return true;
}
template <>
bool resizeImageOpNhwc<_Float16>(OperationType opType, const _Float16* inputData,
const Shape& inputShape, _Float16* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("resizeImageOpNhwcFloat16");
std::vector<float> inputData_float32(getNumberOfElements(inputShape));
convertFloat16ToFloat32(inputData, &inputData_float32);
std::vector<float> outputData_float32(getNumberOfElements(outputShape));
NN_RET_CHECK(resizeImageOpNhwc(opType, inputData_float32.data(), inputShape,
outputData_float32.data(), outputShape));
convertFloat32ToFloat16(outputData_float32, outputData);
return true;
}
template <typename T>
bool resizeImageOp(OperationType opType, const T* inputData, const Shape& inputShape, bool useNchw,
T* outputData, const Shape& outputShape) {
InputWithLayout<T> input(useNchw);
OutputWithLayout<T> output(useNchw);
NN_RET_CHECK(input.initialize(inputData, inputShape));
NN_RET_CHECK(output.initialize(outputData, outputShape));
NN_RET_CHECK(resizeImageOpNhwc(opType, input.getNhwcBuffer(), input.getNhwcShape(),
output.getNhwcBuffer(), output.getNhwcShape()));
NN_RET_CHECK(output.commit());
return true;
}
} // namespace
bool validate(OperationType opType, const IOperationValidationContext* context) {
if (opType == OperationType::RESIZE_BILINEAR) {
NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
context->getNumInputs() == kNumInputs - 1);
} else if (opType == OperationType::RESIZE_NEAREST_NEIGHBOR) {
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
} else {
NN_RET_CHECK_FAIL() << "Unsupported operation " << getOperationName(opType);
}
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
auto inputType = context->getInputType(kInputTensor);
auto scalarType = context->getInputType(kOutputHeightParamScalar);
std::vector<OperandType> inExpectedTypes = {inputType, scalarType, scalarType};
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
inputType == OperandType::TENSOR_FLOAT32 ||
inputType == OperandType::TENSOR_QUANT8_ASYMM)
<< "Unsupported tensor type for operation " << getOperationName(opType);
if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
}
if (scalarType != OperandType::INT32) {
NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
if (inputType == OperandType::TENSOR_FLOAT32) {
NN_RET_CHECK(scalarType == OperandType::FLOAT32);
} else if (inputType == OperandType::TENSOR_FLOAT16) {
NN_RET_CHECK(scalarType == OperandType::FLOAT16);
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
NN_RET_CHECK(scalarType == OperandType::FLOAT32);
}
}
if (context->getNumInputs() == kNumInputs) {
inExpectedTypes.push_back(OperandType::BOOL);
NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
} else {
NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
}
return validateInputTypes(context, inExpectedTypes) &&
validateOutputTypes(context, {inputType});
}
bool prepare(OperationType opType, IOperationExecutionContext* context) {
Shape input = context->getInputShape(kInputTensor);
NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
bool useNchw = false;
if (context->getNumInputs() > kLayoutScalar) {
useNchw = context->getInputValue<bool>(kLayoutScalar);
}
// Only batches can be zero.
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t inHeight = getSizeOfDimension(input, useNchw ? 2 : 1);
uint32_t inWidth = getSizeOfDimension(input, useNchw ? 3 : 2);
uint32_t channels = getSizeOfDimension(input, useNchw ? 1 : 3);
NN_RET_CHECK_GT(inHeight, 0);
NN_RET_CHECK_GT(inWidth, 0);
NN_RET_CHECK_GT(channels, 0);
int32_t height, width;
auto scalarType = context->getInputType(kOutputHeightParamScalar);
if (scalarType == OperandType::INT32) {
height = context->getInputValue<int32_t>(kOutputHeightParamScalar);
width = context->getInputValue<int32_t>(kOutputWidthParamScalar);
} else if (scalarType == OperandType::FLOAT32) {
height = std::floor(static_cast<float>(inHeight) *
context->getInputValue<float>(kOutputHeightParamScalar));
width = std::floor(static_cast<float>(inWidth) *
context->getInputValue<float>(kOutputWidthParamScalar));
} else if (scalarType == OperandType::FLOAT16) {
height = std::floor(
static_cast<float>(inHeight) *
static_cast<float>(context->getInputValue<_Float16>(kOutputHeightParamScalar)));
width = std::floor(
static_cast<float>(inWidth) *
static_cast<float>(context->getInputValue<_Float16>(kOutputWidthParamScalar)));
} else {
NN_RET_CHECK_FAIL() << "Unsupported scalar type for operation " << getOperationName(opType);
}
NN_RET_CHECK_GT(height, 0);
NN_RET_CHECK_GT(width, 0);
Shape output = input;
if (useNchw) {
output.dimensions = {batches, channels, (uint32_t)height, (uint32_t)width};
} else {
output.dimensions = {batches, (uint32_t)height, (uint32_t)width, channels};
}
return context->setOutputShape(kOutputTensor, output);
}
bool execute(OperationType opType, IOperationExecutionContext* context) {
// Bypass execution in the case of zero-sized input.
if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
bool useNchw = false;
if (context->getNumInputs() > kLayoutScalar) {
useNchw = context->getInputValue<bool>(kLayoutScalar);
}
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT16:
return resizeImageOp(opType, context->getInputBuffer<_Float16>(kInputTensor),
context->getInputShape(kInputTensor), useNchw,
context->getOutputBuffer<_Float16>(kOutputTensor),
context->getOutputShape(kOutputTensor));
case OperandType::TENSOR_FLOAT32:
return resizeImageOp(opType, context->getInputBuffer<float>(kInputTensor),
context->getInputShape(kInputTensor), useNchw,
context->getOutputBuffer<float>(kOutputTensor),
context->getOutputShape(kOutputTensor));
case OperandType::TENSOR_QUANT8_ASYMM:
return resizeImageOp(opType, context->getInputBuffer<uint8_t>(kInputTensor),
context->getInputShape(kInputTensor), useNchw,
context->getOutputBuffer<uint8_t>(kOutputTensor),
context->getOutputShape(kOutputTensor));
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation "
<< getOperationName(opType);
}
}
} // namespace resize_image
using std::placeholders::_1;
NN_REGISTER_OPERATION(RESIZE_BILINEAR, "RESIZE_BILINEAR",
std::bind(resize_image::validate, OperationType::RESIZE_BILINEAR, _1),
std::bind(resize_image::prepare, OperationType::RESIZE_BILINEAR, _1),
std::bind(resize_image::execute, OperationType::RESIZE_BILINEAR, _1),
.allowZeroSizedInput = true);
NN_REGISTER_OPERATION(RESIZE_NEAREST_NEIGHBOR, "RESIZE_NEAREST_NEIGHBOR",
std::bind(resize_image::validate, OperationType::RESIZE_NEAREST_NEIGHBOR, _1),
std::bind(resize_image::prepare, OperationType::RESIZE_NEAREST_NEIGHBOR, _1),
std::bind(resize_image::execute, OperationType::RESIZE_NEAREST_NEIGHBOR, _1),
.allowZeroSizedInput = true);
} // namespace nn
} // namespace android