/*
* Copyright 2017, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "CCodecBufferChannel"
#include <utils/Log.h>
#include <numeric>
#include <C2AllocatorGralloc.h>
#include <C2PlatformSupport.h>
#include <C2BlockInternal.h>
#include <C2Config.h>
#include <C2Debug.h>
#include <android/hardware/cas/native/1.0/IDescrambler.h>
#include <android-base/stringprintf.h>
#include <binder/MemoryDealer.h>
#include <gui/Surface.h>
#include <media/openmax/OMX_Core.h>
#include <media/stagefright/foundation/ABuffer.h>
#include <media/stagefright/foundation/ALookup.h>
#include <media/stagefright/foundation/AMessage.h>
#include <media/stagefright/foundation/AUtils.h>
#include <media/stagefright/foundation/hexdump.h>
#include <media/stagefright/MediaCodec.h>
#include <media/stagefright/MediaCodecConstants.h>
#include <media/MediaCodecBuffer.h>
#include <system/window.h>
#include "CCodecBufferChannel.h"
#include "Codec2Buffer.h"
#include "SkipCutBuffer.h"
namespace android {
using android::base::StringPrintf;
using hardware::hidl_handle;
using hardware::hidl_string;
using hardware::hidl_vec;
using namespace hardware::cas::V1_0;
using namespace hardware::cas::native::V1_0;
using CasStatus = hardware::cas::V1_0::Status;
namespace {
constexpr size_t kSmoothnessFactor = 4;
constexpr size_t kRenderingDepth = 3;
// This is for keeping IGBP's buffer dropping logic in legacy mode other
// than making it non-blocking. Do not change this value.
const static size_t kDequeueTimeoutNs = 0;
} // namespace
CCodecBufferChannel::QueueGuard::QueueGuard(
CCodecBufferChannel::QueueSync &sync) : mSync(sync) {
Mutex::Autolock l(mSync.mGuardLock);
// At this point it's guaranteed that mSync is not under state transition,
// as we are holding its mutex.
Mutexed<CCodecBufferChannel::QueueSync::Counter>::Locked count(mSync.mCount);
if (count->value == -1) {
mRunning = false;
} else {
++count->value;
mRunning = true;
}
}
CCodecBufferChannel::QueueGuard::~QueueGuard() {
if (mRunning) {
// We are not holding mGuardLock at this point so that QueueSync::stop() can
// keep holding the lock until mCount reaches zero.
Mutexed<CCodecBufferChannel::QueueSync::Counter>::Locked count(mSync.mCount);
--count->value;
count->cond.broadcast();
}
}
void CCodecBufferChannel::QueueSync::start() {
Mutex::Autolock l(mGuardLock);
// If stopped, it goes to running state; otherwise no-op.
Mutexed<Counter>::Locked count(mCount);
if (count->value == -1) {
count->value = 0;
}
}
void CCodecBufferChannel::QueueSync::stop() {
Mutex::Autolock l(mGuardLock);
Mutexed<Counter>::Locked count(mCount);
if (count->value == -1) {
// no-op
return;
}
// Holding mGuardLock here blocks creation of additional QueueGuard objects, so
// mCount can only decrement. In other words, threads that acquired the lock
// are allowed to finish execution but additional threads trying to acquire
// the lock at this point will block, and then get QueueGuard at STOPPED
// state.
while (count->value != 0) {
count.waitForCondition(count->cond);
}
count->value = -1;
}
// CCodecBufferChannel::ReorderStash
CCodecBufferChannel::ReorderStash::ReorderStash() {
clear();
}
void CCodecBufferChannel::ReorderStash::clear() {
mPending.clear();
mStash.clear();
mDepth = 0;
mKey = C2Config::ORDINAL;
}
void CCodecBufferChannel::ReorderStash::flush() {
mPending.clear();
mStash.clear();
}
void CCodecBufferChannel::ReorderStash::setDepth(uint32_t depth) {
mPending.splice(mPending.end(), mStash);
mDepth = depth;
}
void CCodecBufferChannel::ReorderStash::setKey(C2Config::ordinal_key_t key) {
mPending.splice(mPending.end(), mStash);
mKey = key;
}
bool CCodecBufferChannel::ReorderStash::pop(Entry *entry) {
if (mPending.empty()) {
return false;
}
entry->buffer = mPending.front().buffer;
entry->timestamp = mPending.front().timestamp;
entry->flags = mPending.front().flags;
entry->ordinal = mPending.front().ordinal;
mPending.pop_front();
return true;
}
void CCodecBufferChannel::ReorderStash::emplace(
const std::shared_ptr<C2Buffer> &buffer,
int64_t timestamp,
int32_t flags,
const C2WorkOrdinalStruct &ordinal) {
bool eos = flags & MediaCodec::BUFFER_FLAG_EOS;
if (!buffer && eos) {
// TRICKY: we may be violating ordering of the stash here. Because we
// don't expect any more emplace() calls after this, the ordering should
// not matter.
mStash.emplace_back(buffer, timestamp, flags, ordinal);
} else {
flags = flags & ~MediaCodec::BUFFER_FLAG_EOS;
auto it = mStash.begin();
for (; it != mStash.end(); ++it) {
if (less(ordinal, it->ordinal)) {
break;
}
}
mStash.emplace(it, buffer, timestamp, flags, ordinal);
if (eos) {
mStash.back().flags = mStash.back().flags | MediaCodec::BUFFER_FLAG_EOS;
}
}
while (!mStash.empty() && mStash.size() > mDepth) {
mPending.push_back(mStash.front());
mStash.pop_front();
}
}
void CCodecBufferChannel::ReorderStash::defer(
const CCodecBufferChannel::ReorderStash::Entry &entry) {
mPending.push_front(entry);
}
bool CCodecBufferChannel::ReorderStash::hasPending() const {
return !mPending.empty();
}
bool CCodecBufferChannel::ReorderStash::less(
const C2WorkOrdinalStruct &o1, const C2WorkOrdinalStruct &o2) {
switch (mKey) {
case C2Config::ORDINAL: return o1.frameIndex < o2.frameIndex;
case C2Config::TIMESTAMP: return o1.timestamp < o2.timestamp;
case C2Config::CUSTOM: return o1.customOrdinal < o2.customOrdinal;
default:
ALOGD("Unrecognized key; default to timestamp");
return o1.frameIndex < o2.frameIndex;
}
}
// Input
CCodecBufferChannel::Input::Input() : extraBuffers("extra") {}
// CCodecBufferChannel
CCodecBufferChannel::CCodecBufferChannel(
const std::shared_ptr<CCodecCallback> &callback)
: mHeapSeqNum(-1),
mCCodecCallback(callback),
mFrameIndex(0u),
mFirstValidFrameIndex(0u),
mMetaMode(MODE_NONE),
mInputMetEos(false) {
mOutputSurface.lock()->maxDequeueBuffers = kSmoothnessFactor + kRenderingDepth;
{
Mutexed<Input>::Locked input(mInput);
input->buffers.reset(new DummyInputBuffers(""));
input->extraBuffers.flush();
input->inputDelay = 0u;
input->pipelineDelay = 0u;
input->numSlots = kSmoothnessFactor;
input->numExtraSlots = 0u;
}
{
Mutexed<Output>::Locked output(mOutput);
output->outputDelay = 0u;
output->numSlots = kSmoothnessFactor;
}
}
CCodecBufferChannel::~CCodecBufferChannel() {
if (mCrypto != nullptr && mDealer != nullptr && mHeapSeqNum >= 0) {
mCrypto->unsetHeap(mHeapSeqNum);
}
}
void CCodecBufferChannel::setComponent(
const std::shared_ptr<Codec2Client::Component> &component) {
mComponent = component;
mComponentName = component->getName() + StringPrintf("#%d", int(uintptr_t(component.get()) % 997));
mName = mComponentName.c_str();
}
status_t CCodecBufferChannel::setInputSurface(
const std::shared_ptr<InputSurfaceWrapper> &surface) {
ALOGV("[%s] setInputSurface", mName);
mInputSurface = surface;
return mInputSurface->connect(mComponent);
}
status_t CCodecBufferChannel::signalEndOfInputStream() {
if (mInputSurface == nullptr) {
return INVALID_OPERATION;
}
return mInputSurface->signalEndOfInputStream();
}
status_t CCodecBufferChannel::queueInputBufferInternal(sp<MediaCodecBuffer> buffer) {
int64_t timeUs;
CHECK(buffer->meta()->findInt64("timeUs", &timeUs));
if (mInputMetEos) {
ALOGD("[%s] buffers after EOS ignored (%lld us)", mName, (long long)timeUs);
return OK;
}
int32_t flags = 0;
int32_t tmp = 0;
bool eos = false;
if (buffer->meta()->findInt32("eos", &tmp) && tmp) {
eos = true;
mInputMetEos = true;
ALOGV("[%s] input EOS", mName);
}
if (buffer->meta()->findInt32("csd", &tmp) && tmp) {
flags |= C2FrameData::FLAG_CODEC_CONFIG;
}
ALOGV("[%s] queueInputBuffer: buffer->size() = %zu", mName, buffer->size());
std::unique_ptr<C2Work> work(new C2Work);
work->input.ordinal.timestamp = timeUs;
work->input.ordinal.frameIndex = mFrameIndex++;
// WORKAROUND: until codecs support handling work after EOS and max output sizing, use timestamp
// manipulation to achieve image encoding via video codec, and to constrain encoded output.
