/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "BufferPoolManager"
//#define LOG_NDEBUG 0
#include <bufferpool/ClientManager.h>
#include <hidl/HidlTransportSupport.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <utils/Log.h>
#include "BufferPoolClient.h"
#include "Observer.h"
#include "Accessor.h"
namespace android {
namespace hardware {
namespace media {
namespace bufferpool {
namespace V2_0 {
namespace implementation {
static constexpr int64_t kRegisterTimeoutUs = 500000; // 0.5 sec
static constexpr int64_t kCleanUpDurationUs = 1000000; // TODO: 1 sec tune
static constexpr int64_t kClientTimeoutUs = 5000000; // TODO: 5 secs tune
/**
* The holder of the cookie of remote IClientManager.
* The cookie is process locally unique for each IClientManager.
* (The cookie is used to notify death of clients to bufferpool process.)
*/
class ClientManagerCookieHolder {
public:
/**
* Creates a cookie holder for remote IClientManager(s).
*/
ClientManagerCookieHolder();
/**
* Gets a cookie for a remote IClientManager.
*
* @param manager the specified remote IClientManager.
* @param added true when the specified remote IClientManager is added
* newly, false otherwise.
*
* @return the process locally unique cookie for the specified IClientManager.
*/
uint64_t getCookie(const sp<IClientManager> &manager, bool *added);
private:
uint64_t mSeqId;
std::mutex mLock;
std::list<std::pair<const wp<IClientManager>, uint64_t>> mManagers;
};
ClientManagerCookieHolder::ClientManagerCookieHolder() : mSeqId(0){}
uint64_t ClientManagerCookieHolder::getCookie(
const sp<IClientManager> &manager,
bool *added) {
std::lock_guard<std::mutex> lock(mLock);
for (auto it = mManagers.begin(); it != mManagers.end();) {
const sp<IClientManager> key = it->first.promote();
if (key) {
if (interfacesEqual(key, manager)) {
*added = false;
return it->second;
}
++it;
} else {
it = mManagers.erase(it);
}
}
uint64_t id = mSeqId++;
*added = true;
mManagers.push_back(std::make_pair(manager, id));
return id;
}
class ClientManager::Impl {
public:
Impl();
// BnRegisterSender
ResultStatus registerSender(const sp<IAccessor> &accessor,
ConnectionId *pConnectionId);
// BpRegisterSender
ResultStatus registerSender(const sp<IClientManager> &receiver,
ConnectionId senderId,
ConnectionId *receiverId);
ResultStatus create(const std::shared_ptr<BufferPoolAllocator> &allocator,
ConnectionId *pConnectionId);
ResultStatus close(ConnectionId connectionId);
ResultStatus flush(ConnectionId connectionId);
ResultStatus allocate(ConnectionId connectionId,
const std::vector<uint8_t> ¶ms,
native_handle_t **handle,
std::shared_ptr<BufferPoolData> *buffer);
ResultStatus receive(ConnectionId connectionId,
TransactionId transactionId,
BufferId bufferId,
int64_t timestampUs,
native_handle_t **handle,
std::shared_ptr<BufferPoolData> *buffer);
ResultStatus postSend(ConnectionId receiverId,
const std::shared_ptr<BufferPoolData> &buffer,
TransactionId *transactionId,
int64_t *timestampUs);
ResultStatus getAccessor(ConnectionId connectionId,
sp<IAccessor> *accessor);
void cleanUp(bool clearCache = false);
private:
// In order to prevent deadlock between multiple locks,
// always lock ClientCache.lock before locking ActiveClients.lock.
struct ClientCache {
// This lock is held for brief duration.
// Blocking operation is not performed while holding the lock.
std::mutex mMutex;
std::list<std::pair<const wp<IAccessor>, const std::weak_ptr<BufferPoolClient>>>
mClients;
std::condition_variable mConnectCv;
bool mConnecting;
int64_t mLastCleanUpUs;
ClientCache() : mConnecting(false), mLastCleanUpUs(getTimestampNow()) {}
} mCache;
// Active clients which can be retrieved via ConnectionId
struct ActiveClients {
// This lock is held for brief duration.
