/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "CCodecConfig"
#include <cutils/properties.h>
#include <log/log.h>
#include <C2Component.h>
#include <C2Debug.h>
#include <C2Param.h>
#include <util/C2InterfaceHelper.h>
#include <media/stagefright/MediaCodecConstants.h>
#include "CCodecConfig.h"
#include "Codec2Mapper.h"
#define DRC_DEFAULT_MOBILE_REF_LEVEL 64 /* 64*-0.25dB = -16 dB below full scale for mobile conf */
#define DRC_DEFAULT_MOBILE_DRC_CUT 127 /* maximum compression of dynamic range for mobile conf */
#define DRC_DEFAULT_MOBILE_DRC_BOOST 127 /* maximum compression of dynamic range for mobile conf */
#define DRC_DEFAULT_MOBILE_DRC_HEAVY 1 /* switch for heavy compression for mobile conf */
#define DRC_DEFAULT_MOBILE_DRC_EFFECT 3 /* MPEG-D DRC effect type; 3 => Limited playback range */
#define DRC_DEFAULT_MOBILE_ENC_LEVEL (-1) /* encoder target level; -1 => the value is unknown, otherwise dB step value (e.g. 64 for -16 dB) */
// names of properties that can be used to override the default DRC settings
#define PROP_DRC_OVERRIDE_REF_LEVEL "aac_drc_reference_level"
#define PROP_DRC_OVERRIDE_CUT "aac_drc_cut"
#define PROP_DRC_OVERRIDE_BOOST "aac_drc_boost"
#define PROP_DRC_OVERRIDE_HEAVY "aac_drc_heavy"
#define PROP_DRC_OVERRIDE_ENC_LEVEL "aac_drc_enc_target_level"
#define PROP_DRC_OVERRIDE_EFFECT "ro.aac_drc_effect_type"
namespace android {
// CCodecConfig
namespace {
/**
* mapping between SDK and Codec 2.0 configurations.
*/
struct ConfigMapper {
/**
* Value mapper (C2Value => C2Value)
*/
typedef std::function<C2Value(C2Value)> Mapper;
/// shorthand
typedef CCodecConfig::Domain Domain;
ConfigMapper(std::string mediaKey, C2String c2struct, C2String c2field)
: mDomain(Domain::ALL), mMediaKey(mediaKey), mStruct(c2struct), mField(c2field) { }
/// Limits this parameter to the given domain
ConfigMapper &limitTo(uint32_t domain) {
C2_CHECK(domain & Domain::GUARD_BIT);
mDomain = Domain(mDomain & domain);
return *this;
}
/// Adds SDK => Codec 2.0 mapper (should not be in the SDK format)
ConfigMapper &withMapper(Mapper mapper) {
C2_CHECK(!mMapper);
C2_CHECK(!mReverse);
mMapper = mapper;
return *this;
}
/// Adds SDK <=> Codec 2.0 value mappers
ConfigMapper &withMappers(Mapper mapper, Mapper reverse) {
C2_CHECK(!mMapper);
C2_CHECK(!mReverse);
mMapper = mapper;
mReverse = reverse;
return *this;
}
/// Adds SDK <=> Codec 2.0 value mappers based on C2Mapper
template<typename C2Type, typename SdkType=int32_t>
ConfigMapper &withC2Mappers() {
C2_CHECK(!mMapper);
C2_CHECK(!mReverse);
mMapper = [](C2Value v) -> C2Value {
SdkType sdkValue;
C2Type c2Value;
if (v.get(&sdkValue) && C2Mapper::map(sdkValue, &c2Value)) {
return c2Value;
}
return C2Value();
};
mReverse = [](C2Value v) -> C2Value {
SdkType sdkValue;
C2Type c2Value;
using C2ValueType=typename _c2_reduce_enum_to_underlying_type<C2Type>::type;
if (v.get((C2ValueType*)&c2Value) && C2Mapper::map(c2Value, &sdkValue)) {
return sdkValue;
}
return C2Value();
};
return *this;
}
/// Maps from SDK values in an AMessage to a suitable C2Value.
C2Value mapFromMessage(const AMessage::ItemData &item) const {
C2Value value;
int32_t int32Value;
int64_t int64Value;
float floatValue;
double doubleValue;
if (item.find(&int32Value)) {
value = int32Value;
} else if (item.find(&int64Value)) {
value = int64Value;
} else if (item.find(&floatValue)) {
value = floatValue;
} else if (item.find(&doubleValue)) {
value = (float)doubleValue;
}
if (value.type() != C2Value::NO_INIT && mMapper) {
value = mMapper(value);
}
return value;
}
/// Maps from a C2Value to an SDK value in an AMessage.
AMessage::ItemData mapToMessage(C2Value value) const {
AMessage::ItemData item;
int32_t int32Value;
uint32_t uint32Value;
int64_t int64Value;
uint64_t uint64Value;
float floatValue;
if (value.type() != C2Value::NO_INIT && mReverse) {
value = mReverse(value);
}
if (value.get(&int32Value)) {
item.set(int32Value);
} else if (value.get(&uint32Value) && uint32Value <= uint32_t(INT32_MAX)) {
// SDK does not support unsigned values
item.set((int32_t)uint32Value);
} else if (value.get(&int64Value)) {
item.set(int64Value);
} else if (value.get(&uint64Value) && uint64Value <= uint64_t(INT64_MAX)) {
// SDK does not support unsigned values
item.set((int64_t)uint64Value);
} else if (value.get(&floatValue)) {
item.set(floatValue);
}
return item;
}
Domain domain() const { return mDomain; }
std::string mediaKey() const { return mMediaKey; }
std::string path() const { return mField.size() ? mStruct + '.' + mField : mStruct; }
Mapper mapper() const { return mMapper; }
Mapper reverse() const { return mReverse; }
private:
Domain mDomain; ///< parameter domain (mask) containing port, kind and config domains
std::string mMediaKey; ///< SDK key
C2String mStruct; ///< Codec 2.0 struct name
C2String mField; ///< Codec 2.0 field name
Mapper mMapper; ///< optional SDK => Codec 2.0 value mapper
Mapper mReverse; ///< optional Codec 2.0 => SDK value mapper
};
template <typename PORT, typename STREAM>
AString QueryMediaTypeImpl(
const std::shared_ptr<Codec2Client::Component> &component) {
AString mediaType;
std::vector<std::unique_ptr<C2Param>> queried;
c2_status_t c2err = component->query(
{}, { PORT::PARAM_TYPE, STREAM::PARAM_TYPE }, C2_DONT_BLOCK, &queried);
if (c2err != C2_OK && queried.size() == 0) {
ALOGD("Query media type failed => %s", asString(c2err));
} else {
PORT *portMediaType =
PORT::From(queried[0].get());
if (portMediaType) {
mediaType = AString(
portMediaType->m.value,
strnlen(portMediaType->m.value, portMediaType->flexCount()));
} else {
STREAM *streamMediaType = STREAM::From(queried[0].get());
if (streamMediaType) {
mediaType = AString(
streamMediaType->m.value,
strnlen(streamMediaType->m.value, streamMediaType->flexCount()));
}
}
ALOGD("read media type: %s", mediaType.c_str());
}
return mediaType;
}
AString QueryMediaType(
bool input, const std::shared_ptr<Codec2Client::Component> &component) {
typedef C2PortMediaTypeSetting P;
typedef C2StreamMediaTypeSetting S;
if (input) {
return QueryMediaTypeImpl<P::input, S::input>(component);
} else {
return QueryMediaTypeImpl<P::output, S::output>(component);
}
}
} // namespace
/**
* Set of standard parameters used by CCodec that are exposed to MediaCodec.
*/
struct StandardParams {
typedef CCodecConfig::Domain Domain;
// standard (MediaCodec) params are keyed by media format key
typedef std::string SdkKey;
/// used to return reference to no config mappers in getConfigMappersForSdkKey
static const std::vector<ConfigMapper> NO_MAPPERS;
/// Returns Codec 2.0 equivalent parameters for an SDK format key.
const std::vector<ConfigMapper> &getConfigMappersForSdkKey(std::string key) const {
auto it = mConfigMappers.find(key);
if (it == mConfigMappers.end()) {
ALOGD("no c2 equivalents for %s", key.c_str());
return NO_MAPPERS;
}
ALOGV("found %zu eqs for %s", it->second.size(), key.c_str());
return it->second;
}
/**
* Adds a SDK <=> Codec 2.0 parameter mapping. Multiple Codec 2.0 parameters may map to a
* single SDK key, in which case they shall be ordered from least authoritative to most
* authoritative. When constructing SDK formats, the last mapped Codec 2.0 parameter that
* is supported by the component will determine the exposed value. (TODO: perhaps restrict this
* by domain.)
