/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CanvasContext.h"
#include <GpuMemoryTracker.h>
#include "../Properties.h"
#include "AnimationContext.h"
#include "EglManager.h"
#include "Frame.h"
#include "LayerUpdateQueue.h"
#include "Properties.h"
#include "RenderThread.h"
#include "hwui/Canvas.h"
#include "pipeline/skia/SkiaOpenGLPipeline.h"
#include "pipeline/skia/SkiaPipeline.h"
#include "pipeline/skia/SkiaVulkanPipeline.h"
#include "thread/CommonPool.h"
#include "utils/GLUtils.h"
#include "utils/TimeUtils.h"
#include "utils/TraceUtils.h"
#include <cutils/properties.h>
#include <private/hwui/DrawGlInfo.h>
#include <strings.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <functional>
#define TRIM_MEMORY_COMPLETE 80
#define TRIM_MEMORY_UI_HIDDEN 20
#define LOG_FRAMETIME_MMA 0
#if LOG_FRAMETIME_MMA
static float sBenchMma = 0;
static int sFrameCount = 0;
static const float NANOS_PER_MILLIS_F = 1000000.0f;
#endif
namespace android {
namespace uirenderer {
namespace renderthread {
CanvasContext* CanvasContext::create(RenderThread& thread, bool translucent,
RenderNode* rootRenderNode, IContextFactory* contextFactory) {
auto renderType = Properties::getRenderPipelineType();
switch (renderType) {
case RenderPipelineType::SkiaGL:
return new CanvasContext(thread, translucent, rootRenderNode, contextFactory,
std::make_unique<skiapipeline::SkiaOpenGLPipeline>(thread));
case RenderPipelineType::SkiaVulkan:
return new CanvasContext(thread, translucent, rootRenderNode, contextFactory,
std::make_unique<skiapipeline::SkiaVulkanPipeline>(thread));
default:
LOG_ALWAYS_FATAL("canvas context type %d not supported", (int32_t)renderType);
break;
}
return nullptr;
}
void CanvasContext::invokeFunctor(const RenderThread& thread, Functor* functor) {
ATRACE_CALL();
auto renderType = Properties::getRenderPipelineType();
switch (renderType) {
case RenderPipelineType::SkiaGL:
skiapipeline::SkiaOpenGLPipeline::invokeFunctor(thread, functor);
break;
case RenderPipelineType::SkiaVulkan:
skiapipeline::SkiaVulkanPipeline::invokeFunctor(thread, functor);
break;
default:
LOG_ALWAYS_FATAL("canvas context type %d not supported", (int32_t)renderType);
break;
}
}
void CanvasContext::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
skiapipeline::SkiaPipeline::prepareToDraw(thread, bitmap);
}
CanvasContext::CanvasContext(RenderThread& thread, bool translucent, RenderNode* rootRenderNode,
IContextFactory* contextFactory,
std::unique_ptr<IRenderPipeline> renderPipeline)
: mRenderThread(thread)
, mGenerationID(0)
, mOpaque(!translucent)
, mAnimationContext(contextFactory->createAnimationContext(mRenderThread.timeLord()))
, mJankTracker(&thread.globalProfileData(), DeviceInfo::get()->displayInfo())
, mProfiler(mJankTracker.frames(), thread.timeLord().frameIntervalNanos())
, mContentDrawBounds(0, 0, 0, 0)
, mRenderPipeline(std::move(renderPipeline)) {
rootRenderNode->makeRoot();
mRenderNodes.emplace_back(rootRenderNode);
mProfiler.setDensity(DeviceInfo::get()->displayInfo().density);
setRenderAheadDepth(Properties::defaultRenderAhead);
}
CanvasContext::~CanvasContext() {
destroy();
for (auto& node : mRenderNodes) {
node->clearRoot();
}
mRenderNodes.clear();
}
void CanvasContext::addRenderNode(RenderNode* node, bool placeFront) {
int pos = placeFront ? 0 : static_cast<int>(mRenderNodes.size());
node->makeRoot();
mRenderNodes.emplace(mRenderNodes.begin() + pos, node);
}
void CanvasContext::removeRenderNode(RenderNode* node) {