// Blocking operation is not performed holding the lock.
std::mutex mMutex;
std::map<ConnectionId, const std::shared_ptr<BufferPoolClient>>
mClients;
} mActive;
sp<Observer> mObserver;
ClientManagerCookieHolder mRemoteClientCookies;
};
ClientManager::Impl::Impl()
: mObserver(new Observer()) {}
ResultStatus ClientManager::Impl::registerSender(
const sp<IAccessor> &accessor, ConnectionId *pConnectionId) {
cleanUp();
int64_t timeoutUs = getTimestampNow() + kRegisterTimeoutUs;
do {
std::unique_lock<std::mutex> lock(mCache.mMutex);
for (auto it = mCache.mClients.begin(); it != mCache.mClients.end(); ++it) {
sp<IAccessor> sAccessor = it->first.promote();
if (sAccessor && interfacesEqual(sAccessor, accessor)) {
const std::shared_ptr<BufferPoolClient> client = it->second.lock();
if (client) {
std::lock_guard<std::mutex> lock(mActive.mMutex);
*pConnectionId = client->getConnectionId();
if (mActive.mClients.find(*pConnectionId) != mActive.mClients.end()) {
ALOGV("register existing connection %lld", (long long)*pConnectionId);
return ResultStatus::ALREADY_EXISTS;
}
}
mCache.mClients.erase(it);
break;
}
}
if (!mCache.mConnecting) {
mCache.mConnecting = true;
lock.unlock();
ResultStatus result = ResultStatus::OK;
const std::shared_ptr<BufferPoolClient> client =
std::make_shared<BufferPoolClient>(accessor, mObserver);
lock.lock();
if (!client) {
result = ResultStatus::NO_MEMORY;
} else if (!client->isValid()) {
result = ResultStatus::CRITICAL_ERROR;
}
if (result == ResultStatus::OK) {
// TODO: handle insert fail. (malloc fail)
const std::weak_ptr<BufferPoolClient> wclient = client;
mCache.mClients.push_back(std::make_pair(accessor, wclient));
ConnectionId conId = client->getConnectionId();
mObserver->addClient(conId, wclient);
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
mActive.mClients.insert(std::make_pair(conId, client));
}
*pConnectionId = conId;
ALOGV("register new connection %lld", (long long)*pConnectionId);
}
mCache.mConnecting = false;
lock.unlock();
mCache.mConnectCv.notify_all();
return result;
}
mCache.mConnectCv.wait_for(
lock, std::chrono::microseconds(kRegisterTimeoutUs));
} while (getTimestampNow() < timeoutUs);
// TODO: return timeout error
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::Impl::registerSender(
const sp<IClientManager> &receiver,
ConnectionId senderId,
ConnectionId *receiverId) {
sp<IAccessor> accessor;
bool local = false;
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
auto it = mActive.mClients.find(senderId);
if (it == mActive.mClients.end()) {
return ResultStatus::NOT_FOUND;
}
it->second->getAccessor(&accessor);
local = it->second->isLocal();
}
ResultStatus rs = ResultStatus::CRITICAL_ERROR;
if (accessor) {
Return<void> transResult = receiver->registerSender(
accessor,
[&rs, receiverId](
ResultStatus status,
int64_t connectionId) {
rs = status;
*receiverId = connectionId;
});
if (!transResult.isOk()) {
return ResultStatus::CRITICAL_ERROR;
} else if (local && rs == ResultStatus::OK) {
sp<ConnectionDeathRecipient> recipient = Accessor::getConnectionDeathRecipient();
if (recipient) {
ALOGV("client death recipient registered %lld", (long long)*receiverId);
bool added;
uint64_t cookie = mRemoteClientCookies.getCookie(receiver, &added);
recipient->addCookieToConnection(cookie, *receiverId);
if (added) {
Return<bool> transResult = receiver->linkToDeath(recipient, cookie);
}
}
}
}
return rs;
}
ResultStatus ClientManager::Impl::create(
const std::shared_ptr<BufferPoolAllocator> &allocator,
ConnectionId *pConnectionId) {
const sp<Accessor> accessor = new Accessor(allocator);
if (!accessor || !accessor->isValid()) {
return ResultStatus::CRITICAL_ERROR;
}
// TODO: observer is local. use direct call instead of hidl call.
std::shared_ptr<BufferPoolClient> client =
std::make_shared<BufferPoolClient>(accessor, mObserver);
if (!client || !client->isValid()) {
return ResultStatus::CRITICAL_ERROR;
}
// Since a new bufferpool is created, evict memories which are used by
// existing bufferpools and clients.
