/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "DeviceInfo.h"
#include "Outline.h"
#include "Rect.h"
#include "RevealClip.h"
#include "utils/MathUtils.h"
#include "utils/PaintUtils.h"
#include <SkBlendMode.h>
#include <SkCamera.h>
#include <SkColor.h>
#include <SkMatrix.h>
#include <SkRegion.h>
#include <androidfw/ResourceTypes.h>
#include <cutils/compiler.h>
#include <stddef.h>
#include <utils/Log.h>
#include <algorithm>
#include <ostream>
#include <vector>
class SkBitmap;
class SkColorFilter;
class SkPaint;
namespace android {
namespace uirenderer {
class Matrix4;
class RenderNode;
class RenderProperties;
// The __VA_ARGS__ will be executed if a & b are not equal
#define RP_SET(a, b, ...) ((a) != (b) ? ((a) = (b), ##__VA_ARGS__, true) : false)
#define RP_SET_AND_DIRTY(a, b) RP_SET(a, b, mPrimitiveFields.mMatrixOrPivotDirty = true)
// Keep in sync with View.java:LAYER_TYPE_*
enum class LayerType {
None = 0,
// We cannot build the software layer directly (must be done at record time) and all management
// of software layers is handled in Java.
Software = 1,
RenderLayer = 2,
};
enum ClippingFlags {
CLIP_TO_BOUNDS = 0x1 << 0,
CLIP_TO_CLIP_BOUNDS = 0x1 << 1,
};
class ANDROID_API LayerProperties {
public:
bool setType(LayerType type) {
if (RP_SET(mType, type)) {
reset();
return true;
}
return false;
}
bool setOpaque(bool opaque) { return RP_SET(mOpaque, opaque); }
bool opaque() const { return mOpaque; }
bool setAlpha(uint8_t alpha) { return RP_SET(mAlpha, alpha); }
uint8_t alpha() const { return mAlpha; }
bool setXferMode(SkBlendMode mode) { return RP_SET(mMode, mode); }
SkBlendMode xferMode() const { return mMode; }
SkColorFilter* getColorFilter() const { return mColorFilter.get(); }
// Sets alpha, xfermode, and colorfilter from an SkPaint
// paint may be NULL, in which case defaults will be set
bool setFromPaint(const SkPaint* paint);
bool needsBlending() const { return !opaque() || alpha() < 255; }
LayerProperties& operator=(const LayerProperties& other);
// Strongly recommend using effectiveLayerType instead
LayerType type() const { return mType; }
private:
LayerProperties();
~LayerProperties();
void reset();
bool setColorFilter(SkColorFilter* filter);
friend class RenderProperties;
LayerType mType = LayerType::None;
// Whether or not that Layer's content is opaque, doesn't include alpha
bool mOpaque;
uint8_t mAlpha;
SkBlendMode mMode;
sk_sp<SkColorFilter> mColorFilter;
};
/*
* Data structure that holds the properties for a RenderNode
*/
class ANDROID_API RenderProperties {
public:
RenderProperties();
virtual ~RenderProperties();
static bool setFlag(int flag, bool newValue, int* outFlags) {
if (newValue) {
if (!(flag & *outFlags)) {
*outFlags |= flag;
return true;
}
return false;
} else {
if (flag & *outFlags) {
*outFlags &= ~flag;
return true;
}
return false;
}
}
/**
* Set internal layer state based on whether this layer
*
* Additionally, returns true if child RenderNodes with functors will need to use a layer
* to support clipping.
*/
bool prepareForFunctorPresence(bool willHaveFunctor, bool ancestorDictatesFunctorsNeedLayer) {
// parent may have already dictated that a descendant layer is needed
bool functorsNeedLayer =
ancestorDictatesFunctorsNeedLayer
|| CC_UNLIKELY(isClipMayBeComplex())
// Round rect clipping forces layer for functors
|| CC_UNLIKELY(getOutline().willRoundRectClip()) ||
CC_UNLIKELY(getRevealClip().willClip())
// Complex matrices forces layer, due to stencil clipping
|| CC_UNLIKELY(getTransformMatrix() && !getTransformMatrix()->isScaleTranslate()) ||
CC_UNLIKELY(getAnimationMatrix() && !getAnimationMatrix()->isScaleTranslate()) ||
CC_UNLIKELY(getStaticMatrix() && !getStaticMatrix()->isScaleTranslate());
mComputedFields.mNeedLayerForFunctors = (willHaveFunctor && functorsNeedLayer);
// If on a layer, will have consumed the need for isolating functors from stencil.