// Keep client timestamp in customOrdinal
work->input.ordinal.customOrdinal = timeUs;
work->input.buffers.clear();
uint64_t queuedFrameIndex = work->input.ordinal.frameIndex.peeku();
std::vector<std::shared_ptr<C2Buffer>> queuedBuffers;
sp<Codec2Buffer> copy;
if (buffer->size() > 0u) {
Mutexed<Input>::Locked input(mInput);
std::shared_ptr<C2Buffer> c2buffer;
if (!input->buffers->releaseBuffer(buffer, &c2buffer, false)) {
return -ENOENT;
}
// TODO: we want to delay copying buffers.
if (input->extraBuffers.numComponentBuffers() < input->numExtraSlots) {
copy = input->buffers->cloneAndReleaseBuffer(buffer);
if (copy != nullptr) {
(void)input->extraBuffers.assignSlot(copy);
if (!input->extraBuffers.releaseSlot(copy, &c2buffer, false)) {
return UNKNOWN_ERROR;
}
bool released = input->buffers->releaseBuffer(buffer, nullptr, true);
ALOGV("[%s] queueInputBuffer: buffer copied; %sreleased",
mName, released ? "" : "not ");
buffer.clear();
} else {
ALOGW("[%s] queueInputBuffer: failed to copy a buffer; this may cause input "
"buffer starvation on component.", mName);
}
}
work->input.buffers.push_back(c2buffer);
queuedBuffers.push_back(c2buffer);
} else if (eos) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
}
work->input.flags = (C2FrameData::flags_t)flags;
// TODO: fill info's
work->input.configUpdate = std::move(mParamsToBeSet);
work->worklets.clear();
work->worklets.emplace_back(new C2Worklet);
std::list<std::unique_ptr<C2Work>> items;
items.push_back(std::move(work));
mPipelineWatcher.lock()->onWorkQueued(
queuedFrameIndex,
std::move(queuedBuffers),
PipelineWatcher::Clock::now());
c2_status_t err = mComponent->queue(&items);
if (err != C2_OK) {
mPipelineWatcher.lock()->onWorkDone(queuedFrameIndex);
}
if (err == C2_OK && eos && buffer->size() > 0u) {
work.reset(new C2Work);
work->input.ordinal.timestamp = timeUs;
work->input.ordinal.frameIndex = mFrameIndex++;
// WORKAROUND: keep client timestamp in customOrdinal
work->input.ordinal.customOrdinal = timeUs;
work->input.buffers.clear();
work->input.flags = C2FrameData::FLAG_END_OF_STREAM;
work->worklets.emplace_back(new C2Worklet);
queuedFrameIndex = work->input.ordinal.frameIndex.peeku();
queuedBuffers.clear();
items.clear();
items.push_back(std::move(work));
mPipelineWatcher.lock()->onWorkQueued(
queuedFrameIndex,
std::move(queuedBuffers),
PipelineWatcher::Clock::now());
err = mComponent->queue(&items);
if (err != C2_OK) {
mPipelineWatcher.lock()->onWorkDone(queuedFrameIndex);
}
}
if (err == C2_OK) {
Mutexed<Input>::Locked input(mInput);
bool released = false;
if (buffer) {
released = input->buffers->releaseBuffer(buffer, nullptr, true);
} else if (copy) {
released = input->extraBuffers.releaseSlot(copy, nullptr, true);
}
ALOGV("[%s] queueInputBuffer: buffer%s %sreleased",
mName, (buffer == nullptr) ? "(copy)" : "", released ? "" : "not ");
}
feedInputBufferIfAvailableInternal();
return err;
}
status_t CCodecBufferChannel::setParameters(std::vector<std::unique_ptr<C2Param>> ¶ms) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] setParameters is only supported in the running state.", mName);
return -ENOSYS;
}
mParamsToBeSet.insert(mParamsToBeSet.end(),
std::make_move_iterator(params.begin()),
std::make_move_iterator(params.end()));
params.clear();
return OK;
}
status_t CCodecBufferChannel::queueInputBuffer(const sp<MediaCodecBuffer> &buffer) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] No more buffers should be queued at current state.", mName);
return -ENOSYS;
}
return queueInputBufferInternal(buffer);
}
status_t CCodecBufferChannel::queueSecureInputBuffer(
const sp<MediaCodecBuffer> &buffer, bool secure, const uint8_t *key,
const uint8_t *iv, CryptoPlugin::Mode mode, CryptoPlugin::Pattern pattern,
const CryptoPlugin::SubSample *subSamples, size_t numSubSamples,
AString *errorDetailMsg) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] No more buffers should be queued at current state.", mName);
return -ENOSYS;
}
if (!hasCryptoOrDescrambler()) {
return -ENOSYS;
}
sp<EncryptedLinearBlockBuffer> encryptedBuffer((EncryptedLinearBlockBuffer *)buffer.get());
ssize_t result = -1;
ssize_t codecDataOffset = 0;
if (mCrypto != nullptr) {
ICrypto::DestinationBuffer destination;
if (secure) {
destination.mType = ICrypto::kDestinationTypeNativeHandle;
destination.mHandle = encryptedBuffer->handle();
} else {
destination.mType = ICrypto::kDestinationTypeSharedMemory;
destination.mSharedMemory = mDecryptDestination;
}
ICrypto::SourceBuffer source;
encryptedBuffer->fillSourceBuffer(&source);
result = mCrypto->decrypt(
key, iv, mode, pattern, source, buffer->offset(),
subSamples, numSubSamples, destination, errorDetailMsg);
if (result < 0) {
return result;
}
if (destination.mType == ICrypto::kDestinationTypeSharedMemory) {
encryptedBuffer->copyDecryptedContent(mDecryptDestination, result);
}
} else {
// Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample
// directly, the structure definitions should match as checked in DescramblerImpl.cpp.