node->clearRoot();
mRenderNodes.erase(std::remove(mRenderNodes.begin(), mRenderNodes.end(), node),
mRenderNodes.end());
}
void CanvasContext::destroy() {
stopDrawing();
setSurface(nullptr);
freePrefetchedLayers();
destroyHardwareResources();
mAnimationContext->destroy();
}
void CanvasContext::setSurface(sp<Surface>&& surface) {
ATRACE_CALL();
if (surface) {
mNativeSurface = new ReliableSurface{std::move(surface)};
mNativeSurface->setDequeueTimeout(500_ms);
} else {
mNativeSurface = nullptr;
}
if (mRenderAheadDepth == 0 && DeviceInfo::get()->getMaxRefreshRate() > 66.6f) {
mFixedRenderAhead = false;
mRenderAheadCapacity = 1;
} else {
mFixedRenderAhead = true;
mRenderAheadCapacity = mRenderAheadDepth;
}
ColorMode colorMode = mWideColorGamut ? ColorMode::WideColorGamut : ColorMode::SRGB;
bool hasSurface = mRenderPipeline->setSurface(mNativeSurface.get(), mSwapBehavior, colorMode,
mRenderAheadCapacity);
mFrameNumber = -1;
if (hasSurface) {
mHaveNewSurface = true;
mSwapHistory.clear();
} else {
mRenderThread.removeFrameCallback(this);
mGenerationID++;
}
}
void CanvasContext::setSwapBehavior(SwapBehavior swapBehavior) {
mSwapBehavior = swapBehavior;
}
bool CanvasContext::pauseSurface() {
mGenerationID++;
return mRenderThread.removeFrameCallback(this);
}
void CanvasContext::setStopped(bool stopped) {
if (mStopped != stopped) {
mStopped = stopped;
if (mStopped) {
mGenerationID++;
mRenderThread.removeFrameCallback(this);
mRenderPipeline->onStop();
} else if (mIsDirty && hasSurface()) {
mRenderThread.postFrameCallback(this);
}
}
}
void CanvasContext::allocateBuffers() {
if (mNativeSurface) {
mNativeSurface->allocateBuffers();
}
}
void CanvasContext::setLightAlpha(uint8_t ambientShadowAlpha, uint8_t spotShadowAlpha) {
mLightInfo.ambientShadowAlpha = ambientShadowAlpha;
mLightInfo.spotShadowAlpha = spotShadowAlpha;
}
void CanvasContext::setLightGeometry(const Vector3& lightCenter, float lightRadius) {
mLightGeometry.center = lightCenter;
mLightGeometry.radius = lightRadius;
}
void CanvasContext::setOpaque(bool opaque) {
mOpaque = opaque;
}
void CanvasContext::setWideGamut(bool wideGamut) {
mWideColorGamut = wideGamut;
}
bool CanvasContext::makeCurrent() {
if (mStopped) return false;
auto result = mRenderPipeline->makeCurrent();
switch (result) {
case MakeCurrentResult::AlreadyCurrent:
return true;
case MakeCurrentResult::Failed:
mHaveNewSurface = true;
setSurface(nullptr);
return false;
case MakeCurrentResult::Succeeded:
mHaveNewSurface = true;
return true;
default:
LOG_ALWAYS_FATAL("unexpected result %d from IRenderPipeline::makeCurrent",
(int32_t)result);
}
return true;
}
static bool wasSkipped(FrameInfo* info) {
return info && ((*info)[FrameInfoIndex::Flags] & FrameInfoFlags::SkippedFrame);
}
bool CanvasContext::isSwapChainStuffed() {
static const auto SLOW_THRESHOLD = 6_ms;
if (mSwapHistory.size() != mSwapHistory.capacity()) {
// We want at least 3 frames of history before attempting to
// guess if the queue is stuffed
return false;
}
nsecs_t frameInterval = mRenderThread.timeLord().frameIntervalNanos();
auto& swapA = mSwapHistory[0];
// Was there a happy queue & dequeue time? If so, don't
// consider it stuffed
if (swapA.dequeueDuration < SLOW_THRESHOLD && swapA.queueDuration < SLOW_THRESHOLD) {
return false;
}
for (size_t i = 1; i < mSwapHistory.size(); i++) {
auto& swapB = mSwapHistory[i];
// If there's a multi-frameInterval gap we effectively already dropped a frame,
// so consider the queue healthy.