*/
void add(const ConfigMapper &cm) {
auto it = mConfigMappers.find(cm.mediaKey());
ALOGV("%c%c%c%c %c%c%c %04x %9s %s => %s",
((cm.domain() & Domain::IS_INPUT) ? 'I' : ' '),
((cm.domain() & Domain::IS_OUTPUT) ? 'O' : ' '),
((cm.domain() & Domain::IS_CODED) ? 'C' : ' '),
((cm.domain() & Domain::IS_RAW) ? 'R' : ' '),
((cm.domain() & Domain::IS_CONFIG) ? 'c' : ' '),
((cm.domain() & Domain::IS_PARAM) ? 'p' : ' '),
((cm.domain() & Domain::IS_READ) ? 'r' : ' '),
cm.domain(),
it == mConfigMappers.end() ? "adding" : "extending",
cm.mediaKey().c_str(), cm.path().c_str());
if (it == mConfigMappers.end()) {
std::vector<ConfigMapper> eqs = { cm };
mConfigMappers.emplace(cm.mediaKey(), eqs);
} else {
it->second.push_back(cm);
}
}
/**
* Returns all paths for a specific domain.
*
* \param any maximum domain mask. Returned parameters must match at least one of the domains
* in the mask.
* \param all minimum domain mask. Returned parameters must match all of the domains in the
* mask. This is restricted to the bits of the maximum mask.
*/
std::vector<std::string> getPathsForDomain(
Domain any, Domain all = Domain::ALL) const {
std::vector<std::string> res;
for (const std::pair<std::string, std::vector<ConfigMapper>> &el : mConfigMappers) {
for (const ConfigMapper &cm : el.second) {
ALOGV("filtering %s %x %x %x %x", cm.path().c_str(), cm.domain(), any,
(cm.domain() & any), (cm.domain() & any & all));
if ((cm.domain() & any) && ((cm.domain() & any & all) == (any & all))) {
res.push_back(cm.path());
}
}
}
return res;
}
/**
* Returns SDK <=> Codec 2.0 mappings.
*
* TODO: replace these with better methods as this exposes the inner structure.
*/
const std::map<SdkKey, std::vector<ConfigMapper>> getKeys() const {
return mConfigMappers;
}
private:
std::map<SdkKey, std::vector<ConfigMapper>> mConfigMappers;
};
const std::vector<ConfigMapper> StandardParams::NO_MAPPERS;
CCodecConfig::CCodecConfig()
: mInputFormat(new AMessage),
mOutputFormat(new AMessage),
mUsingSurface(false) { }
void CCodecConfig::initializeStandardParams() {
typedef Domain D;
mStandardParams = std::make_shared<StandardParams>();
std::function<void(const ConfigMapper &)> add =
[params = mStandardParams](const ConfigMapper &cm) {
params->add(cm);
};
std::function<void(const ConfigMapper &)> deprecated = add;
// allow int32 or float SDK values and represent them as float
ConfigMapper::Mapper makeFloat = [](C2Value v) -> C2Value {
// convert from i32 to float
int32_t i32Value;
float fpValue;
if (v.get(&i32Value)) {
return (float)i32Value;
} else if (v.get(&fpValue)) {
return fpValue;
}
return C2Value();
};
ConfigMapper::Mapper negate = [](C2Value v) -> C2Value {
int32_t value;
if (v.get(&value)) {
return -value;
}
return C2Value();
};
add(ConfigMapper(KEY_MIME, C2_PARAMKEY_INPUT_MEDIA_TYPE, "value")
.limitTo(D::INPUT & D::READ));
add(ConfigMapper(KEY_MIME, C2_PARAMKEY_OUTPUT_MEDIA_TYPE, "value")
.limitTo(D::OUTPUT & D::READ));
add(ConfigMapper(KEY_BIT_RATE, C2_PARAMKEY_BITRATE, "value")
.limitTo(D::ENCODER & D::OUTPUT));
// we also need to put the bitrate in the max bitrate field
add(ConfigMapper(KEY_MAX_BIT_RATE, C2_PARAMKEY_BITRATE, "value")
.limitTo(D::ENCODER & D::READ & D::OUTPUT));
add(ConfigMapper(PARAMETER_KEY_VIDEO_BITRATE, C2_PARAMKEY_BITRATE, "value")
.limitTo(D::ENCODER & D::VIDEO & D::PARAM));
add(ConfigMapper(KEY_BITRATE_MODE, C2_PARAMKEY_BITRATE_MODE, "value")
.limitTo(D::ENCODER & D::CODED)
.withC2Mappers<C2Config::bitrate_mode_t>());
// remove when codecs switch to PARAMKEY and new modes
deprecated(ConfigMapper(KEY_BITRATE_MODE, "coded.bitrate-mode", "value")
.limitTo(D::ENCODER));
add(ConfigMapper(KEY_FRAME_RATE, C2_PARAMKEY_FRAME_RATE, "value")
.limitTo(D::VIDEO)
.withMappers(makeFloat, [](C2Value v) -> C2Value {
// read back always as int
float value;
if (v.get(&value)) {
return (int32_t)value;
}
return C2Value();
}));
add(ConfigMapper(KEY_MAX_INPUT_SIZE, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE, "value")
.limitTo(D::INPUT));
// remove when codecs switch to PARAMKEY
deprecated(ConfigMapper(KEY_MAX_INPUT_SIZE, "coded.max-frame-size", "value")
.limitTo(D::INPUT));
// Rotation
// Note: SDK rotation is clock-wise, while C2 rotation is counter-clock-wise
add(ConfigMapper(KEY_ROTATION, C2_PARAMKEY_VUI_ROTATION, "value")
.limitTo(D::VIDEO & D::CODED)
.withMappers(negate, negate));
add(ConfigMapper(KEY_ROTATION, C2_PARAMKEY_ROTATION, "value")
.limitTo(D::VIDEO & D::RAW)
.withMappers(negate, negate));
// android 'video-scaling'
add(ConfigMapper("android._video-scaling", C2_PARAMKEY_SURFACE_SCALING_MODE, "value")
.limitTo(D::VIDEO & D::DECODER & D::RAW));
// Color Aspects
//
// configure default for decoders
add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "range")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM))
.withC2Mappers<C2Color::range_t>());
add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "transfer")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM))
.withC2Mappers<C2Color::transfer_t>());
add(ConfigMapper("color-primaries", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "primaries")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM)));
add(ConfigMapper("color-matrix", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "matrix")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM)));
// read back final for decoder output (also, configure final aspects as well. This should be
// overwritten based on coded/default values if component supports color aspects, but is used
// as final values if component does not support aspects at all)
add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_COLOR_ASPECTS, "range")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW)
.withC2Mappers<C2Color::range_t>());
add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_COLOR_ASPECTS, "transfer")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW)
.withC2Mappers<C2Color::transfer_t>());
add(ConfigMapper("color-primaries", C2_PARAMKEY_COLOR_ASPECTS, "primaries")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW));
add(ConfigMapper("color-matrix", C2_PARAMKEY_COLOR_ASPECTS, "matrix")
.limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW));
// configure source aspects for encoders and read them back on the coded(!) port.
// This is to ensure muxing the desired aspects into the container.
add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_COLOR_ASPECTS, "range")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED)
.withC2Mappers<C2Color::range_t>());
add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_COLOR_ASPECTS, "transfer")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED)
.withC2Mappers<C2Color::transfer_t>());
add(ConfigMapper("color-primaries", C2_PARAMKEY_COLOR_ASPECTS, "primaries")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED));
add(ConfigMapper("color-matrix", C2_PARAMKEY_COLOR_ASPECTS, "matrix")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED));
// read back coded aspects for encoders (on the raw port), but also configure
// desired aspects here.