hidl_vec<SubSample> hidlSubSamples;
hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/);
hardware::cas::native::V1_0::SharedBuffer srcBuffer;
encryptedBuffer->fillSourceBuffer(&srcBuffer);
DestinationBuffer dstBuffer;
if (secure) {
dstBuffer.type = BufferType::NATIVE_HANDLE;
dstBuffer.secureMemory = hidl_handle(encryptedBuffer->handle());
} else {
dstBuffer.type = BufferType::SHARED_MEMORY;
dstBuffer.nonsecureMemory = srcBuffer;
}
CasStatus status = CasStatus::OK;
hidl_string detailedError;
ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED;
if (key != nullptr) {
sctrl = (ScramblingControl)key[0];
// Adjust for the PES offset
codecDataOffset = key[2] | (key[3] << 8);
}
auto returnVoid = mDescrambler->descramble(
sctrl,
hidlSubSamples,
srcBuffer,
0,
dstBuffer,
0,
[&status, &result, &detailedError] (
CasStatus _status, uint32_t _bytesWritten,
const hidl_string& _detailedError) {
status = _status;
result = (ssize_t)_bytesWritten;
detailedError = _detailedError;
});
if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) {
ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd",
mName, returnVoid.description().c_str(), status, result);
return UNKNOWN_ERROR;
}
if (result < codecDataOffset) {
ALOGD("invalid codec data offset: %zd, result %zd", codecDataOffset, result);
return BAD_VALUE;
}
ALOGV("[%s] descramble succeeded, %zd bytes", mName, result);
if (dstBuffer.type == BufferType::SHARED_MEMORY) {
encryptedBuffer->copyDecryptedContentFromMemory(result);
}
}
buffer->setRange(codecDataOffset, result - codecDataOffset);
return queueInputBufferInternal(buffer);
}
void CCodecBufferChannel::feedInputBufferIfAvailable() {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGV("[%s] We're not running --- no input buffer reported", mName);
return;
}
feedInputBufferIfAvailableInternal();
}
void CCodecBufferChannel::feedInputBufferIfAvailableInternal() {
if (mInputMetEos ||
mReorderStash.lock()->hasPending() ||
mPipelineWatcher.lock()->pipelineFull()) {
return;
} else {
Mutexed<Output>::Locked output(mOutput);
if (output->buffers->numClientBuffers() >= output->numSlots) {
return;
}
}
size_t numInputSlots = mInput.lock()->numSlots;
for (size_t i = 0; i < numInputSlots; ++i) {
sp<MediaCodecBuffer> inBuffer;
size_t index;
{
Mutexed<Input>::Locked input(mInput);
if (input->buffers->numClientBuffers() >= input->numSlots) {
return;
}
if (!input->buffers->requestNewBuffer(&index, &inBuffer)) {
ALOGV("[%s] no new buffer available", mName);
break;
}
}
ALOGV("[%s] new input index = %zu [%p]", mName, index, inBuffer.get());
mCallback->onInputBufferAvailable(index, inBuffer);
}
}
status_t CCodecBufferChannel::renderOutputBuffer(
const sp<MediaCodecBuffer> &buffer, int64_t timestampNs) {
ALOGV("[%s] renderOutputBuffer: %p", mName, buffer.get());
std::shared_ptr<C2Buffer> c2Buffer;
bool released = false;
{
Mutexed<Output>::Locked output(mOutput);
if (output->buffers) {
released = output->buffers->releaseBuffer(buffer, &c2Buffer);
}
}
// NOTE: some apps try to releaseOutputBuffer() with timestamp and/or render
// set to true.
sendOutputBuffers();
// input buffer feeding may have been gated by pending output buffers
feedInputBufferIfAvailable();
if (!c2Buffer) {
if (released) {
std::call_once(mRenderWarningFlag, [this] {
ALOGW("[%s] The app is calling releaseOutputBuffer() with "
"timestamp or render=true with non-video buffers. Apps should "
"call releaseOutputBuffer() with render=false for those.",
mName);
});
}
return INVALID_OPERATION;
}
#if 0
const std::vector<std::shared_ptr<const C2Info>> infoParams = c2Buffer->info();
ALOGV("[%s] queuing gfx buffer with %zu infos", mName, infoParams.size());
for (const std::shared_ptr<const C2Info> &info : infoParams) {
AString res;
for (size_t ix = 0; ix + 3 < info->size(); ix += 4) {
if (ix) res.append(", ");
res.append(*((int32_t*)info.get() + (ix / 4)));
}
ALOGV(" [%s]", res.c_str());
}
#endif
std::shared_ptr<const C2StreamRotationInfo::output> rotation =
std::static_pointer_cast<const C2StreamRotationInfo::output>(
c2Buffer->getInfo(C2StreamRotationInfo::output::PARAM_TYPE));
bool flip = rotation && (rotation->flip & 1);
uint32_t quarters = ((rotation ? rotation->value : 0) / 90) & 3;
uint32_t transform = 0;
switch (quarters) {
case 0: // no rotation
transform = flip ? HAL_TRANSFORM_FLIP_H : 0;
break;
case 1: // 90 degrees counter-clockwise
transform = flip ? (HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_ROT_90)
: HAL_TRANSFORM_ROT_270;
break;
case 2: // 180 degrees
transform = flip ? HAL_TRANSFORM_FLIP_V : HAL_TRANSFORM_ROT_180;
break;
case 3: // 90 degrees clockwise
transform = flip ? (HAL_TRANSFORM_FLIP_H | HAL_TRANSFORM_ROT_90)
: HAL_TRANSFORM_ROT_90;
break;
}
std::shared_ptr<const C2StreamSurfaceScalingInfo::output> surfaceScaling =
std::static_pointer_cast<const C2StreamSurfaceScalingInfo::output>(
c2Buffer->getInfo(C2StreamSurfaceScalingInfo::output::PARAM_TYPE));
uint32_t videoScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
if (surfaceScaling) {
videoScalingMode = surfaceScaling->value;
}
// Use dataspace from format as it has the default aspects already applied
android_dataspace_t dataSpace = HAL_DATASPACE_UNKNOWN; // this is 0
(void)buffer->format()->findInt32("android._dataspace", (int32_t *)&dataSpace);
// HDR static info
std::shared_ptr<const C2StreamHdrStaticInfo::output> hdrStaticInfo =
std::static_pointer_cast<const C2StreamHdrStaticInfo::output>(
c2Buffer->getInfo(C2StreamHdrStaticInfo::output::PARAM_TYPE));
// HDR10 plus info
std::shared_ptr<const C2StreamHdr10PlusInfo::output> hdr10PlusInfo =
std::static_pointer_cast<const C2StreamHdr10PlusInfo::output>(
c2Buffer->getInfo(C2StreamHdr10PlusInfo::output::PARAM_TYPE));
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
if (output->surface == nullptr) {
ALOGI("[%s] cannot render buffer without surface", mName);
return OK;
}
}
std::vector<C2ConstGraphicBlock> blocks = c2Buffer->data().graphicBlocks();
if (blocks.size() != 1u) {
ALOGD("[%s] expected 1 graphic block, but got %zu", mName, blocks.size());
return UNKNOWN_ERROR;
}
const C2ConstGraphicBlock &block = blocks.front();
// TODO: revisit this after C2Fence implementation.