if (std::abs(swapA.swapCompletedTime - swapB.swapCompletedTime) > frameInterval * 3) {
return false;
}
// Was there a happy queue & dequeue time? If so, don't
// consider it stuffed
if (swapB.dequeueDuration < SLOW_THRESHOLD && swapB.queueDuration < SLOW_THRESHOLD) {
return false;
}
swapA = swapB;
}
// All signs point to a stuffed swap chain
ATRACE_NAME("swap chain stuffed");
return true;
}
void CanvasContext::prepareTree(TreeInfo& info, int64_t* uiFrameInfo, int64_t syncQueued,
RenderNode* target) {
mRenderThread.removeFrameCallback(this);
// If the previous frame was dropped we don't need to hold onto it, so
// just keep using the previous frame's structure instead
if (!wasSkipped(mCurrentFrameInfo)) {
mCurrentFrameInfo = mJankTracker.startFrame();
}
mCurrentFrameInfo->importUiThreadInfo(uiFrameInfo);
mCurrentFrameInfo->set(FrameInfoIndex::SyncQueued) = syncQueued;
mCurrentFrameInfo->markSyncStart();
info.damageAccumulator = &mDamageAccumulator;
info.layerUpdateQueue = &mLayerUpdateQueue;
info.out.canDrawThisFrame = true;
mAnimationContext->startFrame(info.mode);
mRenderPipeline->onPrepareTree();
for (const sp<RenderNode>& node : mRenderNodes) {
// Only the primary target node will be drawn full - all other nodes would get drawn in
// real time mode. In case of a window, the primary node is the window content and the other
// node(s) are non client / filler nodes.
info.mode = (node.get() == target ? TreeInfo::MODE_FULL : TreeInfo::MODE_RT_ONLY);
node->prepareTree(info);
GL_CHECKPOINT(MODERATE);
}
mAnimationContext->runRemainingAnimations(info);
GL_CHECKPOINT(MODERATE);
freePrefetchedLayers();
GL_CHECKPOINT(MODERATE);
mIsDirty = true;
if (CC_UNLIKELY(!hasSurface())) {
mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
info.out.canDrawThisFrame = false;
return;
}
if (CC_LIKELY(mSwapHistory.size() && !Properties::forceDrawFrame)) {
nsecs_t latestVsync = mRenderThread.timeLord().latestVsync();
SwapHistory& lastSwap = mSwapHistory.back();
nsecs_t vsyncDelta = std::abs(lastSwap.vsyncTime - latestVsync);
// The slight fudge-factor is to deal with cases where
// the vsync was estimated due to being slow handling the signal.
// See the logic in TimeLord#computeFrameTimeNanos or in
// Choreographer.java for details on when this happens
if (vsyncDelta < 2_ms) {
// Already drew for this vsync pulse, UI draw request missed
// the deadline for RT animations
info.out.canDrawThisFrame = false;
}
} else {
info.out.canDrawThisFrame = true;
}
// TODO: Do we need to abort out if the backdrop is added but not ready? Should that even
// be an allowable combination?
if (mRenderNodes.size() > 2 && !mRenderNodes[1]->isRenderable()) {
info.out.canDrawThisFrame = false;
}
if (info.out.canDrawThisFrame) {
int err = mNativeSurface->reserveNext();
if (err != OK) {
mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
info.out.canDrawThisFrame = false;
ALOGW("reserveNext failed, error = %d (%s)", err, strerror(-err));
if (err != TIMED_OUT) {
// A timed out surface can still recover, but assume others are permanently dead.
setSurface(nullptr);
return;
}
}
} else {
mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
}
bool postedFrameCallback = false;
if (info.out.hasAnimations || !info.out.canDrawThisFrame) {
if (CC_UNLIKELY(!Properties::enableRTAnimations)) {
info.out.requiresUiRedraw = true;
}
if (!info.out.requiresUiRedraw) {
// If animationsNeedsRedraw is set don't bother posting for an RT anim
// as we will just end up fighting the UI thread.
mRenderThread.postFrameCallback(this);
postedFrameCallback = true;
}
}
if (!postedFrameCallback &&
info.out.animatedImageDelay != TreeInfo::Out::kNoAnimatedImageDelay) {
// Subtract the time of one frame so it can be displayed on time.