add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_VUI_COLOR_ASPECTS, "range")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW)
.withC2Mappers<C2Color::range_t>());
add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_VUI_COLOR_ASPECTS, "transfer")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW)
.withC2Mappers<C2Color::transfer_t>());
add(ConfigMapper("color-primaries", C2_PARAMKEY_VUI_COLOR_ASPECTS, "primaries")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW));
add(ConfigMapper("color-matrix", C2_PARAMKEY_VUI_COLOR_ASPECTS, "matrix")
.limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW));
// Dataspace
add(ConfigMapper("android._dataspace", C2_PARAMKEY_DATA_SPACE, "value")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
// HDR
add(ConfigMapper("smpte2086.red.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.red.x")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.red.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.red.y")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.green.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.green.x")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.green.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.green.y")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.blue.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.blue.x")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.blue.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.blue.y")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.white.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.white.x")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.white.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.white.y")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.max-luminance", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.max-luminance")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("smpte2086.min-luminance", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.min-luminance")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("cta861.max-cll", C2_PARAMKEY_HDR_STATIC_INFO, "max-cll")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("cta861.max-fall", C2_PARAMKEY_HDR_STATIC_INFO, "max-fall")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper(std::string(KEY_FEATURE_) + FEATURE_SecurePlayback,
C2_PARAMKEY_SECURE_MODE, "value"));
add(ConfigMapper(KEY_PREPEND_HEADERS_TO_SYNC_FRAMES,
C2_PARAMKEY_PREPEND_HEADER_MODE, "value")
.limitTo(D::ENCODER & D::VIDEO)
.withMappers([](C2Value v) -> C2Value {
int32_t value;
if (v.get(&value)) {
return value ? C2Value(C2Config::PREPEND_HEADER_TO_ALL_SYNC)
: C2Value(C2Config::PREPEND_HEADER_TO_NONE);
}
return C2Value();
}, [](C2Value v) -> C2Value {
C2Config::prepend_header_mode_t value;
using C2ValueType=typename _c2_reduce_enum_to_underlying_type<decltype(value)>::type;
if (v.get((C2ValueType *)&value)) {
switch (value) {
case C2Config::PREPEND_HEADER_TO_NONE: return 0;
case C2Config::PREPEND_HEADER_TO_ALL_SYNC: return 1;
case C2Config::PREPEND_HEADER_ON_CHANGE: [[fallthrough]];
default: return C2Value();
}
}
return C2Value();
}));
// remove when codecs switch to PARAMKEY
deprecated(ConfigMapper(KEY_PREPEND_HEADERS_TO_SYNC_FRAMES,
"coding.add-csd-to-sync-frames", "value")
.limitTo(D::ENCODER & D::VIDEO));
// convert to timestamp base
add(ConfigMapper(KEY_I_FRAME_INTERVAL, C2_PARAMKEY_SYNC_FRAME_INTERVAL, "value")
.withMappers([](C2Value v) -> C2Value {
// convert from i32 to float
int32_t i32Value;
float fpValue;
if (v.get(&i32Value)) {
return int64_t(1000000) * i32Value;
} else if (v.get(&fpValue)) {
return int64_t(c2_min(1000000 * fpValue + 0.5, (double)INT64_MAX));
}
return C2Value();
}, [](C2Value v) -> C2Value {
int64_t i64;
if (v.get(&i64)) {
return float(i64) / 1000000;
}
return C2Value();
}));
// remove when codecs switch to proper coding.gop (add support for calculating gop)
deprecated(ConfigMapper("i-frame-period", "coding.gop", "intra-period")
.limitTo(D::ENCODER & D::VIDEO));
add(ConfigMapper(KEY_INTRA_REFRESH_PERIOD, C2_PARAMKEY_INTRA_REFRESH, "period")
.limitTo(D::VIDEO & D::ENCODER)
.withMappers(makeFloat, [](C2Value v) -> C2Value {
// read back always as int
float value;
if (v.get(&value)) {
return (int32_t)value;
}
return C2Value();
}));
deprecated(ConfigMapper(PARAMETER_KEY_REQUEST_SYNC_FRAME,
"coding.request-sync", "value")
.limitTo(D::PARAM & D::ENCODER)
.withMapper([](C2Value) -> C2Value { return uint32_t(1); }));
add(ConfigMapper(PARAMETER_KEY_REQUEST_SYNC_FRAME,
C2_PARAMKEY_REQUEST_SYNC_FRAME, "value")
.limitTo(D::PARAM & D::ENCODER)
.withMapper([](C2Value) -> C2Value { return uint32_t(1); }));
add(ConfigMapper(KEY_OPERATING_RATE, C2_PARAMKEY_OPERATING_RATE, "value")
.limitTo(D::PARAM | D::CONFIG) // write-only
.withMapper(makeFloat));
// C2 priorities are inverted
add(ConfigMapper(KEY_PRIORITY, C2_PARAMKEY_PRIORITY, "value")
.withMappers(negate, negate));
// remove when codecs switch to PARAMKEY
deprecated(ConfigMapper(KEY_OPERATING_RATE, "ctrl.operating-rate", "value")
.withMapper(makeFloat));
deprecated(ConfigMapper(KEY_PRIORITY, "ctrl.priority", "value"));
add(ConfigMapper(KEY_WIDTH, C2_PARAMKEY_PICTURE_SIZE, "width")
.limitTo(D::VIDEO | D::IMAGE));
add(ConfigMapper(KEY_HEIGHT, C2_PARAMKEY_PICTURE_SIZE, "height")
.limitTo(D::VIDEO | D::IMAGE));
add(ConfigMapper("crop-left", C2_PARAMKEY_CROP_RECT, "left")
.limitTo(D::VIDEO | D::IMAGE));
add(ConfigMapper("crop-top", C2_PARAMKEY_CROP_RECT, "top")
.limitTo(D::VIDEO | D::IMAGE));
add(ConfigMapper("crop-width", C2_PARAMKEY_CROP_RECT, "width")
.limitTo(D::VIDEO | D::IMAGE));
add(ConfigMapper("crop-height", C2_PARAMKEY_CROP_RECT, "height")
.limitTo(D::VIDEO | D::IMAGE));
add(ConfigMapper(KEY_MAX_WIDTH, C2_PARAMKEY_MAX_PICTURE_SIZE, "width")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper(KEY_MAX_HEIGHT, C2_PARAMKEY_MAX_PICTURE_SIZE, "height")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW));
add(ConfigMapper("csd-0", C2_PARAMKEY_INIT_DATA, "value")
.limitTo(D::OUTPUT & D::READ));
add(ConfigMapper(KEY_HDR10_PLUS_INFO, C2_PARAMKEY_INPUT_HDR10_PLUS_INFO, "value")
.limitTo(D::VIDEO & D::PARAM & D::INPUT));
add(ConfigMapper(KEY_HDR10_PLUS_INFO, C2_PARAMKEY_OUTPUT_HDR10_PLUS_INFO, "value")
.limitTo(D::VIDEO & D::OUTPUT));
add(ConfigMapper(C2_PARAMKEY_TEMPORAL_LAYERING, C2_PARAMKEY_TEMPORAL_LAYERING, "")
.limitTo(D::ENCODER & D::VIDEO & D::OUTPUT));
// Pixel Format (use local key for actual pixel format as we don't distinguish between
// SDK layouts for flexible format and we need the actual SDK color format in the media format)
add(ConfigMapper("android._color-format", C2_PARAMKEY_PIXEL_FORMAT, "value")
.limitTo((D::VIDEO | D::IMAGE) & D::RAW)
.withMappers([](C2Value v) -> C2Value {
int32_t value;
if (v.get(&value)) {
switch (value) {
case COLOR_FormatSurface:
return (uint32_t)HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
case COLOR_FormatYUV420Flexible:
return (uint32_t)HAL_PIXEL_FORMAT_YCBCR_420_888;
case COLOR_FormatYUV420Planar:
case COLOR_FormatYUV420SemiPlanar:
