C++程序  |  158行  |  4.93 KB

/*
 * Copyright 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Test FlowGraph
 */

#include <iostream>

#include <gtest/gtest.h>

#include "flowgraph/ClipToRange.h"
#include "flowgraph/MonoToMultiConverter.h"
#include "flowgraph/SourceFloat.h"
#include "flowgraph/RampLinear.h"
#include "flowgraph/SinkFloat.h"
#include "flowgraph/SinkI16.h"
#include "flowgraph/SinkI24.h"
#include "flowgraph/SourceI16.h"
#include "flowgraph/SourceI24.h"

using namespace flowgraph;

constexpr int kBytesPerI24Packed = 3;

TEST(test_flowgraph, module_sinki16) {
    static const float input[] = {1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 53.9f, -87.2f};
    static const int16_t expected[] = {32767, 16384, -8192, -32768, 0, 32767, -32768};
    int16_t output[20];
    SourceFloat sourceFloat{1};
    SinkI16 sinkI16{1};

    int numInputFrames = sizeof(input) / sizeof(input[0]);
    sourceFloat.setData(input, numInputFrames);
    sourceFloat.output.connect(&sinkI16.input);

    int numOutputFrames = sizeof(output) / sizeof(int16_t);
    int32_t numRead = sinkI16.read(output, numOutputFrames);
    ASSERT_EQ(numInputFrames, numRead);
    for (int i = 0; i < numRead; i++) {
        EXPECT_EQ(expected[i], output[i]);
    }
}

TEST(test_flowgraph, module_mono_to_stereo) {
    static const float input[] = {1.0f, 2.0f, 3.0f};
    float output[100] = {};
    SourceFloat sourceFloat{1};
    MonoToMultiConverter monoToStereo{2};
    SinkFloat sinkFloat{2};

    sourceFloat.setData(input, 3);

    sourceFloat.output.connect(&monoToStereo.input);
    monoToStereo.output.connect(&sinkFloat.input);

    int32_t numRead = sinkFloat.read(output, 8);
    ASSERT_EQ(3, numRead);
    EXPECT_EQ(input[0], output[0]);
    EXPECT_EQ(input[0], output[1]);
    EXPECT_EQ(input[1], output[2]);
    EXPECT_EQ(input[1], output[3]);
}

TEST(test_flowgraph, module_ramp_linear) {
    constexpr int rampSize = 5;
    constexpr int numOutput = 100;
    constexpr float value = 1.0f;
    constexpr float target = 100.0f;
    float output[numOutput] = {};
    RampLinear rampLinear{1};
    SinkFloat sinkFloat{1};

    rampLinear.input.setValue(value);
    rampLinear.setLengthInFrames(rampSize);
    rampLinear.setTarget(target);
    rampLinear.forceCurrent(0.0f);

    rampLinear.output.connect(&sinkFloat.input);

    int32_t numRead = sinkFloat.read(output, numOutput);
    ASSERT_EQ(numOutput, numRead);
    constexpr float tolerance = 0.0001f; // arbitrary
    int i = 0;
    for (; i < rampSize; i++) {
        float expected = i * value * target / rampSize;
        EXPECT_NEAR(expected, output[i], tolerance);
    }
    for (; i < numOutput; i++) {
        float expected = value * target;
        EXPECT_NEAR(expected, output[i], tolerance);
    }
}

// It is easiest to represent packed 24-bit data as a byte array.
// This test will read from input, convert to float, then write
// back to output as bytes.
TEST(test_flowgraph, module_packed_24) {
    static const uint8_t input[] = {0x01, 0x23, 0x45,
                                    0x67, 0x89, 0xAB,
                                    0xCD, 0xEF, 0x5A};
    uint8_t output[99] = {};
    SourceI24 sourceI24{1};
    SinkI24 sinkI24{1};

    int numInputFrames = sizeof(input) / kBytesPerI24Packed;
    sourceI24.setData(input, numInputFrames);
    sourceI24.output.connect(&sinkI24.input);

    int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed);
    ASSERT_EQ(numInputFrames, numRead);
    for (size_t i = 0; i < sizeof(input); i++) {
        EXPECT_EQ(input[i], output[i]);
    }
}

TEST(test_flowgraph, module_clip_to_range) {
    constexpr float myMin = -2.0f;
    constexpr float myMax = 1.5f;

    static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
    static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
    float output[100];
    SourceFloat sourceFloat{1};
    ClipToRange clipper{1};
    SinkFloat sinkFloat{1};

    int numInputFrames = sizeof(input) / sizeof(input[0]);
    sourceFloat.setData(input, numInputFrames);

    clipper.setMinimum(myMin);
    clipper.setMaximum(myMax);

    sourceFloat.output.connect(&clipper.input);
    clipper.output.connect(&sinkFloat.input);

    int numOutputFrames = sizeof(output) / sizeof(output[0]);
    int32_t numRead = sinkFloat.read(output, numOutputFrames);
    ASSERT_EQ(numInputFrames, numRead);
    constexpr float tolerance = 0.000001f; // arbitrary
    for (int i = 0; i < numRead; i++) {
        EXPECT_NEAR(expected[i], output[i], tolerance);
    }
}