const nsecs_t kFrameTime = mRenderThread.timeLord().frameIntervalNanos();
if (info.out.animatedImageDelay <= kFrameTime) {
mRenderThread.postFrameCallback(this);
} else {
const auto delay = info.out.animatedImageDelay - kFrameTime;
int genId = mGenerationID;
mRenderThread.queue().postDelayed(delay, [this, genId]() {
if (mGenerationID == genId) {
mRenderThread.postFrameCallback(this);
}
});
}
}
}
void CanvasContext::stopDrawing() {
mRenderThread.removeFrameCallback(this);
mAnimationContext->pauseAnimators();
mGenerationID++;
}
void CanvasContext::notifyFramePending() {
ATRACE_CALL();
mRenderThread.pushBackFrameCallback(this);
}
void CanvasContext::setPresentTime() {
int64_t presentTime = NATIVE_WINDOW_TIMESTAMP_AUTO;
int renderAhead = 0;
const auto frameIntervalNanos = mRenderThread.timeLord().frameIntervalNanos();
if (mFixedRenderAhead) {
renderAhead = std::min(mRenderAheadDepth, mRenderAheadCapacity);
} else if (frameIntervalNanos < 15_ms) {
renderAhead = std::min(1, static_cast<int>(mRenderAheadCapacity));
}
if (renderAhead) {
presentTime = mCurrentFrameInfo->get(FrameInfoIndex::Vsync) +
(frameIntervalNanos * (renderAhead + 1));
}
native_window_set_buffers_timestamp(mNativeSurface.get(), presentTime);
}
void CanvasContext::draw() {
SkRect dirty;
mDamageAccumulator.finish(&dirty);
if (dirty.isEmpty() && Properties::skipEmptyFrames && !surfaceRequiresRedraw()) {
mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
return;
}
mCurrentFrameInfo->markIssueDrawCommandsStart();
Frame frame = mRenderPipeline->getFrame();
setPresentTime();
SkRect windowDirty = computeDirtyRect(frame, &dirty);
bool drew = mRenderPipeline->draw(frame, windowDirty, dirty, mLightGeometry, &mLayerUpdateQueue,
mContentDrawBounds, mOpaque, mLightInfo, mRenderNodes,
&(profiler()));
int64_t frameCompleteNr = mFrameCompleteCallbacks.size() ? getFrameNumber() : -1;
waitOnFences();
bool requireSwap = false;
bool didSwap =
mRenderPipeline->swapBuffers(frame, drew, windowDirty, mCurrentFrameInfo, &requireSwap);
mIsDirty = false;
if (requireSwap) {
if (!didSwap) { // some error happened
setSurface(nullptr);
}
SwapHistory& swap = mSwapHistory.next();
swap.damage = windowDirty;
swap.swapCompletedTime = systemTime(CLOCK_MONOTONIC);
swap.vsyncTime = mRenderThread.timeLord().latestVsync();
if (mNativeSurface.get()) {
int durationUs;
nsecs_t dequeueStart = mNativeSurface->getLastDequeueStartTime();
if (dequeueStart < mCurrentFrameInfo->get(FrameInfoIndex::SyncStart)) {
// Ignoring dequeue duration as it happened prior to frame render start
// and thus is not part of the frame.
swap.dequeueDuration = 0;
} else {
mNativeSurface->query(NATIVE_WINDOW_LAST_DEQUEUE_DURATION, &durationUs);
swap.dequeueDuration = us2ns(durationUs);
}
mNativeSurface->query(NATIVE_WINDOW_LAST_QUEUE_DURATION, &durationUs);
swap.queueDuration = us2ns(durationUs);
} else {
swap.dequeueDuration = 0;
swap.queueDuration = 0;
}
mCurrentFrameInfo->set(FrameInfoIndex::DequeueBufferDuration) = swap.dequeueDuration;
mCurrentFrameInfo->set(FrameInfoIndex::QueueBufferDuration) = swap.queueDuration;
mHaveNewSurface = false;
mFrameNumber = -1;
} else {
mCurrentFrameInfo->set(FrameInfoIndex::DequeueBufferDuration) = 0;
mCurrentFrameInfo->set(FrameInfoIndex::QueueBufferDuration) = 0;
}
// TODO: Use a fence for real completion?