case COLOR_FormatYUV420PackedPlanar:
case COLOR_FormatYUV420PackedSemiPlanar:
return (uint32_t)HAL_PIXEL_FORMAT_YV12;
default:
// TODO: support some sort of passthrough
break;
}
}
return C2Value();
}, [](C2Value v) -> C2Value {
uint32_t value;
if (v.get(&value)) {
switch (value) {
case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED:
return COLOR_FormatSurface;
case HAL_PIXEL_FORMAT_YV12:
case HAL_PIXEL_FORMAT_YCBCR_420_888:
return COLOR_FormatYUV420Flexible;
default:
// TODO: support some sort of passthrough
break;
}
}
return C2Value();
}));
add(ConfigMapper(KEY_CHANNEL_COUNT, C2_PARAMKEY_CHANNEL_COUNT, "value")
.limitTo(D::AUDIO)); // read back to both formats
add(ConfigMapper(KEY_CHANNEL_COUNT, C2_PARAMKEY_CODED_CHANNEL_COUNT, "value")
.limitTo(D::AUDIO & D::CODED));
add(ConfigMapper(KEY_SAMPLE_RATE, C2_PARAMKEY_SAMPLE_RATE, "value")
.limitTo(D::AUDIO)); // read back to both port formats
add(ConfigMapper(KEY_SAMPLE_RATE, C2_PARAMKEY_CODED_SAMPLE_RATE, "value")
.limitTo(D::AUDIO & D::CODED));
add(ConfigMapper(KEY_PCM_ENCODING, C2_PARAMKEY_PCM_ENCODING, "value")
.limitTo(D::AUDIO)
.withMappers([](C2Value v) -> C2Value {
int32_t value;
C2Config::pcm_encoding_t to;
if (v.get(&value) && C2Mapper::map(value, &to)) {
return to;
}
return C2Value();
}, [](C2Value v) -> C2Value {
C2Config::pcm_encoding_t value;
int32_t to;
using C2ValueType=typename _c2_reduce_enum_to_underlying_type<decltype(value)>::type;
if (v.get((C2ValueType*)&value) && C2Mapper::map(value, &to)) {
return to;
}
return C2Value();
}));
add(ConfigMapper(KEY_IS_ADTS, C2_PARAMKEY_AAC_PACKAGING, "value")
.limitTo(D::AUDIO & D::CODED)
.withMappers([](C2Value v) -> C2Value {
int32_t value;
if (v.get(&value) && value) {
return C2Config::AAC_PACKAGING_ADTS;
}
return C2Value();
}, [](C2Value v) -> C2Value {
uint32_t value;
if (v.get(&value) && value == C2Config::AAC_PACKAGING_ADTS) {
return (int32_t)1;
}
return C2Value();
}));
std::shared_ptr<C2Mapper::ProfileLevelMapper> mapper =
C2Mapper::GetProfileLevelMapper(mCodingMediaType);
add(ConfigMapper(KEY_PROFILE, C2_PARAMKEY_PROFILE_LEVEL, "profile")
.limitTo(D::CODED)
.withMappers([mapper](C2Value v) -> C2Value {
C2Config::profile_t c2 = PROFILE_UNUSED;
int32_t sdk;
if (mapper && v.get(&sdk) && mapper->mapProfile(sdk, &c2)) {
return c2;
}
return PROFILE_UNUSED;
}, [mapper](C2Value v) -> C2Value {
C2Config::profile_t c2;
int32_t sdk;
using C2ValueType=typename _c2_reduce_enum_to_underlying_type<decltype(c2)>::type;
if (mapper && v.get((C2ValueType*)&c2) && mapper->mapProfile(c2, &sdk)) {
return sdk;
}
return C2Value();
}));
add(ConfigMapper(KEY_LEVEL, C2_PARAMKEY_PROFILE_LEVEL, "level")
.limitTo(D::CODED)
.withMappers([mapper](C2Value v) -> C2Value {
C2Config::level_t c2 = LEVEL_UNUSED;
int32_t sdk;
if (mapper && v.get(&sdk) && mapper->mapLevel(sdk, &c2)) {
return c2;
}
return LEVEL_UNUSED;
}, [mapper](C2Value v) -> C2Value {
C2Config::level_t c2;
int32_t sdk;
using C2ValueType=typename _c2_reduce_enum_to_underlying_type<decltype(c2)>::type;
if (mapper && v.get((C2ValueType*)&c2) && mapper->mapLevel(c2, &sdk)) {
return sdk;
}
return C2Value();
}));
// convert to dBFS and add default
add(ConfigMapper(KEY_AAC_DRC_TARGET_REFERENCE_LEVEL, C2_PARAMKEY_DRC_TARGET_REFERENCE_LEVEL, "value")
.limitTo(D::AUDIO & D::DECODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < 0) {
value = property_get_int32(PROP_DRC_OVERRIDE_REF_LEVEL, DRC_DEFAULT_MOBILE_REF_LEVEL);
}
return float(-0.25 * c2_min(value, 127));
}));
// convert to 0-1 (%) and add default
add(ConfigMapper(KEY_AAC_DRC_ATTENUATION_FACTOR, C2_PARAMKEY_DRC_ATTENUATION_FACTOR, "value")
.limitTo(D::AUDIO & D::DECODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < 0) {
value = property_get_int32(PROP_DRC_OVERRIDE_CUT, DRC_DEFAULT_MOBILE_DRC_CUT);
}
return float(c2_min(value, 127) / 127.);
}));
// convert to 0-1 (%) and add default
add(ConfigMapper(KEY_AAC_DRC_BOOST_FACTOR, C2_PARAMKEY_DRC_BOOST_FACTOR, "value")
.limitTo(D::AUDIO & D::DECODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < 0) {
value = property_get_int32(PROP_DRC_OVERRIDE_BOOST, DRC_DEFAULT_MOBILE_DRC_BOOST);
}
return float(c2_min(value, 127) / 127.);
}));
// convert to compression type and add default
add(ConfigMapper(KEY_AAC_DRC_HEAVY_COMPRESSION, C2_PARAMKEY_DRC_COMPRESSION_MODE, "value")
.limitTo(D::AUDIO & D::DECODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < 0) {
value = property_get_int32(PROP_DRC_OVERRIDE_HEAVY, DRC_DEFAULT_MOBILE_DRC_HEAVY);
}
return value == 1 ? C2Config::DRC_COMPRESSION_HEAVY : C2Config::DRC_COMPRESSION_LIGHT;
}));
// convert to dBFS and add default
add(ConfigMapper(KEY_AAC_ENCODED_TARGET_LEVEL, C2_PARAMKEY_DRC_ENCODED_TARGET_LEVEL, "value")
.limitTo(D::AUDIO & D::DECODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < 0) {
value = property_get_int32(PROP_DRC_OVERRIDE_ENC_LEVEL, DRC_DEFAULT_MOBILE_ENC_LEVEL);
}
return float(-0.25 * c2_min(value, 127));
}));
// convert to effect type (these map to SDK values) and add default
add(ConfigMapper(KEY_AAC_DRC_EFFECT_TYPE, C2_PARAMKEY_DRC_EFFECT_TYPE, "value")
.limitTo(D::AUDIO & D::DECODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < -1 || value > 8) {
value = property_get_int32(PROP_DRC_OVERRIDE_EFFECT, DRC_DEFAULT_MOBILE_DRC_EFFECT);
// ensure value is within range
if (value < -1 || value > 8) {
value = DRC_DEFAULT_MOBILE_DRC_EFFECT;
}
}
return value;
}));
add(ConfigMapper(KEY_AAC_MAX_OUTPUT_CHANNEL_COUNT, C2_PARAMKEY_MAX_CHANNEL_COUNT, "value")
.limitTo(D::AUDIO));
add(ConfigMapper(KEY_AAC_SBR_MODE, C2_PARAMKEY_AAC_SBR_MODE, "value")
.limitTo(D::AUDIO & D::ENCODER & D::CONFIG)
.withMapper([](C2Value v) -> C2Value {
int32_t value;
if (!v.get(&value) || value < 0) {
return C2Config::AAC_SBR_AUTO;
}
switch (value) {
case 0: return C2Config::AAC_SBR_OFF;
case 1: return C2Config::AAC_SBR_SINGLE_RATE;
case 2: return C2Config::AAC_SBR_DUAL_RATE;
default: return C2Config::AAC_SBR_AUTO + 1; // invalid value
}
}));
add(ConfigMapper(KEY_QUALITY, C2_PARAMKEY_QUALITY, "value")
.limitTo(D::ENCODER & (D::CONFIG | D::PARAM)));
add(ConfigMapper(KEY_FLAC_COMPRESSION_LEVEL, C2_PARAMKEY_COMPLEXITY, "value")
.limitTo(D::AUDIO & D::ENCODER));
add(ConfigMapper("complexity", C2_PARAMKEY_COMPLEXITY, "value")
.limitTo(D::ENCODER & (D::CONFIG | D::PARAM)));
add(ConfigMapper(KEY_GRID_COLUMNS, C2_PARAMKEY_TILE_LAYOUT, "columns")
.limitTo(D::IMAGE));
add(ConfigMapper(KEY_GRID_ROWS, C2_PARAMKEY_TILE_LAYOUT, "rows")
.limitTo(D::IMAGE));
add(ConfigMapper(KEY_TILE_WIDTH, C2_PARAMKEY_TILE_LAYOUT, "tile.width")
.limitTo(D::IMAGE));
add(ConfigMapper(KEY_TILE_HEIGHT, C2_PARAMKEY_TILE_LAYOUT, "tile.height")
.limitTo(D::IMAGE));
add(ConfigMapper(KEY_LATENCY, C2_PARAMKEY_PIPELINE_DELAY_REQUEST, "value")
.limitTo(D::VIDEO & D::ENCODER));
add(ConfigMapper(C2_PARAMKEY_INPUT_TIME_STRETCH, C2_PARAMKEY_INPUT_TIME_STRETCH, "value"));
/* still to do
constexpr char KEY_PUSH_BLANK_BUFFERS_ON_STOP[] = "push-blank-buffers-on-shutdown";
not yet used by MediaCodec, but defined as MediaFormat
KEY_AUDIO_SESSION_ID // we use "audio-hw-sync"