android::IGraphicBufferProducer::QueueBufferInput qbi(
timestampNs,
false, // droppable
dataSpace,
Rect(blocks.front().crop().left,
blocks.front().crop().top,
blocks.front().crop().right(),
blocks.front().crop().bottom()),
videoScalingMode,
transform,
Fence::NO_FENCE, 0);
if (hdrStaticInfo || hdr10PlusInfo) {
HdrMetadata hdr;
if (hdrStaticInfo) {
struct android_smpte2086_metadata smpte2086_meta = {
.displayPrimaryRed = {
hdrStaticInfo->mastering.red.x, hdrStaticInfo->mastering.red.y
},
.displayPrimaryGreen = {
hdrStaticInfo->mastering.green.x, hdrStaticInfo->mastering.green.y
},
.displayPrimaryBlue = {
hdrStaticInfo->mastering.blue.x, hdrStaticInfo->mastering.blue.y
},
.whitePoint = {
hdrStaticInfo->mastering.white.x, hdrStaticInfo->mastering.white.y
},
.maxLuminance = hdrStaticInfo->mastering.maxLuminance,
.minLuminance = hdrStaticInfo->mastering.minLuminance,
};
struct android_cta861_3_metadata cta861_meta = {
.maxContentLightLevel = hdrStaticInfo->maxCll,
.maxFrameAverageLightLevel = hdrStaticInfo->maxFall,
};
hdr.validTypes = HdrMetadata::SMPTE2086 | HdrMetadata::CTA861_3;
hdr.smpte2086 = smpte2086_meta;
hdr.cta8613 = cta861_meta;
}
if (hdr10PlusInfo) {
hdr.validTypes |= HdrMetadata::HDR10PLUS;
hdr.hdr10plus.assign(
hdr10PlusInfo->m.value,
hdr10PlusInfo->m.value + hdr10PlusInfo->flexCount());
}
qbi.setHdrMetadata(hdr);
}
// we don't have dirty regions
qbi.setSurfaceDamage(Region::INVALID_REGION);
android::IGraphicBufferProducer::QueueBufferOutput qbo;
status_t result = mComponent->queueToOutputSurface(block, qbi, &qbo);
if (result != OK) {
ALOGI("[%s] queueBuffer failed: %d", mName, result);
return result;
}
ALOGV("[%s] queue buffer successful", mName);
int64_t mediaTimeUs = 0;
(void)buffer->meta()->findInt64("timeUs", &mediaTimeUs);
mCCodecCallback->onOutputFramesRendered(mediaTimeUs, timestampNs);
return OK;
}
status_t CCodecBufferChannel::discardBuffer(const sp<MediaCodecBuffer> &buffer) {
ALOGV("[%s] discardBuffer: %p", mName, buffer.get());
bool released = false;
{
Mutexed<Input>::Locked input(mInput);
if (input->buffers && input->buffers->releaseBuffer(buffer, nullptr, true)) {
released = true;
}
}
{
Mutexed<Output>::Locked output(mOutput);
if (output->buffers && output->buffers->releaseBuffer(buffer, nullptr)) {
released = true;
}
}
if (released) {
sendOutputBuffers();
feedInputBufferIfAvailable();
} else {
ALOGD("[%s] MediaCodec discarded an unknown buffer", mName);
}
return OK;
}
void CCodecBufferChannel::getInputBufferArray(Vector<sp<MediaCodecBuffer>> *array) {
array->clear();
Mutexed<Input>::Locked input(mInput);
if (!input->buffers->isArrayMode()) {
input->buffers = input->buffers->toArrayMode(input->numSlots);
}
input->buffers->getArray(array);
}
void CCodecBufferChannel::getOutputBufferArray(Vector<sp<MediaCodecBuffer>> *array) {
array->clear();
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers->isArrayMode()) {
output->buffers = output->buffers->toArrayMode(output->numSlots);
}
output->buffers->getArray(array);
}
status_t CCodecBufferChannel::start(
const sp<AMessage> &inputFormat, const sp<AMessage> &outputFormat) {
C2StreamBufferTypeSetting::input iStreamFormat(0u);
C2StreamBufferTypeSetting::output oStreamFormat(0u);
C2PortReorderBufferDepthTuning::output reorderDepth;
C2PortReorderKeySetting::output reorderKey;
C2PortActualDelayTuning::input inputDelay(0);
C2PortActualDelayTuning::output outputDelay(0);
C2ActualPipelineDelayTuning pipelineDelay(0);
c2_status_t err = mComponent->query(
{
&iStreamFormat,
&oStreamFormat,
&reorderDepth,
&reorderKey,
&inputDelay,
&pipelineDelay,
&outputDelay,
},
{},
C2_DONT_BLOCK,
nullptr);
if (err == C2_BAD_INDEX) {
if (!iStreamFormat || !oStreamFormat) {
return UNKNOWN_ERROR;
}
} else if (err != C2_OK) {
return UNKNOWN_ERROR;
}
{
Mutexed<ReorderStash>::Locked reorder(mReorderStash);
reorder->clear();
if (reorderDepth) {
reorder->setDepth(reorderDepth.value);
}
if (reorderKey) {
reorder->setKey(reorderKey.value);
}
}
uint32_t inputDelayValue = inputDelay ? inputDelay.value : 0;
uint32_t pipelineDelayValue = pipelineDelay ? pipelineDelay.value : 0;
uint32_t outputDelayValue = outputDelay ? outputDelay.value : 0;
size_t numInputSlots = inputDelayValue + pipelineDelayValue + kSmoothnessFactor;
size_t numOutputSlots = outputDelayValue + kSmoothnessFactor;
// TODO: get this from input format
bool secure = mComponent->getName().find(".secure") != std::string::npos;
std::shared_ptr<C2AllocatorStore> allocatorStore = GetCodec2PlatformAllocatorStore();
int poolMask = property_get_int32(
"debug.stagefright.c2-poolmask",
1 << C2PlatformAllocatorStore::ION |
1 << C2PlatformAllocatorStore::BUFFERQUEUE);
if (inputFormat != nullptr) {
bool graphic = (iStreamFormat.value == C2BufferData::GRAPHIC);
std::shared_ptr<C2BlockPool> pool;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
// set default allocator ID.
pools->inputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC
: C2PlatformAllocatorStore::ION;
// query C2PortAllocatorsTuning::input from component. If an allocator ID is obtained
// from component, create the input block pool with given ID. Otherwise, use default IDs.