// Thus, it's safe to reset the flag until some descendent sets it.
return CC_LIKELY(effectiveLayerType() == LayerType::None) && functorsNeedLayer;
}
RenderProperties& operator=(const RenderProperties& other);
bool setClipToBounds(bool clipToBounds) {
return setFlag(CLIP_TO_BOUNDS, clipToBounds, &mPrimitiveFields.mClippingFlags);
}
bool setClipBounds(const Rect& clipBounds) {
bool ret = setFlag(CLIP_TO_CLIP_BOUNDS, true, &mPrimitiveFields.mClippingFlags);
return RP_SET(mPrimitiveFields.mClipBounds, clipBounds) || ret;
}
bool setClipBoundsEmpty() {
return setFlag(CLIP_TO_CLIP_BOUNDS, false, &mPrimitiveFields.mClippingFlags);
}
bool setProjectBackwards(bool shouldProject) {
return RP_SET(mPrimitiveFields.mProjectBackwards, shouldProject);
}
bool setProjectionReceiver(bool shouldReceive) {
return RP_SET(mPrimitiveFields.mProjectionReceiver, shouldReceive);
}
bool isProjectionReceiver() const { return mPrimitiveFields.mProjectionReceiver; }
bool setClipMayBeComplex(bool isClipMayBeComplex) {
return RP_SET(mPrimitiveFields.mClipMayBeComplex, isClipMayBeComplex);
}
bool isClipMayBeComplex() const { return mPrimitiveFields.mClipMayBeComplex; }
bool setStaticMatrix(const SkMatrix* matrix) {
delete mStaticMatrix;
if (matrix) {
mStaticMatrix = new SkMatrix(*matrix);
} else {
mStaticMatrix = nullptr;
}
return true;
}
// Can return NULL
const SkMatrix* getStaticMatrix() const { return mStaticMatrix; }
bool setAnimationMatrix(const SkMatrix* matrix) {
delete mAnimationMatrix;
if (matrix) {
mAnimationMatrix = new SkMatrix(*matrix);
} else {
mAnimationMatrix = nullptr;
}
return true;
}
bool setAlpha(float alpha) {
alpha = MathUtils::clampAlpha(alpha);
return RP_SET(mPrimitiveFields.mAlpha, alpha);
}
float getAlpha() const { return mPrimitiveFields.mAlpha; }
bool setHasOverlappingRendering(bool hasOverlappingRendering) {
return RP_SET(mPrimitiveFields.mHasOverlappingRendering, hasOverlappingRendering);
}
bool hasOverlappingRendering() const { return mPrimitiveFields.mHasOverlappingRendering; }
bool setElevation(float elevation) {
return RP_SET(mPrimitiveFields.mElevation, elevation);
// Don't dirty matrix/pivot, since they don't respect Z
}
float getElevation() const { return mPrimitiveFields.mElevation; }
bool setTranslationX(float translationX) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mTranslationX, translationX);
}
float getTranslationX() const { return mPrimitiveFields.mTranslationX; }
bool setTranslationY(float translationY) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mTranslationY, translationY);
}
float getTranslationY() const { return mPrimitiveFields.mTranslationY; }
bool setTranslationZ(float translationZ) {
return RP_SET(mPrimitiveFields.mTranslationZ, translationZ);
// mMatrixOrPivotDirty not set, since matrix doesn't respect Z
}
float getTranslationZ() const { return mPrimitiveFields.mTranslationZ; }
// Animation helper
bool setX(float value) { return setTranslationX(value - getLeft()); }
// Animation helper
float getX() const { return getLeft() + getTranslationX(); }
// Animation helper
bool setY(float value) { return setTranslationY(value - getTop()); }
// Animation helper
float getY() const { return getTop() + getTranslationY(); }
// Animation helper
bool setZ(float value) { return setTranslationZ(value - getElevation()); }
float getZ() const { return getElevation() + getTranslationZ(); }
bool setRotation(float rotation) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mRotation, rotation);
}
float getRotation() const { return mPrimitiveFields.mRotation; }
bool setRotationX(float rotationX) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mRotationX, rotationX);
}
float getRotationX() const { return mPrimitiveFields.mRotationX; }
bool setRotationY(float rotationY) {
return RP_SET_AND_DIRTY(mPrimitiveFields.mRotationY, rotationY);
}
float getRotationY() const { return mPrimitiveFields.mRotationY; }
bool setScaleX(float scaleX) { return RP_SET_AND_DIRTY(mPrimitiveFields.mScaleX, scaleX); }
float getScaleX() const { return mPrimitiveFields.mScaleX; }
bool setScaleY(float scaleY) { return RP_SET_AND_DIRTY(mPrimitiveFields.mScaleY, scaleY); }