mCurrentFrameInfo->markFrameCompleted();
#if LOG_FRAMETIME_MMA
float thisFrame = mCurrentFrameInfo->duration(FrameInfoIndex::IssueDrawCommandsStart,
FrameInfoIndex::FrameCompleted) /
NANOS_PER_MILLIS_F;
if (sFrameCount) {
sBenchMma = ((9 * sBenchMma) + thisFrame) / 10;
} else {
sBenchMma = thisFrame;
}
if (++sFrameCount == 10) {
sFrameCount = 1;
ALOGD("Average frame time: %.4f", sBenchMma);
}
#endif
if (didSwap) {
for (auto& func : mFrameCompleteCallbacks) {
std::invoke(func, frameCompleteNr);
}
mFrameCompleteCallbacks.clear();
}
mJankTracker.finishFrame(*mCurrentFrameInfo);
if (CC_UNLIKELY(mFrameMetricsReporter.get() != nullptr)) {
mFrameMetricsReporter->reportFrameMetrics(mCurrentFrameInfo->data());
}
GpuMemoryTracker::onFrameCompleted();
}
// Called by choreographer to do an RT-driven animation
void CanvasContext::doFrame() {
if (!mRenderPipeline->isSurfaceReady()) return;
prepareAndDraw(nullptr);
}
SkISize CanvasContext::getNextFrameSize() const {
ReliableSurface* surface = mNativeSurface.get();
if (surface) {
SkISize size;
surface->query(NATIVE_WINDOW_WIDTH, &size.fWidth);
surface->query(NATIVE_WINDOW_HEIGHT, &size.fHeight);
return size;
}
return {INT32_MAX, INT32_MAX};
}
void CanvasContext::prepareAndDraw(RenderNode* node) {
ATRACE_CALL();
nsecs_t vsync = mRenderThread.timeLord().computeFrameTimeNanos();
int64_t frameInfo[UI_THREAD_FRAME_INFO_SIZE];
UiFrameInfoBuilder(frameInfo).addFlag(FrameInfoFlags::RTAnimation).setVsync(vsync, vsync);
TreeInfo info(TreeInfo::MODE_RT_ONLY, *this);
prepareTree(info, frameInfo, systemTime(CLOCK_MONOTONIC), node);
if (info.out.canDrawThisFrame) {
draw();
} else {
// wait on fences so tasks don't overlap next frame
waitOnFences();
}
}
void CanvasContext::markLayerInUse(RenderNode* node) {
if (mPrefetchedLayers.erase(node)) {
node->decStrong(nullptr);
}
}
void CanvasContext::freePrefetchedLayers() {
if (mPrefetchedLayers.size()) {
for (auto& node : mPrefetchedLayers) {
ALOGW("Incorrectly called buildLayer on View: %s, destroying layer...",
node->getName());
node->destroyLayers();
node->decStrong(nullptr);
}
mPrefetchedLayers.clear();
}
}
void CanvasContext::buildLayer(RenderNode* node) {
ATRACE_CALL();
if (!mRenderPipeline->isContextReady()) return;
// buildLayer() will leave the tree in an unknown state, so we must stop drawing
stopDrawing();
TreeInfo info(TreeInfo::MODE_FULL, *this);
info.damageAccumulator = &mDamageAccumulator;
info.layerUpdateQueue = &mLayerUpdateQueue;
info.runAnimations = false;
node->prepareTree(info);
SkRect ignore;
mDamageAccumulator.finish(&ignore);
// Tickle the GENERIC property on node to mark it as dirty for damaging
// purposes when the frame is actually drawn
node->setPropertyFieldsDirty(RenderNode::GENERIC);
mRenderPipeline->renderLayers(mLightGeometry, &mLayerUpdateQueue, mOpaque, mLightInfo);
node->incStrong(nullptr);
mPrefetchedLayers.insert(node);
}
void CanvasContext::destroyHardwareResources() {
stopDrawing();
if (mRenderPipeline->isContextReady()) {
freePrefetchedLayers();
for (const sp<RenderNode>& node : mRenderNodes) {
node->destroyHardwareResources();
}
mRenderPipeline->onDestroyHardwareResources();
}
}
void CanvasContext::trimMemory(RenderThread& thread, int level) {
ATRACE_CALL();
if (!thread.getGrContext()) return;
ATRACE_CALL();
if (level >= TRIM_MEMORY_COMPLETE) {
thread.cacheManager().trimMemory(CacheManager::TrimMemoryMode::Complete);
thread.destroyRenderingContext();