std::vector<std::unique_ptr<C2Param>> params;
err = mComponent->query({ },
{ C2PortAllocatorsTuning::input::PARAM_TYPE },
C2_DONT_BLOCK,
¶ms);
if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
ALOGD("[%s] Query input allocators returned %zu params => %s (%u)",
mName, params.size(), asString(err), err);
} else if (err == C2_OK && params.size() == 1) {
C2PortAllocatorsTuning::input *inputAllocators =
C2PortAllocatorsTuning::input::From(params[0].get());
if (inputAllocators && inputAllocators->flexCount() > 0) {
std::shared_ptr<C2Allocator> allocator;
// verify allocator IDs and resolve default allocator
allocatorStore->fetchAllocator(inputAllocators->m.values[0], &allocator);
if (allocator) {
pools->inputAllocatorId = allocator->getId();
} else {
ALOGD("[%s] component requested invalid input allocator ID %u",
mName, inputAllocators->m.values[0]);
}
}
}
// TODO: use C2Component wrapper to associate this pool with ourselves
if ((poolMask >> pools->inputAllocatorId) & 1) {
err = CreateCodec2BlockPool(pools->inputAllocatorId, nullptr, &pool);
ALOGD("[%s] Created input block pool with allocatorID %u => poolID %llu - %s (%d)",
mName, pools->inputAllocatorId,
(unsigned long long)(pool ? pool->getLocalId() : 111000111),
asString(err), err);
} else {
err = C2_NOT_FOUND;
}
if (err != C2_OK) {
C2BlockPool::local_id_t inputPoolId =
graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR;
err = GetCodec2BlockPool(inputPoolId, nullptr, &pool);
ALOGD("[%s] Using basic input block pool with poolID %llu => got %llu - %s (%d)",
mName, (unsigned long long)inputPoolId,
(unsigned long long)(pool ? pool->getLocalId() : 111000111),
asString(err), err);
if (err != C2_OK) {
return NO_MEMORY;
}
}
pools->inputPool = pool;
}
bool forceArrayMode = false;
Mutexed<Input>::Locked input(mInput);
input->inputDelay = inputDelayValue;
input->pipelineDelay = pipelineDelayValue;
input->numSlots = numInputSlots;
input->extraBuffers.flush();
input->numExtraSlots = 0u;
if (graphic) {
if (mInputSurface) {
input->buffers.reset(new DummyInputBuffers(mName));
} else if (mMetaMode == MODE_ANW) {
input->buffers.reset(new GraphicMetadataInputBuffers(mName));
// This is to ensure buffers do not get released prematurely.
// TODO: handle this without going into array mode
forceArrayMode = true;
} else {
input->buffers.reset(new GraphicInputBuffers(numInputSlots, mName));
}
} else {
if (hasCryptoOrDescrambler()) {
int32_t capacity = kLinearBufferSize;
(void)inputFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity);
if ((size_t)capacity > kMaxLinearBufferSize) {
ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize);
capacity = kMaxLinearBufferSize;
}
if (mDealer == nullptr) {
mDealer = new MemoryDealer(
align(capacity, MemoryDealer::getAllocationAlignment())
* (numInputSlots + 1),
"EncryptedLinearInputBuffers");
mDecryptDestination = mDealer->allocate((size_t)capacity);
}
if (mCrypto != nullptr && mHeapSeqNum < 0) {
mHeapSeqNum = mCrypto->setHeap(mDealer->getMemoryHeap());
} else {
mHeapSeqNum = -1;
}
input->buffers.reset(new EncryptedLinearInputBuffers(
secure, mDealer, mCrypto, mHeapSeqNum, (size_t)capacity,
numInputSlots, mName));
forceArrayMode = true;
} else {
input->buffers.reset(new LinearInputBuffers(mName));
}
}
input->buffers->setFormat(inputFormat);
if (err == C2_OK) {
input->buffers->setPool(pool);
} else {
// TODO: error
}
if (forceArrayMode) {
input->buffers = input->buffers->toArrayMode(numInputSlots);
}
}
if (outputFormat != nullptr) {
sp<IGraphicBufferProducer> outputSurface;
uint32_t outputGeneration;
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
output->maxDequeueBuffers = numOutputSlots + reorderDepth.value + kRenderingDepth;
outputSurface = output->surface ?
output->surface->getIGraphicBufferProducer() : nullptr;
if (outputSurface) {
output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
}
outputGeneration = output->generation;
}
bool graphic = (oStreamFormat.value == C2BufferData::GRAPHIC);
C2BlockPool::local_id_t outputPoolId_;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
// set default allocator ID.
pools->outputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC
: C2PlatformAllocatorStore::ION;
// query C2PortAllocatorsTuning::output from component, or use default allocator if
// unsuccessful.
std::vector<std::unique_ptr<C2Param>> params;
err = mComponent->query({ },
{ C2PortAllocatorsTuning::output::PARAM_TYPE },
C2_DONT_BLOCK,
¶ms);
if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
ALOGD("[%s] Query output allocators returned %zu params => %s (%u)",
mName, params.size(), asString(err), err);
} else if (err == C2_OK && params.size() == 1) {
C2PortAllocatorsTuning::output *outputAllocators =
C2PortAllocatorsTuning::output::From(params[0].get());
if (outputAllocators && outputAllocators->flexCount() > 0) {
std::shared_ptr<C2Allocator> allocator;
// verify allocator IDs and resolve default allocator
allocatorStore->fetchAllocator(outputAllocators->m.values[0], &allocator);
if (allocator) {
pools->outputAllocatorId = allocator->getId();
} else {
ALOGD("[%s] component requested invalid output allocator ID %u",
mName, outputAllocators->m.values[0]);
}
}
}
// use bufferqueue if outputting to a surface.
// query C2PortSurfaceAllocatorTuning::output from component, or use default allocator
// if unsuccessful.
if (outputSurface) {
params.clear();
err = mComponent->query({ },
{ C2PortSurfaceAllocatorTuning::output::PARAM_TYPE },
C2_DONT_BLOCK,
¶ms);
if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
ALOGD("[%s] Query output surface allocator returned %zu params => %s (%u)",
mName, params.size(), asString(err), err);
} else if (err == C2_OK && params.size() == 1) {
C2PortSurfaceAllocatorTuning::output *surfaceAllocator =
C2PortSurfaceAllocatorTuning::output::From(params[0].get());
if (surfaceAllocator) {
std::shared_ptr<C2Allocator> allocator;
// verify allocator IDs and resolve default allocator
allocatorStore->fetchAllocator(surfaceAllocator->value, &allocator);
if (allocator) {
pools->outputAllocatorId = allocator->getId();
} else {
ALOGD("[%s] component requested invalid surface output allocator ID %u",
mName, surfaceAllocator->value);
err = C2_BAD_VALUE;
}
}
}
if (pools->outputAllocatorId == C2PlatformAllocatorStore::GRALLOC
&& err != C2_OK
&& ((poolMask >> C2PlatformAllocatorStore::BUFFERQUEUE) & 1)) {
pools->outputAllocatorId = C2PlatformAllocatorStore::BUFFERQUEUE;
}
}
if ((poolMask >> pools->outputAllocatorId) & 1) {
err = mComponent->createBlockPool(
pools->outputAllocatorId, &pools->outputPoolId, &pools->outputPoolIntf);
ALOGI("[%s] Created output block pool with allocatorID %u => poolID %llu - %s",
mName, pools->outputAllocatorId,
(unsigned long long)pools->outputPoolId,
asString(err));
} else {
err = C2_NOT_FOUND;
}
if (err != C2_OK) {
// use basic pool instead
pools->outputPoolId =
graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR;
}
// Configure output block pool ID as parameter C2PortBlockPoolsTuning::output to
// component.
std::unique_ptr<C2PortBlockPoolsTuning::output> poolIdsTuning =
C2PortBlockPoolsTuning::output::AllocUnique({ pools->outputPoolId });
std::vector<std::unique_ptr<C2SettingResult>> failures;
err = mComponent->config({ poolIdsTuning.get() }, C2_MAY_BLOCK, &failures);
ALOGD("[%s] Configured output block pool ids %llu => %s",
mName, (unsigned long long)poolIdsTuning->m.values[0], asString(err));
outputPoolId_ = pools->outputPoolId;
}
Mutexed<Output>::Locked output(mOutput);
output->outputDelay = outputDelayValue;
output->numSlots = numOutputSlots;
if (graphic) {
if (outputSurface) {
output->buffers.reset(new GraphicOutputBuffers(mName));
} else {
output->buffers.reset(new RawGraphicOutputBuffers(numOutputSlots, mName));
}
} else {
output->buffers.reset(new LinearOutputBuffers(mName));
}
output->buffers->setFormat(outputFormat->dup());
// Try to set output surface to created block pool if given.
if (outputSurface) {
mComponent->setOutputSurface(
outputPoolId_,
outputSurface,
outputGeneration);
}
if (oStreamFormat.value == C2BufferData::LINEAR
&& mComponentName.find("c2.qti.") == std::string::npos) {
// WORKAROUND: if we're using early CSD workaround we convert to
// array mode, to appease apps assuming the output
// buffers to be of the same size.
output->buffers = output->buffers->toArrayMode(numOutputSlots);
int32_t channelCount;
int32_t sampleRate;
if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount)
&& outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) {
int32_t delay = 0;
int32_t padding = 0;;
if (!outputFormat->findInt32("encoder-delay", &delay)) {
delay = 0;
}
if (!outputFormat->findInt32("encoder-padding", &padding)) {
padding = 0;
}
if (delay || padding) {
// We need write access to the buffers, and we're already in
// array mode.
output->buffers->initSkipCutBuffer(delay, padding, sampleRate, channelCount);
}
}
}
}
// Set up pipeline control. This has to be done after mInputBuffers and
// mOutputBuffers are initialized to make sure that lingering callbacks
// about buffers from the previous generation do not interfere with the
// newly initialized pipeline capacity.
{
Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
watcher->inputDelay(inputDelayValue)
.pipelineDelay(pipelineDelayValue)
.outputDelay(outputDelayValue)
.smoothnessFactor(kSmoothnessFactor);
watcher->flush();
}
mInputMetEos = false;
mSync.start();
return OK;
}
status_t CCodecBufferChannel::requestInitialInputBuffers() {
if (mInputSurface) {
return OK;
}
C2StreamBufferTypeSetting::output oStreamFormat(0u);
c2_status_t err = mComponent->query({ &oStreamFormat }, {}, C2_DONT_BLOCK, nullptr);
if (err != C2_OK) {
return UNKNOWN_ERROR;
}
size_t numInputSlots = mInput.lock()->numSlots;
std::vector<sp<MediaCodecBuffer>> toBeQueued;
for (size_t i = 0; i < numInputSlots; ++i) {
size_t index;
sp<MediaCodecBuffer> buffer;
{
Mutexed<Input>::Locked input(mInput);
if (!input->buffers->requestNewBuffer(&index, &buffer)) {
if (i == 0) {
ALOGW("[%s] start: cannot allocate memory at all", mName);
return NO_MEMORY;
} else {
ALOGV("[%s] start: cannot allocate memory, only %zu buffers allocated",
mName, i);
}
break;
}
}
if (buffer) {
Mutexed<std::list<sp<ABuffer>>>::Locked configs(mFlushedConfigs);
ALOGV("[%s] input buffer %zu available", mName, index);
bool post = true;
if (!configs->empty()) {
sp<ABuffer> config = configs->front();
configs->pop_front();
if (buffer->capacity() >= config->size()) {
memcpy(buffer->base(), config->data(), config->size());
buffer->setRange(0, config->size());
buffer->meta()->clear();
buffer->meta()->setInt64("timeUs", 0);
buffer->meta()->setInt32("csd", 1);
post = false;
} else {
ALOGD("[%s] buffer capacity too small for the config (%zu < %zu)",
mName, buffer->capacity(), config->size());
}
} else if (oStreamFormat.value == C2BufferData::LINEAR && i == 0
&& mComponentName.find("c2.qti.") == std::string::npos) {
// WORKAROUND: Some apps expect CSD available without queueing
// any input. Queue an empty buffer to get the CSD.
buffer->setRange(0, 0);
buffer->meta()->clear();
buffer->meta()->setInt64("timeUs", 0);
post = false;
}
if (post) {
mCallback->onInputBufferAvailable(index, buffer);
} else {
toBeQueued.emplace_back(buffer);
}
}
}
for (const sp<MediaCodecBuffer> &buffer : toBeQueued) {
if (queueInputBufferInternal(buffer) != OK) {
ALOGV("[%s] Error while queueing initial buffers", mName);
}
}
return OK;
}
void CCodecBufferChannel::stop() {
mSync.stop();
mFirstValidFrameIndex = mFrameIndex.load(std::memory_order_relaxed);
if (mInputSurface != nullptr) {
mInputSurface.reset();
}
}
void CCodecBufferChannel::flush(const std::list<std::unique_ptr<C2Work>> &flushedWork) {
ALOGV("[%s] flush", mName);
{
Mutexed<std::list<sp<ABuffer>>>::Locked configs(mFlushedConfigs);
for (const std::unique_ptr<C2Work> &work : flushedWork) {
if (!(work->input.flags & C2FrameData::FLAG_CODEC_CONFIG)) {
continue;
}
if (work->input.buffers.empty()
|| work->input.buffers.front()->data().linearBlocks().empty()) {
ALOGD("[%s] no linear codec config data found", mName);
continue;
}
C2ReadView view =
work->input.buffers.front()->data().linearBlocks().front().map().get();
if (view.error() != C2_OK) {
ALOGD("[%s] failed to map flushed codec config data: %d", mName, view.error());
continue;
}
configs->push_back(ABuffer::CreateAsCopy(view.data(), view.capacity()));
ALOGV("[%s] stashed flushed codec config data (size=%u)", mName, view.capacity());
}
}
{
Mutexed<Input>::Locked input(mInput);
input->buffers->flush();
input->extraBuffers.flush();
}
{
Mutexed<Output>::Locked output(mOutput);
output->buffers->flush(flushedWork);
}
mReorderStash.lock()->flush();
mPipelineWatcher.lock()->flush();
}
void CCodecBufferChannel::onWorkDone(
std::unique_ptr<C2Work> work, const sp<AMessage> &outputFormat,
const C2StreamInitDataInfo::output *initData) {
if (handleWork(std::move(work), outputFormat, initData)) {
feedInputBufferIfAvailable();
}
}
void CCodecBufferChannel::onInputBufferDone(
uint64_t frameIndex, size_t arrayIndex) {
if (mInputSurface) {
return;
}
std::shared_ptr<C2Buffer> buffer =
mPipelineWatcher.lock()->onInputBufferReleased(frameIndex, arrayIndex);
bool newInputSlotAvailable;
{
Mutexed<Input>::Locked input(mInput);
newInputSlotAvailable = input->buffers->expireComponentBuffer(buffer);
if (!newInputSlotAvailable) {
(void)input->extraBuffers.expireComponentBuffer(buffer);
}
}
if (newInputSlotAvailable) {
feedInputBufferIfAvailable();
}
}
bool CCodecBufferChannel::handleWork(
std::unique_ptr<C2Work> work,
const sp<AMessage> &outputFormat,
const C2StreamInitDataInfo::output *initData) {
if ((work->input.ordinal.frameIndex - mFirstValidFrameIndex.load()).peek() < 0) {
// Discard frames from previous generation.