float getScaleY() const { return mPrimitiveFields.mScaleY; }
bool setPivotX(float pivotX) {
if (RP_SET(mPrimitiveFields.mPivotX, pivotX) || !mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
mPrimitiveFields.mPivotExplicitlySet = true;
return true;
}
return false;
}
/* Note that getPivotX and getPivotY are adjusted by updateMatrix(),
* so the value returned may be stale if the RenderProperties has been
* modified since the last call to updateMatrix()
*/
float getPivotX() const { return mPrimitiveFields.mPivotX; }
bool setPivotY(float pivotY) {
if (RP_SET(mPrimitiveFields.mPivotY, pivotY) || !mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
mPrimitiveFields.mPivotExplicitlySet = true;
return true;
}
return false;
}
float getPivotY() const { return mPrimitiveFields.mPivotY; }
bool isPivotExplicitlySet() const { return mPrimitiveFields.mPivotExplicitlySet; }
bool resetPivot() { return RP_SET_AND_DIRTY(mPrimitiveFields.mPivotExplicitlySet, false); }
bool setCameraDistance(float distance) {
if (distance != getCameraDistance()) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
mComputedFields.mTransformCamera.setCameraLocation(0, 0, distance);
return true;
}
return false;
}
float getCameraDistance() const {
// TODO: update getCameraLocationZ() to be const
return const_cast<Sk3DView*>(&mComputedFields.mTransformCamera)->getCameraLocationZ();
}
bool setLeft(int left) {
if (RP_SET(mPrimitiveFields.mLeft, left)) {
mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
int getLeft() const { return mPrimitiveFields.mLeft; }
bool setTop(int top) {
if (RP_SET(mPrimitiveFields.mTop, top)) {
mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
int getTop() const { return mPrimitiveFields.mTop; }
bool setRight(int right) {
if (RP_SET(mPrimitiveFields.mRight, right)) {
mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
int getRight() const { return mPrimitiveFields.mRight; }
bool setBottom(int bottom) {
if (RP_SET(mPrimitiveFields.mBottom, bottom)) {
mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
int getBottom() const { return mPrimitiveFields.mBottom; }
bool setLeftTop(int left, int top) {
bool leftResult = setLeft(left);
bool topResult = setTop(top);
return leftResult || topResult;
}
bool setLeftTopRightBottom(int left, int top, int right, int bottom) {
if (left != mPrimitiveFields.mLeft || top != mPrimitiveFields.mTop ||
right != mPrimitiveFields.mRight || bottom != mPrimitiveFields.mBottom) {
mPrimitiveFields.mLeft = left;
mPrimitiveFields.mTop = top;
mPrimitiveFields.mRight = right;
mPrimitiveFields.mBottom = bottom;
mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft;
mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop;
if (!mPrimitiveFields.mPivotExplicitlySet) {
mPrimitiveFields.mMatrixOrPivotDirty = true;
}
return true;
}
return false;
}
bool offsetLeftRight(int offset) {
if (offset != 0) {
mPrimitiveFields.mLeft += offset;
mPrimitiveFields.mRight += offset;
return true;
}
return false;
}
bool offsetTopBottom(int offset) {
if (offset != 0) {
mPrimitiveFields.mTop += offset;
mPrimitiveFields.mBottom += offset;
return true;
}
return false;
}
int getWidth() const { return mPrimitiveFields.mWidth; }
int getHeight() const { return mPrimitiveFields.mHeight; }
const SkMatrix* getAnimationMatrix() const { return mAnimationMatrix; }
bool hasTransformMatrix() const {
return getTransformMatrix() && !getTransformMatrix()->isIdentity();
}
// May only call this if hasTransformMatrix() is true
bool isTransformTranslateOnly() const {
return getTransformMatrix()->getType() == SkMatrix::kTranslate_Mask;
}
const SkMatrix* getTransformMatrix() const {
LOG_ALWAYS_FATAL_IF(mPrimitiveFields.mMatrixOrPivotDirty, "Cannot get a dirty matrix!");
return mComputedFields.mTransformMatrix;
}
int getClippingFlags() const { return mPrimitiveFields.mClippingFlags; }
bool getClipToBounds() const { return mPrimitiveFields.mClippingFlags & CLIP_TO_BOUNDS; }
const Rect& getClipBounds() const { return mPrimitiveFields.mClipBounds; }
void getClippingRectForFlags(uint32_t flags, Rect* outRect) const {
if (flags & CLIP_TO_BOUNDS) {
outRect->set(0, 0, getWidth(), getHeight());
if (flags & CLIP_TO_CLIP_BOUNDS) {
outRect->doIntersect(mPrimitiveFields.mClipBounds);
}
} else {
outRect->set(mPrimitiveFields.mClipBounds);
}
}
bool getHasOverlappingRendering() const { return mPrimitiveFields.mHasOverlappingRendering; }
const Outline& getOutline() const { return mPrimitiveFields.mOutline; }
const RevealClip& getRevealClip() const { return mPrimitiveFields.mRevealClip; }
bool getProjectBackwards() const { return mPrimitiveFields.mProjectBackwards; }
void debugOutputProperties(std::ostream& output, const int level) const;
void updateMatrix();
Outline& mutableOutline() { return mPrimitiveFields.mOutline; }
RevealClip& mutableRevealClip() { return mPrimitiveFields.mRevealClip; }
const LayerProperties& layerProperties() const { return mLayerProperties; }
LayerProperties& mutateLayerProperties() { return mLayerProperties; }
// Returns true if damage calculations should be clipped to bounds
// TODO: Figure out something better for getZ(), as children should still be
// clipped to this RP's bounds. But as we will damage -INT_MAX to INT_MAX
// for this RP's getZ() anyway, this can be optimized when we have a
// Z damage estimate instead of INT_MAX
bool getClipDamageToBounds() const {
return getClipToBounds() && (getZ() <= 0 || getOutline().isEmpty());
}
bool hasShadow() const {
return getZ() > 0.0f && getOutline().getPath() != nullptr &&
getOutline().getAlpha() != 0.0f;
}
SkColor getSpotShadowColor() const { return mPrimitiveFields.mSpotShadowColor; }
bool setSpotShadowColor(SkColor shadowColor) {
return RP_SET(mPrimitiveFields.mSpotShadowColor, shadowColor);
}
SkColor getAmbientShadowColor() const { return mPrimitiveFields.mAmbientShadowColor; }
bool setAmbientShadowColor(SkColor shadowColor) {
return RP_SET(mPrimitiveFields.mAmbientShadowColor, shadowColor);
}
bool fitsOnLayer() const {
const DeviceInfo* deviceInfo = DeviceInfo::get();
return mPrimitiveFields.mWidth <= deviceInfo->maxTextureSize() &&
mPrimitiveFields.mHeight <= deviceInfo->maxTextureSize();
}
bool promotedToLayer() const {
return mLayerProperties.mType == LayerType::None && fitsOnLayer() &&
(mComputedFields.mNeedLayerForFunctors ||
(!MathUtils::isZero(mPrimitiveFields.mAlpha) && mPrimitiveFields.mAlpha < 1 &&
mPrimitiveFields.mHasOverlappingRendering));
}
LayerType effectiveLayerType() const {
return CC_UNLIKELY(promotedToLayer()) ? LayerType::RenderLayer : mLayerProperties.mType;
}
bool setAllowForceDark(bool allow) {
return RP_SET(mPrimitiveFields.mAllowForceDark, allow);
}
bool getAllowForceDark() const {
return mPrimitiveFields.mAllowForceDark;
}
private:
// Rendering properties
struct PrimitiveFields {
int mLeft = 0, mTop = 0, mRight = 0, mBottom = 0;
int mWidth = 0, mHeight = 0;
int mClippingFlags = CLIP_TO_BOUNDS;
SkColor mSpotShadowColor = SK_ColorBLACK;
SkColor mAmbientShadowColor = SK_ColorBLACK;
float mAlpha = 1;
float mTranslationX = 0, mTranslationY = 0, mTranslationZ = 0;
float mElevation = 0;
float mRotation = 0, mRotationX = 0, mRotationY = 0;
float mScaleX = 1, mScaleY = 1;
float mPivotX = 0, mPivotY = 0;
bool mHasOverlappingRendering = false;
bool mPivotExplicitlySet = false;
bool mMatrixOrPivotDirty = false;
bool mProjectBackwards = false;
bool mProjectionReceiver = false;
bool mAllowForceDark = true;
bool mClipMayBeComplex = false;
Rect mClipBounds;
Outline mOutline;
RevealClip mRevealClip;
} mPrimitiveFields;
SkMatrix* mStaticMatrix;
SkMatrix* mAnimationMatrix;
LayerProperties mLayerProperties;
/**
* These fields are all generated from other properties and are not set directly.
*/
struct ComputedFields {
ComputedFields();
~ComputedFields();
/**
* Stores the total transformation of the DisplayList based upon its scalar
* translate/rotate/scale properties.
*
* In the common translation-only case, the matrix isn't necessarily allocated,
* and the mTranslation properties are used directly.
*/
SkMatrix* mTransformMatrix;
Sk3DView mTransformCamera;
// Force layer on for functors to enable render features they don't yet support (clipping)
bool mNeedLayerForFunctors = false;
} mComputedFields;
};
} /* namespace uirenderer */
} /* namespace android */