KEY_OUTPUT_REORDER_DEPTH
*/
}
status_t CCodecConfig::initialize(
const std::shared_ptr<Codec2Client> &client,
const std::shared_ptr<Codec2Client::Component> &component) {
C2ComponentDomainSetting domain(C2Component::DOMAIN_OTHER);
C2ComponentKindSetting kind(C2Component::KIND_OTHER);
std::vector<std::unique_ptr<C2Param>> queried;
c2_status_t c2err = component->query({ &domain, &kind }, {}, C2_DONT_BLOCK, &queried);
if (c2err != C2_OK) {
ALOGD("Query domain & kind failed => %s", asString(c2err));
// TEMP: determine kind from component name
if (kind.value == C2Component::KIND_OTHER) {
if (component->getName().find("encoder") != std::string::npos) {
kind.value = C2Component::KIND_ENCODER;
} else if (component->getName().find("decoder") != std::string::npos) {
kind.value = C2Component::KIND_DECODER;
}
}
// TEMP: determine domain from media type (port (preferred) or stream #0)
if (domain.value == C2Component::DOMAIN_OTHER) {
AString mediaType = QueryMediaType(true /* input */, component);
if (mediaType.startsWith("audio/")) {
domain.value = C2Component::DOMAIN_AUDIO;
} else if (mediaType.startsWith("video/")) {
domain.value = C2Component::DOMAIN_VIDEO;
} else if (mediaType.startsWith("image/")) {
domain.value = C2Component::DOMAIN_IMAGE;
}
}
}
mDomain = (domain.value == C2Component::DOMAIN_VIDEO ? Domain::IS_VIDEO :
domain.value == C2Component::DOMAIN_IMAGE ? Domain::IS_IMAGE :
domain.value == C2Component::DOMAIN_AUDIO ? Domain::IS_AUDIO : Domain::OTHER_DOMAIN)
| (kind.value == C2Component::KIND_DECODER ? Domain::IS_DECODER :
kind.value == C2Component::KIND_ENCODER ? Domain::IS_ENCODER : Domain::OTHER_KIND);
mInputDomain = Domain(((mDomain & IS_DECODER) ? IS_CODED : IS_RAW) | IS_INPUT);
mOutputDomain = Domain(((mDomain & IS_ENCODER) ? IS_CODED : IS_RAW) | IS_OUTPUT);
ALOGV("domain is %#x (%u %u)", mDomain, domain.value, kind.value);
std::vector<C2Param::Index> paramIndices;
switch (kind.value) {
case C2Component::KIND_DECODER:
mCodingMediaType = QueryMediaType(true /* input */, component).c_str();
break;
case C2Component::KIND_ENCODER:
mCodingMediaType = QueryMediaType(false /* input */, component).c_str();
break;
default:
mCodingMediaType = "";
}
c2err = component->querySupportedParams(&mParamDescs);
if (c2err != C2_OK) {
ALOGD("Query supported params failed after returning %zu values => %s",
mParamDescs.size(), asString(c2err));
return UNKNOWN_ERROR;
}
for (const std::shared_ptr<C2ParamDescriptor> &desc : mParamDescs) {
mSupportedIndices.emplace(desc->index());
}
mReflector = client->getParamReflector();
if (mReflector == nullptr) {
ALOGE("Failed to get param reflector");
return UNKNOWN_ERROR;
}
// enumerate all fields
mParamUpdater = std::make_shared<ReflectedParamUpdater>();
mParamUpdater->clear();
mParamUpdater->supportWholeParam(
C2_PARAMKEY_TEMPORAL_LAYERING, C2StreamTemporalLayeringTuning::CORE_INDEX);
mParamUpdater->addParamDesc(mReflector, mParamDescs);
// TEMP: add some standard fields even if not reflected
if (kind.value == C2Component::KIND_ENCODER) {
mParamUpdater->addStandardParam<C2StreamInitDataInfo::output>(C2_PARAMKEY_INIT_DATA);
}
if (domain.value == C2Component::DOMAIN_IMAGE || domain.value == C2Component::DOMAIN_VIDEO) {
if (kind.value != C2Component::KIND_ENCODER) {
addLocalParam<C2StreamPictureSizeInfo::output>(C2_PARAMKEY_PICTURE_SIZE);
addLocalParam<C2StreamCropRectInfo::output>(C2_PARAMKEY_CROP_RECT);
addLocalParam(
new C2StreamPixelAspectRatioInfo::output(0u, 1u, 1u),
C2_PARAMKEY_PIXEL_ASPECT_RATIO);
addLocalParam(new C2StreamRotationInfo::output(0u, 0), C2_PARAMKEY_ROTATION);
addLocalParam(new C2StreamColorAspectsInfo::output(0u), C2_PARAMKEY_COLOR_ASPECTS);
addLocalParam<C2StreamDataSpaceInfo::output>(C2_PARAMKEY_DATA_SPACE);
addLocalParam<C2StreamHdrStaticInfo::output>(C2_PARAMKEY_HDR_STATIC_INFO);
addLocalParam(new C2StreamSurfaceScalingInfo::output(0u, VIDEO_SCALING_MODE_SCALE_TO_FIT),
C2_PARAMKEY_SURFACE_SCALING_MODE);
} else {
addLocalParam(new C2StreamColorAspectsInfo::input(0u), C2_PARAMKEY_COLOR_ASPECTS);
}
}
initializeStandardParams();
// subscribe to all supported standard (exposed) params
// TODO: limit this to params that are actually in the domain
std::vector<std::string> formatKeys = mStandardParams->getPathsForDomain(Domain(1 << 30));
std::vector<C2Param::Index> indices;
mParamUpdater->getParamIndicesForKeys(formatKeys, &indices);
mSubscribedIndices.insert(indices.begin(), indices.end());
// also subscribe to some non-SDK standard parameters
// for number of input/output buffers
mSubscribedIndices.emplace(C2PortSuggestedBufferCountTuning::input::PARAM_TYPE);
mSubscribedIndices.emplace(C2PortSuggestedBufferCountTuning::output::PARAM_TYPE);
mSubscribedIndices.emplace(C2ActualPipelineDelayTuning::PARAM_TYPE);
mSubscribedIndices.emplace(C2PortActualDelayTuning::input::PARAM_TYPE);
mSubscribedIndices.emplace(C2PortActualDelayTuning::output::PARAM_TYPE);
// for output buffer array allocation
mSubscribedIndices.emplace(C2StreamMaxBufferSizeInfo::output::PARAM_TYPE);
// init data (CSD)
mSubscribedIndices.emplace(C2StreamInitDataInfo::output::PARAM_TYPE);
return OK;
}
status_t CCodecConfig::subscribeToConfigUpdate(
const std::shared_ptr<Codec2Client::Component> &component,
const std::vector<C2Param::Index> &indices,
c2_blocking_t blocking) {
mSubscribedIndices.insert(indices.begin(), indices.end());
// TODO: enable this when components no longer crash on this config
if (mSubscribedIndices.size() != mSubscribedIndicesSize && false) {
std::vector<uint32_t> indices;
for (C2Param::Index ix : mSubscribedIndices) {
indices.push_back(ix);
}
std::unique_ptr<C2SubscribedParamIndicesTuning> subscribeTuning =
C2SubscribedParamIndicesTuning::AllocUnique(indices);
std::vector<std::unique_ptr<C2SettingResult>> results;
c2_status_t c2Err = component->config({ subscribeTuning.get() }, blocking, &results);
if (c2Err != C2_OK && c2Err != C2_BAD_INDEX) {
ALOGD("Failed to subscribe to parameters => %s", asString(c2Err));
// TODO: error
}
ALOGV("Subscribed to %zu params", mSubscribedIndices.size());
mSubscribedIndicesSize = mSubscribedIndices.size();
}
return OK;
}
status_t CCodecConfig::queryConfiguration(
const std::shared_ptr<Codec2Client::Component> &component) {
// query all subscribed parameters
std::vector<C2Param::Index> indices(mSubscribedIndices.begin(), mSubscribedIndices.end());
std::vector<std::unique_ptr<C2Param>> queried;
c2_status_t c2Err = component->query({}, indices, C2_MAY_BLOCK, &queried);
if (c2Err != OK) {
ALOGI("query failed after returning %zu values (%s)", queried.size(), asString(c2Err));
// TODO: error
}
updateConfiguration(queried, ALL);
return OK;
}
bool CCodecConfig::updateConfiguration(
std::vector<std::unique_ptr<C2Param>> &configUpdate, Domain domain) {
ALOGV("updating configuration with %zu params", configUpdate.size());
bool changed = false;
for (std::unique_ptr<C2Param> &p : configUpdate) {
if (p && *p) {
auto insertion = mCurrentConfig.emplace(p->index(), nullptr);
if (insertion.second || *insertion.first->second != *p) {
if (mSupportedIndices.count(p->index()) || mLocalParams.count(p->index())) {
// only track changes in supported (reflected or local) indices
changed = true;
} else {
ALOGV("an unlisted config was %s: %#x",
insertion.second ? "added" : "updated", p->index());
}
}
insertion.first->second = std::move(p);
}
}
ALOGV("updated configuration has %zu params (%s)", mCurrentConfig.size(),
changed ? "CHANGED" : "no change");
if (changed) {
return updateFormats(domain);
}
return false;
}
bool CCodecConfig::updateFormats(Domain domain) {
// get addresses of params in the current config
std::vector<C2Param*> paramPointers;
for (const auto &it : mCurrentConfig) {
paramPointers.push_back(it.second.get());
}
ReflectedParamUpdater::Dict reflected = mParamUpdater->getParams(paramPointers);
ALOGD("c2 config is %s", reflected.debugString().c_str());
bool changed = false;
if (domain & mInputDomain) {
sp<AMessage> oldFormat = mInputFormat;
mInputFormat = mInputFormat->dup(); // trigger format changed
mInputFormat->extend(getSdkFormatForDomain(reflected, mInputDomain));
if (mInputFormat->countEntries() != oldFormat->countEntries()
|| mInputFormat->changesFrom(oldFormat)->countEntries() > 0) {
changed = true;
} else {
mInputFormat = oldFormat; // no change
}
}
if (domain & mOutputDomain) {
sp<AMessage> oldFormat = mOutputFormat;
mOutputFormat = mOutputFormat->dup(); // trigger output format changed
mOutputFormat->extend(getSdkFormatForDomain(reflected, mOutputDomain));
if (mOutputFormat->countEntries() != oldFormat->countEntries()
|| mOutputFormat->changesFrom(oldFormat)->countEntries() > 0) {
changed = true;
} else {
mOutputFormat = oldFormat; // no change
}
}
ALOGV_IF(changed, "format(s) changed");
return changed;
}
sp<AMessage> CCodecConfig::getSdkFormatForDomain(
const ReflectedParamUpdater::Dict &reflected, Domain portDomain) const {
sp<AMessage> msg = new AMessage;
for (const std::pair<std::string, std::vector<ConfigMapper>> &el : mStandardParams->getKeys()) {
for (const ConfigMapper &cm : el.second) {
if ((cm.domain() & portDomain) == 0 // input-output-coded-raw
|| (cm.domain() & mDomain) != mDomain // component domain + kind (these must match)
|| (cm.domain() & IS_READ) == 0) {
continue;
}
auto it = reflected.find(cm.path());
if (it == reflected.end()) {
continue;
}
C2Value c2Value;
sp<ABuffer> bufValue;
AString strValue;
AMessage::ItemData item;
if (it->second.find(&c2Value)) {
item = cm.mapToMessage(c2Value);
} else if (it->second.find(&bufValue)) {
item.set(bufValue);
} else if (it->second.find(&strValue)) {
item.set(strValue);
} else {
ALOGD("unexpected untyped query value for key: %s", cm.path().c_str());
continue;
}
msg->setItem(el.first.c_str(), item);
}
}
{ // convert from Codec 2.0 rect to MediaFormat rect and add crop rect if not present
int32_t left, top, width, height;
if (msg->findInt32("crop-left", &left) && msg->findInt32("crop-width", &width)
&& msg->findInt32("crop-top", &top) && msg->findInt32("crop-height", &height)
&& left >= 0 && width >=0 && width <= INT32_MAX - left
&& top >= 0 && height >=0 && height <= INT32_MAX - top) {
msg->removeEntryAt(msg->findEntryByName("crop-left"));
msg->removeEntryAt(msg->findEntryByName("crop-top"));
msg->removeEntryAt(msg->findEntryByName("crop-width"));
msg->removeEntryAt(msg->findEntryByName("crop-height"));
msg->setRect("crop", left, top, left + width - 1, top + height - 1);
} else if (msg->findInt32("width", &width) && msg->findInt32("height", &height)) {
msg->setRect("crop", 0, 0, width - 1, height - 1);
}
}
{ // convert temporal layering to schema
sp<ABuffer> tmp;
if (msg->findBuffer(C2_PARAMKEY_TEMPORAL_LAYERING, &tmp) && tmp != nullptr) {
C2StreamTemporalLayeringTuning *layering =
C2StreamTemporalLayeringTuning::From(C2Param::From(tmp->data(), tmp->size()));
if (layering && layering->m.layerCount > 0
&& layering->m.bLayerCount < layering->m.layerCount) {
// check if this is webrtc compatible
AString mime;
if (msg->findString(KEY_MIME, &mime) &&
mime.equalsIgnoreCase(MIMETYPE_VIDEO_VP8) &&
layering->m.bLayerCount == 0 &&
(layering->m.layerCount == 1
|| (layering->m.layerCount == 2
&& layering->flexCount() >= 1
&& layering->m.bitrateRatios[0] == .6f)
|| (layering->m.layerCount == 3
&& layering->flexCount() >= 2
&& layering->m.bitrateRatios[0] == .4f
&& layering->m.bitrateRatios[1] == .6f)
|| (layering->m.layerCount == 4
&& layering->flexCount() >= 3
&& layering->m.bitrateRatios[0] == .25f
&& layering->m.bitrateRatios[1] == .4f
&& layering->m.bitrateRatios[2] == .6f))) {
msg->setString(KEY_TEMPORAL_LAYERING, AStringPrintf(
"webrtc.vp8.%u-layer", layering->m.layerCount));
} else if (layering->m.bLayerCount) {
msg->setString(KEY_TEMPORAL_LAYERING, AStringPrintf(
"android.generic.%u+%u",
layering->m.layerCount - layering->m.bLayerCount,
layering->m.bLayerCount));
} else if (layering->m.bLayerCount) {
msg->setString(KEY_TEMPORAL_LAYERING, AStringPrintf(
"android.generic.%u", layering->m.layerCount));
}
}
msg->removeEntryAt(msg->findEntryByName(C2_PARAMKEY_TEMPORAL_LAYERING));
}
}
{ // convert color info
C2Color::primaries_t primaries;
C2Color::matrix_t matrix;
if (msg->findInt32("color-primaries", (int32_t*)&primaries)
&& msg->findInt32("color-matrix", (int32_t*)&matrix)) {
int32_t standard;
if (C2Mapper::map(primaries, matrix, &standard)) {
msg->setInt32(KEY_COLOR_STANDARD, standard);
}
msg->removeEntryAt(msg->findEntryByName("color-primaries"));
msg->removeEntryAt(msg->findEntryByName("color-matrix"));
}
// calculate dataspace for raw graphic buffers if not specified by component, or if
// using surface with unspecified aspects (as those must be defaulted which may change
// the dataspace)
if ((portDomain & IS_RAW) && (mDomain & (IS_IMAGE | IS_VIDEO))) {
android_dataspace dataspace;
ColorAspects aspects = {
ColorAspects::RangeUnspecified, ColorAspects::PrimariesUnspecified,
ColorAspects::TransferUnspecified, ColorAspects::MatrixUnspecified
};
ColorUtils::getColorAspectsFromFormat(msg, aspects);
ColorAspects origAspects = aspects;
if (mUsingSurface) {
// get image size (default to HD)
int32_t width = 1280;
int32_t height = 720;
int32_t left, top, right, bottom;
if (msg->findRect("crop", &left, &top, &right, &bottom)) {
width = right - left + 1;
height = bottom - top + 1;
} else {
(void)msg->findInt32(KEY_WIDTH, &width);
(void)msg->findInt32(KEY_HEIGHT, &height);
}
ColorUtils::setDefaultCodecColorAspectsIfNeeded(aspects, width, height);
ColorUtils::setColorAspectsIntoFormat(aspects, msg);
}
if (!msg->findInt32("android._dataspace", (int32_t*)&dataspace)
|| aspects.mRange != origAspects.mRange
|| aspects.mPrimaries != origAspects.mPrimaries
|| aspects.mTransfer != origAspects.mTransfer
|| aspects.mMatrixCoeffs != origAspects.mMatrixCoeffs) {
dataspace = ColorUtils::getDataSpaceForColorAspects(aspects, true /* mayExpand */);
msg->setInt32("android._dataspace", dataspace);
}
}
// HDR static info
C2HdrStaticMetadataStruct hdr;
if (msg->findFloat("smpte2086.red.x", &hdr.mastering.red.x)
&& msg->findFloat("smpte2086.red.y", &hdr.mastering.red.y)
&& msg->findFloat("smpte2086.green.x", &hdr.mastering.green.x)
&& msg->findFloat("smpte2086.green.y", &hdr.mastering.green.y)
&& msg->findFloat("smpte2086.blue.x", &hdr.mastering.blue.x)
&& msg->findFloat("smpte2086.blue.y", &hdr.mastering.blue.y)
&& msg->findFloat("smpte2086.white.x", &hdr.mastering.white.x)
&& msg->findFloat("smpte2086.white.y", &hdr.mastering.white.y)
&& msg->findFloat("smpte2086.max-luminance", &hdr.mastering.maxLuminance)
&& msg->findFloat("smpte2086.min-luminance", &hdr.mastering.minLuminance)
&& msg->findFloat("cta861.max-cll", &hdr.maxCll)
&& msg->findFloat("cta861.max-fall", &hdr.maxFall)) {
if (hdr.mastering.red.x >= 0 && hdr.mastering.red.x <= 1
&& hdr.mastering.red.y >= 0 && hdr.mastering.red.y <= 1
&& hdr.mastering.green.x >= 0 && hdr.mastering.green.x <= 1
&& hdr.mastering.green.y >= 0 && hdr.mastering.green.y <= 1
&& hdr.mastering.blue.x >= 0 && hdr.mastering.blue.x <= 1
&& hdr.mastering.blue.y >= 0 && hdr.mastering.blue.y <= 1
&& hdr.mastering.white.x >= 0 && hdr.mastering.white.x <= 1
&& hdr.mastering.white.y >= 0 && hdr.mastering.white.y <= 1
&& hdr.mastering.maxLuminance >= 0 && hdr.mastering.maxLuminance <= 65535
&& hdr.mastering.minLuminance >= 0 && hdr.mastering.minLuminance <= 6.5535
&& hdr.maxCll >= 0 && hdr.maxCll <= 65535
&& hdr.maxFall >= 0 && hdr.maxFall <= 65535) {
HDRStaticInfo meta;
meta.mID = meta.kType1;
meta.sType1.mR.x = hdr.mastering.red.x / 0.00002 + 0.5;
meta.sType1.mR.y = hdr.mastering.red.y / 0.00002 + 0.5;
meta.sType1.mG.x = hdr.mastering.green.x / 0.00002 + 0.5;
meta.sType1.mG.y = hdr.mastering.green.y / 0.00002 + 0.5;
meta.sType1.mB.x = hdr.mastering.blue.x / 0.00002 + 0.5;
meta.sType1.mB.y = hdr.mastering.blue.y / 0.00002 + 0.5;
meta.sType1.mW.x = hdr.mastering.white.x / 0.00002 + 0.5;
meta.sType1.mW.y = hdr.mastering.white.y / 0.00002 + 0.5;
meta.sType1.mMaxDisplayLuminance = hdr.mastering.maxLuminance + 0.5;
meta.sType1.mMinDisplayLuminance = hdr.mastering.minLuminance / 0.0001 + 0.5;
meta.sType1.mMaxContentLightLevel = hdr.maxCll + 0.5;
meta.sType1.mMaxFrameAverageLightLevel = hdr.maxFall + 0.5;
msg->removeEntryAt(msg->findEntryByName("smpte2086.red.x"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.red.y"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.green.x"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.green.y"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.blue.x"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.blue.y"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.white.x"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.white.y"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.max-luminance"));
msg->removeEntryAt(msg->findEntryByName("smpte2086.min-luminance"));
msg->removeEntryAt(msg->findEntryByName("cta861.max-cll"));
msg->removeEntryAt(msg->findEntryByName("cta861.max-fall"));
msg->setBuffer(KEY_HDR_STATIC_INFO, ABuffer::CreateAsCopy(&meta, sizeof(meta)));
} else {
ALOGD("found invalid HDR static metadata %s", msg->debugString(8).c_str());
}
}
}
ALOGV("converted to SDK values as %s", msg->debugString().c_str());
return msg;
}
/// converts an AMessage value to a ParamUpdater value
static void convert(const AMessage::ItemData &from, ReflectedParamUpdater::Value *to) {
int32_t int32Value;
int64_t int64Value;
sp<ABuffer> bufValue;
AString strValue;
float floatValue;
double doubleValue;
if (from.find(&int32Value)) {
to->set(int32Value);
} else if (from.find(&int64Value)) {
to->set(int64Value);
} else if (from.find(&bufValue)) {
to->set(bufValue);
} else if (from.find(&strValue)) {
to->set(strValue);
} else if (from.find(&floatValue)) {
to->set(C2Value(floatValue));
} else if (from.find(&doubleValue)) {
// convert double to float
to->set(C2Value((float)doubleValue));
}
// ignore all other AMessage types
}
/// relaxes Codec 2.0 specific value types to SDK types (mainly removes signedness and counterness
/// from 32/64-bit values.)
static void relaxValues(ReflectedParamUpdater::Value &item) {
C2Value c2Value;
int32_t int32Value;
int64_t int64Value;
(void)item.find(&c2Value);
if (c2Value.get(&int32Value) || c2Value.get((uint32_t*)&int32Value)
|| c2Value.get((c2_cntr32_t*)&int32Value)) {
item.set(int32Value);
} else if (c2Value.get(&int64Value)
|| c2Value.get((uint64_t*)&int64Value)
|| c2Value.get((c2_cntr64_t*)&int64Value)) {
item.set(int64Value);
}
}
ReflectedParamUpdater::Dict CCodecConfig::getReflectedFormat(
const sp<AMessage> ¶ms_, Domain configDomain) const {
// create a modifiable copy of params
sp<AMessage> params = params_->dup();
ALOGV("filtering with config domain %x", configDomain);
// convert some macro parameters to Codec 2.0 specific expressions
{ // make i-frame-interval frame based
float iFrameInterval;
if (params->findAsFloat(KEY_I_FRAME_INTERVAL, &iFrameInterval)) {
float frameRate;
if (params->findAsFloat(KEY_FRAME_RATE, &frameRate)) {
params->setInt32("i-frame-period",
(frameRate <= 0 || iFrameInterval < 0)
? -1 /* no sync frames */
: (int32_t)c2_min(iFrameInterval * frameRate + 0.5,
(float)INT32_MAX));
}
}
}
if (mDomain == (IS_VIDEO | IS_ENCODER)) {
// convert capture-rate into input-time-stretch
float frameRate, captureRate;
if (params->findAsFloat(KEY_FRAME_RATE, &frameRate)) {
if (!params->findAsFloat("time-lapse-fps", &captureRate)
&& !params->findAsFloat(KEY_CAPTURE_RATE, &captureRate)) {
captureRate = frameRate;
}
if (captureRate > 0 && frameRate > 0) {
params->setFloat(C2_PARAMKEY_INPUT_TIME_STRETCH, captureRate / frameRate);
}
}
}
{ // reflect temporal layering into a binary blob
AString schema;
if (params->findString(KEY_TEMPORAL_LAYERING, &schema)) {
unsigned int numLayers = 0;
unsigned int numBLayers = 0;
int tags;
char dummy;
std::unique_ptr<C2StreamTemporalLayeringTuning::output> layering;
if (sscanf(schema.c_str(), "webrtc.vp8.%u-layer%c", &numLayers, &dummy) == 1
&& numLayers > 0) {
switch (numLayers) {
case 1:
layering = C2StreamTemporalLayeringTuning::output::AllocUnique(
{}, 0u, 1u, 0u);
break;
case 2:
layering = C2StreamTemporalLayeringTuning::output::AllocUnique(
{ .6f }, 0u, 2u, 0u);
break;
case 3:
layering = C2StreamTemporalLayeringTuning::output::AllocUnique(
{ .4f, .6f }, 0u, 3u, 0u);
break;
default:
layering = C2StreamTemporalLayeringTuning::output::AllocUnique(
{ .25f, .4f, .6f }, 0u, 4u, 0u);
break;
}
} else if ((tags = sscanf(schema.c_str(), "android.generic.%u%c%u%c",
&numLayers, &dummy, &numBLayers, &dummy))
&& (tags == 1 || (tags == 3 && dummy == '+'))
&& numLayers > 0 && numLayers < UINT32_MAX - numBLayers) {
layering = C2StreamTemporalLayeringTuning::output::AllocUnique(
{}, 0u, numLayers + numBLayers, numBLayers);
} else {
ALOGD("Ignoring unsupported ts-schema [%s]", schema.c_str());
}
if (layering) {
params->setBuffer(C2_PARAMKEY_TEMPORAL_LAYERING,
ABuffer::CreateAsCopy(layering.get(), layering->size()));
}
}
}
{ // convert from MediaFormat rect to Codec 2.0 rect
int32_t offset;
int32_t end;
AMessage::ItemData item;
if (params->findInt32("crop-left", &offset) && params->findInt32("crop-right", &end)
&& offset >= 0 && end >= offset - 1) {
size_t ix = params->findEntryByName("crop-right");