} else if (level >= TRIM_MEMORY_UI_HIDDEN) {
thread.cacheManager().trimMemory(CacheManager::TrimMemoryMode::UiHidden);
}
}
DeferredLayerUpdater* CanvasContext::createTextureLayer() {
return mRenderPipeline->createTextureLayer();
}
void CanvasContext::dumpFrames(int fd) {
mJankTracker.dumpStats(fd);
mJankTracker.dumpFrames(fd);
}
void CanvasContext::resetFrameStats() {
mJankTracker.reset();
}
void CanvasContext::setName(const std::string&& name) {
mJankTracker.setDescription(JankTrackerType::Window, std::move(name));
}
void CanvasContext::waitOnFences() {
if (mFrameFences.size()) {
ATRACE_CALL();
for (auto& fence : mFrameFences) {
fence.get();
}
mFrameFences.clear();
}
}
void CanvasContext::enqueueFrameWork(std::function<void()>&& func) {
mFrameFences.push_back(CommonPool::async(std::move(func)));
}
int64_t CanvasContext::getFrameNumber() {
// mFrameNumber is reset to -1 when the surface changes or we swap buffers
if (mFrameNumber == -1 && mNativeSurface.get()) {
mFrameNumber = static_cast<int64_t>(mNativeSurface->getNextFrameNumber());
}
return mFrameNumber;
}
bool CanvasContext::surfaceRequiresRedraw() {
if (!mNativeSurface) return false;
if (mHaveNewSurface) return true;
int width = -1;
int height = -1;
ReliableSurface* surface = mNativeSurface.get();
surface->query(NATIVE_WINDOW_WIDTH, &width);
surface->query(NATIVE_WINDOW_HEIGHT, &height);
return width == mLastFrameWidth && height == mLastFrameHeight;
}
void CanvasContext::setRenderAheadDepth(int renderAhead) {
if (renderAhead > 2 || renderAhead < 0 || mNativeSurface) {
return;
}
mFixedRenderAhead = true;
mRenderAheadDepth = static_cast<uint32_t>(renderAhead);
}
SkRect CanvasContext::computeDirtyRect(const Frame& frame, SkRect* dirty) {
if (frame.width() != mLastFrameWidth || frame.height() != mLastFrameHeight) {
// can't rely on prior content of window if viewport size changes
dirty->setEmpty();
mLastFrameWidth = frame.width();
mLastFrameHeight = frame.height();
} else if (mHaveNewSurface || frame.bufferAge() == 0) {
// New surface needs a full draw
dirty->setEmpty();
} else {
if (!dirty->isEmpty() && !dirty->intersect(0, 0, frame.width(), frame.height())) {
ALOGW("Dirty " RECT_STRING " doesn't intersect with 0 0 %d %d ?", SK_RECT_ARGS(*dirty),
frame.width(), frame.height());
dirty->setEmpty();
}
profiler().unionDirty(dirty);
}
if (dirty->isEmpty()) {
dirty->set(0, 0, frame.width(), frame.height());
}
// At this point dirty is the area of the window to update. However,
// the area of the frame we need to repaint is potentially different, so
// stash the screen area for later
SkRect windowDirty(*dirty);
// If the buffer age is 0 we do a full-screen repaint (handled above)
// If the buffer age is 1 the buffer contents are the same as they were
// last frame so there's nothing to union() against
// Therefore we only care about the > 1 case.
if (frame.bufferAge() > 1) {
if (frame.bufferAge() > (int)mSwapHistory.size()) {
// We don't have enough history to handle this old of a buffer
// Just do a full-draw
dirty->set(0, 0, frame.width(), frame.height());
} else {
// At this point we haven't yet added the latest frame
// to the damage history (happens below)
// So we need to damage
for (int i = mSwapHistory.size() - 1;
i > ((int)mSwapHistory.size()) - frame.bufferAge(); i--) {
dirty->join(mSwapHistory[i].damage);
}
}
}
return windowDirty;
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */