/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkiaDisplayList.h"
#include "DumpOpsCanvas.h"
#include "SkiaPipeline.h"
#include "VectorDrawable.h"
#include "renderthread/CanvasContext.h"
#include <SkImagePriv.h>
#include <SkPathOps.h>
namespace android {
namespace uirenderer {
namespace skiapipeline {
void SkiaDisplayList::syncContents(const WebViewSyncData& data) {
for (auto& functor : mChildFunctors) {
functor->syncFunctor(data);
}
for (auto& animatedImage : mAnimatedImages) {
animatedImage->syncProperties();
}
for (auto& vectorDrawable : mVectorDrawables) {
vectorDrawable.first->syncProperties();
}
}
bool SkiaDisplayList::reuseDisplayList(RenderNode* node, renderthread::CanvasContext* context) {
reset();
node->attachAvailableList(this);
return true;
}
void SkiaDisplayList::updateChildren(std::function<void(RenderNode*)> updateFn) {
for (auto& child : mChildNodes) {
updateFn(child.getRenderNode());
}
}
static bool intersects(const SkISize screenSize, const Matrix4& mat, const SkRect& bounds) {
Vector3 points[] = { Vector3 {bounds.fLeft, bounds.fTop, 0},
Vector3 {bounds.fRight, bounds.fTop, 0},
Vector3 {bounds.fRight, bounds.fBottom, 0},
Vector3 {bounds.fLeft, bounds.fBottom, 0}};
float minX, minY, maxX, maxY;
bool first = true;
for (auto& point : points) {
mat.mapPoint3d(point);
if (first) {
minX = maxX = point.x;
minY = maxY = point.y;
first = false;
} else {
minX = std::min(minX, point.x);
minY = std::min(minY, point.y);
maxX = std::max(maxX, point.x);
maxY = std::max(maxY, point.y);
}
}
return SkRect::Make(screenSize).intersects(SkRect::MakeLTRB(minX, minY, maxX, maxY));
}
bool SkiaDisplayList::prepareListAndChildren(
TreeObserver& observer, TreeInfo& info, bool functorsNeedLayer,
std::function<void(RenderNode*, TreeObserver&, TreeInfo&, bool)> childFn) {
// If the prepare tree is triggered by the UI thread and no previous call to
// pinImages has failed then we must pin all mutable images in the GPU cache
// until the next UI thread draw.
if (info.prepareTextures && !info.canvasContext.pinImages(mMutableImages)) {
// In the event that pinning failed we prevent future pinImage calls for the
// remainder of this tree traversal and also unpin any currently pinned images
// to free up GPU resources.
info.prepareTextures = false;
info.canvasContext.unpinImages();
}
bool hasBackwardProjectedNodesHere = false;
bool hasBackwardProjectedNodesSubtree = false;
for (auto& child : mChildNodes) {
hasBackwardProjectedNodesHere |= child.getNodeProperties().getProjectBackwards();
RenderNode* childNode = child.getRenderNode();
Matrix4 mat4(child.getRecordedMatrix());
info.damageAccumulator->pushTransform(&mat4);
info.hasBackwardProjectedNodes = false;
childFn(childNode, observer, info, functorsNeedLayer);
hasBackwardProjectedNodesSubtree |= info.hasBackwardProjectedNodes;
info.damageAccumulator->popTransform();
}
// The purpose of next block of code is to reset projected display list if there are no
// backward projected nodes. This speeds up drawing, by avoiding an extra walk of the tree
if (mProjectionReceiver) {
mProjectionReceiver->setProjectedDisplayList(hasBackwardProjectedNodesSubtree ? this
: nullptr);
info.hasBackwardProjectedNodes = hasBackwardProjectedNodesHere;
} else {
info.hasBackwardProjectedNodes =
hasBackwardProjectedNodesSubtree || hasBackwardProjectedNodesHere;
}
bool isDirty = false;
for (auto& animatedImage : mAnimatedImages) {
nsecs_t timeTilNextFrame = TreeInfo::Out::kNoAnimatedImageDelay;
// If any animated image in the display list needs updated, then damage the node.
if (animatedImage->isDirty(&timeTilNextFrame)) {
isDirty = true;
}
if (animatedImage->isRunning() &&
timeTilNextFrame != TreeInfo::Out::kNoAnimatedImageDelay) {
auto& delay = info.out.animatedImageDelay;
if (delay == TreeInfo::Out::kNoAnimatedImageDelay || timeTilNextFrame < delay) {
delay = timeTilNextFrame;
}
}
}
for (auto& vectorDrawablePair : mVectorDrawables) {
// If any vector drawable in the display list needs update, damage the node.
auto& vectorDrawable = vectorDrawablePair.first;
if (vectorDrawable->isDirty()) {
Matrix4 totalMatrix;
info.damageAccumulator->computeCurrentTransform(&totalMatrix);
Matrix4 canvasMatrix(vectorDrawablePair.second);
totalMatrix.multiply(canvasMatrix);
const SkRect& bounds = vectorDrawable->properties().getBounds();
if (intersects(info.screenSize, totalMatrix, bounds)) {
isDirty = true;
static_cast<SkiaPipeline*>(info.canvasContext.getRenderPipeline())
->getVectorDrawables()
->push_back(vectorDrawable);
vectorDrawable->setPropertyChangeWillBeConsumed(true);
}
}
}
return isDirty;
}
void SkiaDisplayList::reset() {
mProjectionReceiver = nullptr;
mDisplayList.reset();
mMutableImages.clear();
mVectorDrawables.clear();
mAnimatedImages.clear();
mChildFunctors.clear();
mChildNodes.clear();
allocator.~LinearAllocator();
new (&allocator) LinearAllocator();
}
void SkiaDisplayList::output(std::ostream& output, uint32_t level) {
DumpOpsCanvas canvas(output, level, *this);
mDisplayList.draw(&canvas);
}
} // namespace skiapipeline
} // namespace uirenderer
} // namespace android