params->setEntryNameAt(ix, "crop-width");
item.set(end - offset + 1);
params->setEntryAt(ix, item);
}
if (params->findInt32("crop-top", &offset) && params->findInt32("crop-bottom", &end)
&& offset >= 0 && end >= offset - 1) {
size_t ix = params->findEntryByName("crop-bottom");
params->setEntryNameAt(ix, "crop-height");
item.set(end - offset + 1);
params->setEntryAt(ix, item);
}
}
{ // convert color info
int32_t standard;
if (params->findInt32(KEY_COLOR_STANDARD, &standard)) {
C2Color::primaries_t primaries;
C2Color::matrix_t matrix;
if (C2Mapper::map(standard, &primaries, &matrix)) {
params->setInt32("color-primaries", primaries);
params->setInt32("color-matrix", matrix);
}
}
sp<ABuffer> hdrMeta;
if (params->findBuffer(KEY_HDR_STATIC_INFO, &hdrMeta)
&& hdrMeta->size() == sizeof(HDRStaticInfo)) {
HDRStaticInfo *meta = (HDRStaticInfo*)hdrMeta->data();
if (meta->mID == meta->kType1) {
params->setFloat("smpte2086.red.x", meta->sType1.mR.x * 0.00002);
params->setFloat("smpte2086.red.y", meta->sType1.mR.y * 0.00002);
params->setFloat("smpte2086.green.x", meta->sType1.mG.x * 0.00002);
params->setFloat("smpte2086.green.y", meta->sType1.mG.y * 0.00002);
params->setFloat("smpte2086.blue.x", meta->sType1.mB.x * 0.00002);
params->setFloat("smpte2086.blue.y", meta->sType1.mB.y * 0.00002);
params->setFloat("smpte2086.white.x", meta->sType1.mW.x * 0.00002);
params->setFloat("smpte2086.white.y", meta->sType1.mW.y * 0.00002);
params->setFloat("smpte2086.max-luminance", meta->sType1.mMaxDisplayLuminance);
params->setFloat("smpte2086.min-luminance", meta->sType1.mMinDisplayLuminance * 0.0001);
params->setFloat("cta861.max-cll", meta->sType1.mMaxContentLightLevel);
params->setFloat("cta861.max-fall", meta->sType1.mMaxFrameAverageLightLevel);
}
}
}
// this is to verify that we set proper signedness for standard parameters
bool beVeryStrict = property_get_bool("debug.stagefright.ccodec_strict_type", false);
// this is to allow vendors to use the wrong signedness for standard parameters
bool beVeryLax = property_get_bool("debug.stagefright.ccodec_lax_type", false);
ReflectedParamUpdater::Dict filtered;
for (size_t ix = 0; ix < params->countEntries(); ++ix) {
AMessage::Type type;
AString name = params->getEntryNameAt(ix, &type);
AMessage::ItemData msgItem = params->getEntryAt(ix);
ReflectedParamUpdater::Value item;
convert(msgItem, &item); // convert item to param updater item
if (name.startsWith("vendor.")) {
// vendor params pass through as is
filtered.emplace(name.c_str(), item);
continue;
}
// standard parameters may get modified, filtered or duplicated
for (const ConfigMapper &cm : mStandardParams->getConfigMappersForSdkKey(name.c_str())) {
// note: we ignore port domain for configuration
if ((cm.domain() & configDomain)
// component domain + kind (these must match)
&& (cm.domain() & mDomain) == mDomain) {
// map arithmetic values, pass through string or buffer
switch (type) {
case AMessage::kTypeBuffer:
case AMessage::kTypeString:
break;
case AMessage::kTypeInt32:
case AMessage::kTypeInt64:
case AMessage::kTypeFloat:
case AMessage::kTypeDouble:
// for now only map settings with mappers as we are not creating
// signed <=> unsigned mappers
// TODO: be precise about signed unsigned
if (beVeryStrict || cm.mapper()) {
item.set(cm.mapFromMessage(params->getEntryAt(ix)));
// also allow to relax type strictness
if (beVeryLax) {
relaxValues(item);
}
}
break;
default:
continue;
}
filtered.emplace(cm.path(), item);
}
}
}
ALOGV("filtered %s to %s", params->debugString(4).c_str(),
filtered.debugString(4).c_str());
return filtered;
}
status_t CCodecConfig::getConfigUpdateFromSdkParams(
std::shared_ptr<Codec2Client::Component> component,
const sp<AMessage> &sdkParams, Domain configDomain,
c2_blocking_t blocking,
std::vector<std::unique_ptr<C2Param>> *configUpdate) const {
ReflectedParamUpdater::Dict params = getReflectedFormat(sdkParams, configDomain);
std::vector<C2Param::Index> indices;
mParamUpdater->getParamIndicesFromMessage(params, &indices);
if (indices.empty()) {
ALOGD("no recognized params in: %s", params.debugString().c_str());
return OK;
}
configUpdate->clear();
std::vector<C2Param::Index> supportedIndices;
for (C2Param::Index ix : indices) {
if (mSupportedIndices.count(ix)) {
supportedIndices.push_back(ix);
} else if (mLocalParams.count(ix)) {
// query local parameter here
auto it = mCurrentConfig.find(ix);
if (it != mCurrentConfig.end()) {
configUpdate->emplace_back(C2Param::Copy(*it->second));
}
}
}
c2_status_t err = component->query({ }, supportedIndices, blocking, configUpdate);
if (err != C2_OK) {
ALOGD("query failed after returning %zu params => %s", configUpdate->size(), asString(err));
}
if (configUpdate->size()) {
mParamUpdater->updateParamsFromMessage(params, configUpdate);
}
return OK;
}
status_t CCodecConfig::setParameters(
std::shared_ptr<Codec2Client::Component> component,
std::vector<std::unique_ptr<C2Param>> &configUpdate,
c2_blocking_t blocking) {
status_t result = OK;
if (configUpdate.empty()) {
return OK;
}
std::vector<C2Param::Index> indices;
std::vector<C2Param *> paramVector;
for (const std::unique_ptr<C2Param> ¶m : configUpdate) {
if (mSupportedIndices.count(param->index())) {
// component parameter
paramVector.push_back(param.get());
indices.push_back(param->index());
} else if (mLocalParams.count(param->index())) {
// handle local parameter here
LocalParamValidator validator = mLocalParams.find(param->index())->second;
c2_status_t err = C2_OK;
std::unique_ptr<C2Param> copy = C2Param::Copy(*param);
if (validator) {
err = validator(copy);
}
if (err == C2_OK) {
ALOGV("updated local parameter value for %s",
mParamUpdater->getParamName(param->index()).c_str());
mCurrentConfig[param->index()] = std::move(copy);
} else {
ALOGD("failed to set parameter value for %s => %s",
mParamUpdater->getParamName(param->index()).c_str(), asString(err));
result = BAD_VALUE;
}
}
}
// update subscribed param indices
subscribeToConfigUpdate(component, indices, blocking);
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t err = component->config(paramVector, blocking, &failures);
if (err != C2_OK) {
ALOGD("config failed => %s", asString(err));
// This is non-fatal.
}
for (const std::unique_ptr<C2SettingResult> &failure : failures) {
switch (failure->failure) {
case C2SettingResult::BAD_VALUE:
ALOGD("Bad parameter value");
result = BAD_VALUE;
break;
default:
ALOGV("failure = %d", int(failure->failure));
break;
}
}
// Re-query parameter values in case config could not update them and update the current
// configuration.
configUpdate.clear();
err = component->query({}, indices, blocking, &configUpdate);
if (err != C2_OK) {
ALOGD("query failed after returning %zu params => %s", configUpdate.size(), asString(err));
}
(void)updateConfiguration(configUpdate, ALL);
// TODO: error value
return result;
}
const C2Param *CCodecConfig::getConfigParameterValue(C2Param::Index index) const {
auto it = mCurrentConfig.find(index);
if (it == mCurrentConfig.end()) {
return nullptr;
} else {
return it->second.get();
}
}
} // namespace android