ALOGD("[%s] Discard frames from previous generation.", mName);
return false;
}
if (mInputSurface == nullptr && (work->worklets.size() != 1u
|| !work->worklets.front()
|| !(work->worklets.front()->output.flags & C2FrameData::FLAG_INCOMPLETE))) {
mPipelineWatcher.lock()->onWorkDone(work->input.ordinal.frameIndex.peeku());
}
if (work->result == C2_NOT_FOUND) {
ALOGD("[%s] flushed work; ignored.", mName);
return true;
}
if (work->result != C2_OK) {
ALOGD("[%s] work failed to complete: %d", mName, work->result);
mCCodecCallback->onError(work->result, ACTION_CODE_FATAL);
return false;
}
// NOTE: MediaCodec usage supposedly have only one worklet
if (work->worklets.size() != 1u) {
ALOGI("[%s] onWorkDone: incorrect number of worklets: %zu",
mName, work->worklets.size());
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return false;
}
const std::unique_ptr<C2Worklet> &worklet = work->worklets.front();
std::shared_ptr<C2Buffer> buffer;
// NOTE: MediaCodec usage supposedly have only one output stream.
if (worklet->output.buffers.size() > 1u) {
ALOGI("[%s] onWorkDone: incorrect number of output buffers: %zu",
mName, worklet->output.buffers.size());
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return false;
} else if (worklet->output.buffers.size() == 1u) {
buffer = worklet->output.buffers[0];
if (!buffer) {
ALOGD("[%s] onWorkDone: nullptr found in buffers; ignored.", mName);
}
}
std::optional<uint32_t> newInputDelay, newPipelineDelay;
while (!worklet->output.configUpdate.empty()) {
std::unique_ptr<C2Param> param;
worklet->output.configUpdate.back().swap(param);
worklet->output.configUpdate.pop_back();
switch (param->coreIndex().coreIndex()) {
case C2PortReorderBufferDepthTuning::CORE_INDEX: {
C2PortReorderBufferDepthTuning::output reorderDepth;
if (reorderDepth.updateFrom(*param)) {
mReorderStash.lock()->setDepth(reorderDepth.value);
ALOGV("[%s] onWorkDone: updated reorder depth to %u",
mName, reorderDepth.value);
size_t numOutputSlots = mOutput.lock()->numSlots;
Mutexed<OutputSurface>::Locked output(mOutputSurface);
output->maxDequeueBuffers =
numOutputSlots + reorderDepth.value + kRenderingDepth;
if (output->surface) {
output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
}
} else {
ALOGD("[%s] onWorkDone: failed to read reorder depth", mName);
}
break;
}
case C2PortReorderKeySetting::CORE_INDEX: {
C2PortReorderKeySetting::output reorderKey;
if (reorderKey.updateFrom(*param)) {
mReorderStash.lock()->setKey(reorderKey.value);
ALOGV("[%s] onWorkDone: updated reorder key to %u",
mName, reorderKey.value);
} else {
ALOGD("[%s] onWorkDone: failed to read reorder key", mName);
}
break;
}
case C2PortActualDelayTuning::CORE_INDEX: {
if (param->isGlobal()) {
C2ActualPipelineDelayTuning pipelineDelay;
if (pipelineDelay.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updating pipeline delay %u",
mName, pipelineDelay.value);
newPipelineDelay = pipelineDelay.value;
(void)mPipelineWatcher.lock()->pipelineDelay(pipelineDelay.value);
}
}
if (param->forInput()) {
C2PortActualDelayTuning::input inputDelay;
if (inputDelay.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updating input delay %u",
mName, inputDelay.value);
newInputDelay = inputDelay.value;
(void)mPipelineWatcher.lock()->inputDelay(inputDelay.value);
}
}
if (param->forOutput()) {
C2PortActualDelayTuning::output outputDelay;
if (outputDelay.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updating output delay %u",
mName, outputDelay.value);
(void)mPipelineWatcher.lock()->outputDelay(outputDelay.value);
bool outputBuffersChanged = false;
size_t numOutputSlots = 0;
{
Mutexed<Output>::Locked output(mOutput);
output->outputDelay = outputDelay.value;
numOutputSlots = outputDelay.value + kSmoothnessFactor;
if (output->numSlots < numOutputSlots) {
output->numSlots = numOutputSlots;
if (output->buffers->isArrayMode()) {
OutputBuffersArray *array =
(OutputBuffersArray *)output->buffers.get();
ALOGV("[%s] onWorkDone: growing output buffer array to %zu",
mName, numOutputSlots);
array->grow(numOutputSlots);
outputBuffersChanged = true;
}
}
numOutputSlots = output->numSlots;
}
if (outputBuffersChanged) {
mCCodecCallback->onOutputBuffersChanged();
}
uint32_t depth = mReorderStash.lock()->depth();
Mutexed<OutputSurface>::Locked output(mOutputSurface);
output->maxDequeueBuffers = numOutputSlots + depth + kRenderingDepth;
if (output->surface) {
output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
}
}
}
break;
}
default:
ALOGV("[%s] onWorkDone: unrecognized config update (%08X)",
mName, param->index());
break;
}
}
if (newInputDelay || newPipelineDelay) {
Mutexed<Input>::Locked input(mInput);
size_t newNumSlots =
newInputDelay.value_or(input->inputDelay) +
newPipelineDelay.value_or(input->pipelineDelay) +
kSmoothnessFactor;
if (input->buffers->isArrayMode()) {
if (input->numSlots >= newNumSlots) {
input->numExtraSlots = 0;
} else {
input->numExtraSlots = newNumSlots - input->numSlots;
}
ALOGV("[%s] onWorkDone: updated number of extra slots to %zu (input array mode)",
mName, input->numExtraSlots);
} else {
input->numSlots = newNumSlots;
}
}
if (outputFormat != nullptr) {
Mutexed<Output>::Locked output(mOutput);
ALOGD("[%s] onWorkDone: output format changed to %s",
mName, outputFormat->debugString().c_str());
output->buffers->setFormat(outputFormat);
AString mediaType;
if (outputFormat->findString(KEY_MIME, &mediaType)
&& mediaType == MIMETYPE_AUDIO_RAW) {
int32_t channelCount;
int32_t sampleRate;
if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount)
&& outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) {
output->buffers->updateSkipCutBuffer(sampleRate, channelCount);
}
}
}
int32_t flags = 0;
if (worklet->output.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= MediaCodec::BUFFER_FLAG_EOS;
ALOGV("[%s] onWorkDone: output EOS", mName);
}
sp<MediaCodecBuffer> outBuffer;
size_t index;
// WORKAROUND: adjust output timestamp based on client input timestamp and codec
// input timestamp. Codec output timestamp (in the timestamp field) shall correspond to
// the codec input timestamp, but client output timestamp should (reported in timeUs)
// shall correspond to the client input timesamp (in customOrdinal). By using the
// delta between the two, this allows for some timestamp deviation - e.g. if one input
// produces multiple output.
