/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Unit tests for Isochronous Clock Model
#include <math.h>
#include <stdlib.h>
#include <aaudio/AAudio.h>
#include <audio_utils/clock.h>
#include <client/IsochronousClockModel.h>
#include <gtest/gtest.h>
using namespace aaudio;
// We can use arbitrary values here because we are not opening a real audio stream.
#define SAMPLE_RATE 48000
#define HW_FRAMES_PER_BURST 48
#define NANOS_PER_BURST (NANOS_PER_SECOND * HW_FRAMES_PER_BURST / SAMPLE_RATE)
class ClockModelTestFixture: public ::testing::Test {
public:
ClockModelTestFixture() {
}
void SetUp() {
model.setSampleRate(SAMPLE_RATE);
model.setFramesPerBurst(HW_FRAMES_PER_BURST);
}
void TearDown() {
}
~ClockModelTestFixture() {
// cleanup any pending stuff, but no exceptions allowed
}
// Test processing of timestamps when the hardware may be slightly off from
// the expected sample rate.
void checkDriftingClock(double hardwareFramesPerSecond, int numLoops) {
const int64_t startTimeNanos = 500000000; // arbitrary
model.start(startTimeNanos);
const int64_t startPositionFrames = HW_FRAMES_PER_BURST; // hardware
// arbitrary time for first burst
const int64_t markerTime = startTimeNanos + NANOS_PER_MILLISECOND
+ (200 * NANOS_PER_MICROSECOND);
// Should set initial marker.
model.processTimestamp(startPositionFrames, markerTime);
ASSERT_EQ(startPositionFrames, model.convertTimeToPosition(markerTime));
double elapsedTimeSeconds = startTimeNanos / (double) NANOS_PER_SECOND;
for (int i = 0; i < numLoops; i++) {
// Calculate random delay over several bursts.
const double timeDelaySeconds = 10.0 * drand48() * NANOS_PER_BURST / NANOS_PER_SECOND;
elapsedTimeSeconds += timeDelaySeconds;
const int64_t elapsedTimeNanos = (int64_t)(elapsedTimeSeconds * NANOS_PER_SECOND);
const int64_t currentTimeNanos = startTimeNanos + elapsedTimeNanos;
// Simulate DSP running at the specified rate.
const int64_t currentTimeFrames = startPositionFrames +
(int64_t)(hardwareFramesPerSecond * elapsedTimeSeconds);
const int64_t numBursts = currentTimeFrames / HW_FRAMES_PER_BURST;
const int64_t alignedPosition = startPositionFrames + (numBursts * HW_FRAMES_PER_BURST);
// Apply drifting timestamp.
model.processTimestamp(alignedPosition, currentTimeNanos);
ASSERT_EQ(alignedPosition, model.convertTimeToPosition(currentTimeNanos));
}
}
IsochronousClockModel model;
};
// Check default setup.
TEST_F(ClockModelTestFixture, clock_setup) {
ASSERT_EQ(SAMPLE_RATE, model.getSampleRate());
ASSERT_EQ(HW_FRAMES_PER_BURST, model.getFramesPerBurst());
}
// Test delta calculations.
TEST_F(ClockModelTestFixture, clock_deltas) {
int64_t position = model.convertDeltaTimeToPosition(NANOS_PER_SECOND);
ASSERT_EQ(SAMPLE_RATE, position);
// Deltas are not quantized.
// Compare time to the equivalent position in frames.
constexpr int64_t kNanosPerBurst = HW_FRAMES_PER_BURST * NANOS_PER_SECOND / SAMPLE_RATE;
position = model.convertDeltaTimeToPosition(NANOS_PER_SECOND + (kNanosPerBurst / 2));
ASSERT_EQ(SAMPLE_RATE + (HW_FRAMES_PER_BURST / 2), position);
int64_t time = model.convertDeltaPositionToTime(SAMPLE_RATE);
ASSERT_EQ(NANOS_PER_SECOND, time);
// Compare position in frames to the equivalent time.
time = model.convertDeltaPositionToTime(SAMPLE_RATE + (HW_FRAMES_PER_BURST / 2));
ASSERT_EQ(NANOS_PER_SECOND + (kNanosPerBurst / 2), time);
}
// start() should force the internal markers
TEST_F(ClockModelTestFixture, clock_start) {
const int64_t startTime = 100000;
model.start(startTime);
int64_t position = model.convertTimeToPosition(startTime);
EXPECT_EQ(0, position);
int64_t time = model.convertPositionToTime(position);
EXPECT_EQ(startTime, time);
time = startTime + (500 * NANOS_PER_MICROSECOND);
position = model.convertTimeToPosition(time);
EXPECT_EQ(0, position);
}
// timestamps moves the window if outside the bounds
TEST_F(ClockModelTestFixture, clock_timestamp) {
const int64_t startTime = 100000000;
model.start(startTime);
const int64_t position = HW_FRAMES_PER_BURST; // hardware
int64_t markerTime = startTime + NANOS_PER_MILLISECOND + (200 * NANOS_PER_MICROSECOND);
// Should set marker.
model.processTimestamp(position, markerTime);
EXPECT_EQ(position, model.convertTimeToPosition(markerTime));
// convertTimeToPosition rounds down
EXPECT_EQ(position, model.convertTimeToPosition(markerTime + (73 * NANOS_PER_MICROSECOND)));
// convertPositionToTime rounds up
EXPECT_EQ(markerTime + NANOS_PER_BURST, model.convertPositionToTime(position + 17));
}
#define NUM_LOOPS_DRIFT 10000
// test nudging the window by using a drifting HW clock
TEST_F(ClockModelTestFixture, clock_no_drift) {
checkDriftingClock(SAMPLE_RATE, NUM_LOOPS_DRIFT);
}
// These slow drift rates caused errors when I disabled the code that handles
// drifting in the clock model. So I think the test is valid.
// It is unlikely that real hardware would be off by more than this amount.
TEST_F(ClockModelTestFixture, clock_slow_drift) {
checkDriftingClock(0.998 * SAMPLE_RATE, NUM_LOOPS_DRIFT);
}
TEST_F(ClockModelTestFixture, clock_fast_drift) {
checkDriftingClock(1.002 * SAMPLE_RATE, NUM_LOOPS_DRIFT);
}