c2_cntr64_t timestamp =
worklet->output.ordinal.timestamp + work->input.ordinal.customOrdinal
- work->input.ordinal.timestamp;
if (mInputSurface != nullptr) {
// When using input surface we need to restore the original input timestamp.
timestamp = work->input.ordinal.customOrdinal;
}
ALOGV("[%s] onWorkDone: input %lld, codec %lld => output %lld => %lld",
mName,
work->input.ordinal.customOrdinal.peekll(),
work->input.ordinal.timestamp.peekll(),
worklet->output.ordinal.timestamp.peekll(),
timestamp.peekll());
if (initData != nullptr) {
Mutexed<Output>::Locked output(mOutput);
if (output->buffers->registerCsd(initData, &index, &outBuffer) == OK) {
outBuffer->meta()->setInt64("timeUs", timestamp.peek());
outBuffer->meta()->setInt32("flags", MediaCodec::BUFFER_FLAG_CODECCONFIG);
ALOGV("[%s] onWorkDone: csd index = %zu [%p]", mName, index, outBuffer.get());
output.unlock();
mCallback->onOutputBufferAvailable(index, outBuffer);
} else {
ALOGD("[%s] onWorkDone: unable to register csd", mName);
output.unlock();
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return false;
}
}
if (!buffer && !flags) {
ALOGV("[%s] onWorkDone: Not reporting output buffer (%lld)",
mName, work->input.ordinal.frameIndex.peekull());
return true;
}
if (buffer) {
for (const std::shared_ptr<const C2Info> &info : buffer->info()) {
// TODO: properly translate these to metadata
switch (info->coreIndex().coreIndex()) {
case C2StreamPictureTypeMaskInfo::CORE_INDEX:
if (((C2StreamPictureTypeMaskInfo *)info.get())->value & C2Config::SYNC_FRAME) {
flags |= MediaCodec::BUFFER_FLAG_SYNCFRAME;
}
break;
default:
break;
}
}
}
{
Mutexed<ReorderStash>::Locked reorder(mReorderStash);
reorder->emplace(buffer, timestamp.peek(), flags, worklet->output.ordinal);
if (flags & MediaCodec::BUFFER_FLAG_EOS) {
// Flush reorder stash
reorder->setDepth(0);
}
}
sendOutputBuffers();
return true;
}
void CCodecBufferChannel::sendOutputBuffers() {
ReorderStash::Entry entry;
sp<MediaCodecBuffer> outBuffer;
size_t index;
while (true) {
Mutexed<ReorderStash>::Locked reorder(mReorderStash);
if (!reorder->hasPending()) {
break;
}
if (!reorder->pop(&entry)) {
break;
}
Mutexed<Output>::Locked output(mOutput);
status_t err = output->buffers->registerBuffer(entry.buffer, &index, &outBuffer);
if (err != OK) {
bool outputBuffersChanged = false;
if (err != WOULD_BLOCK) {
if (!output->buffers->isArrayMode()) {
output->buffers = output->buffers->toArrayMode(output->numSlots);
}
OutputBuffersArray *array = (OutputBuffersArray *)output->buffers.get();
array->realloc(entry.buffer);
outputBuffersChanged = true;
}
ALOGV("[%s] sendOutputBuffers: unable to register output buffer", mName);
reorder->defer(entry);
output.unlock();
reorder.unlock();
if (outputBuffersChanged) {
mCCodecCallback->onOutputBuffersChanged();
}
return;
}
output.unlock();
reorder.unlock();
outBuffer->meta()->setInt64("timeUs", entry.timestamp);
outBuffer->meta()->setInt32("flags", entry.flags);
ALOGV("[%s] sendOutputBuffers: out buffer index = %zu [%p] => %p + %zu (%lld)",
mName, index, outBuffer.get(), outBuffer->data(), outBuffer->size(),
(long long)entry.timestamp);
mCallback->onOutputBufferAvailable(index, outBuffer);
}
}
status_t CCodecBufferChannel::setSurface(const sp<Surface> &newSurface) {
static std::atomic_uint32_t surfaceGeneration{0};
uint32_t generation = (getpid() << 10) |
((surfaceGeneration.fetch_add(1, std::memory_order_relaxed) + 1)
& ((1 << 10) - 1));
sp<IGraphicBufferProducer> producer;
if (newSurface) {
newSurface->setScalingMode(NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
newSurface->setDequeueTimeout(kDequeueTimeoutNs);
newSurface->setMaxDequeuedBufferCount(mOutputSurface.lock()->maxDequeueBuffers);
producer = newSurface->getIGraphicBufferProducer();
producer->setGenerationNumber(generation);
} else {
ALOGE("[%s] setting output surface to null", mName);
return INVALID_OPERATION;
}
std::shared_ptr<Codec2Client::Configurable> outputPoolIntf;
C2BlockPool::local_id_t outputPoolId;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
outputPoolId = pools->outputPoolId;
outputPoolIntf = pools->outputPoolIntf;
}
if (outputPoolIntf) {
if (mComponent->setOutputSurface(
outputPoolId,
producer,
generation) != C2_OK) {
ALOGI("[%s] setSurface: component setOutputSurface failed", mName);
return INVALID_OPERATION;
}
}
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
output->surface = newSurface;
output->generation = generation;
}
return OK;
}
PipelineWatcher::Clock::duration CCodecBufferChannel::elapsed() {
// When client pushed EOS, we want all the work to be done quickly.
// Otherwise, component may have stalled work due to input starvation up to
// the sum of the delay in the pipeline.
size_t n = 0;
if (!mInputMetEos) {
size_t outputDelay = mOutput.lock()->outputDelay;
Mutexed<Input>::Locked input(mInput);
n = input->inputDelay + input->pipelineDelay + outputDelay;
}
return mPipelineWatcher.lock()->elapsed(PipelineWatcher::Clock::now(), n);
}
void CCodecBufferChannel::setMetaMode(MetaMode mode) {
mMetaMode = mode;
}
status_t toStatusT(c2_status_t c2s, c2_operation_t c2op) {
// C2_OK is always translated to OK.
if (c2s == C2_OK) {
return OK;
}
// Operation-dependent translation
// TODO: Add as necessary
switch (c2op) {
case C2_OPERATION_Component_start:
switch (c2s) {
case C2_NO_MEMORY:
return NO_MEMORY;
default:
return UNKNOWN_ERROR;
}
default:
break;
}
// Backup operation-agnostic translation
switch (c2s) {
case C2_BAD_INDEX:
return BAD_INDEX;
case C2_BAD_VALUE:
return BAD_VALUE;
case C2_BLOCKING:
return WOULD_BLOCK;
case C2_DUPLICATE:
return ALREADY_EXISTS;
case C2_NO_INIT:
return NO_INIT;
case C2_NO_MEMORY:
return NO_MEMORY;
case C2_NOT_FOUND:
return NAME_NOT_FOUND;
case C2_TIMED_OUT:
return TIMED_OUT;
case C2_BAD_STATE:
case C2_CANCELED:
case C2_CANNOT_DO:
case C2_CORRUPTED:
case C2_OMITTED:
case C2_REFUSED:
return UNKNOWN_ERROR;
default:
return -static_cast<status_t>(c2s);
}
}
} // namespace android