cleanUp(true);
{
// TODO: handle insert fail. (malloc fail)
std::lock_guard<std::mutex> lock(mCache.mMutex);
const std::weak_ptr<BufferPoolClient> wclient = client;
mCache.mClients.push_back(std::make_pair(accessor, wclient));
ConnectionId conId = client->getConnectionId();
mObserver->addClient(conId, wclient);
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
mActive.mClients.insert(std::make_pair(conId, client));
}
*pConnectionId = conId;
ALOGV("create new connection %lld", (long long)*pConnectionId);
}
return ResultStatus::OK;
}
ResultStatus ClientManager::Impl::close(ConnectionId connectionId) {
std::unique_lock<std::mutex> lock1(mCache.mMutex);
std::unique_lock<std::mutex> lock2(mActive.mMutex);
auto it = mActive.mClients.find(connectionId);
if (it != mActive.mClients.end()) {
sp<IAccessor> accessor;
it->second->getAccessor(&accessor);
std::shared_ptr<BufferPoolClient> closing = it->second;
mActive.mClients.erase(connectionId);
for (auto cit = mCache.mClients.begin(); cit != mCache.mClients.end();) {
// clean up dead client caches
sp<IAccessor> cAccessor = cit->first.promote();
if (!cAccessor || (accessor && interfacesEqual(cAccessor, accessor))) {
cit = mCache.mClients.erase(cit);
} else {
cit++;
}
}
lock2.unlock();
lock1.unlock();
closing->flush();
return ResultStatus::OK;
}
return ResultStatus::NOT_FOUND;
}
ResultStatus ClientManager::Impl::flush(ConnectionId connectionId) {
std::shared_ptr<BufferPoolClient> client;
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
auto it = mActive.mClients.find(connectionId);
if (it == mActive.mClients.end()) {
return ResultStatus::NOT_FOUND;
}
client = it->second;
}
return client->flush();
}
ResultStatus ClientManager::Impl::allocate(
ConnectionId connectionId, const std::vector<uint8_t> ¶ms,
native_handle_t **handle, std::shared_ptr<BufferPoolData> *buffer) {
std::shared_ptr<BufferPoolClient> client;
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
auto it = mActive.mClients.find(connectionId);
if (it == mActive.mClients.end()) {
return ResultStatus::NOT_FOUND;
}
client = it->second;
}
return client->allocate(params, handle, buffer);
}
ResultStatus ClientManager::Impl::receive(
ConnectionId connectionId, TransactionId transactionId,
BufferId bufferId, int64_t timestampUs,
native_handle_t **handle, std::shared_ptr<BufferPoolData> *buffer) {
std::shared_ptr<BufferPoolClient> client;
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
auto it = mActive.mClients.find(connectionId);
if (it == mActive.mClients.end()) {
return ResultStatus::NOT_FOUND;
}
client = it->second;
}
return client->receive(transactionId, bufferId, timestampUs, handle, buffer);
}
ResultStatus ClientManager::Impl::postSend(
ConnectionId receiverId, const std::shared_ptr<BufferPoolData> &buffer,
TransactionId *transactionId, int64_t *timestampUs) {
ConnectionId connectionId = buffer->mConnectionId;
std::shared_ptr<BufferPoolClient> client;
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
auto it = mActive.mClients.find(connectionId);
if (it == mActive.mClients.end()) {
return ResultStatus::NOT_FOUND;
}
client = it->second;
}
return client->postSend(receiverId, buffer, transactionId, timestampUs);
}
ResultStatus ClientManager::Impl::getAccessor(
ConnectionId connectionId, sp<IAccessor> *accessor) {
std::shared_ptr<BufferPoolClient> client;
{
std::lock_guard<std::mutex> lock(mActive.mMutex);
auto it = mActive.mClients.find(connectionId);
if (it == mActive.mClients.end()) {
return ResultStatus::NOT_FOUND;
}
client = it->second;
}
return client->getAccessor(accessor);
}
void ClientManager::Impl::cleanUp(bool clearCache) {
int64_t now = getTimestampNow();
int64_t lastTransactionUs;
std::lock_guard<std::mutex> lock1(mCache.mMutex);
if (clearCache || mCache.mLastCleanUpUs + kCleanUpDurationUs < now) {
std::lock_guard<std::mutex> lock2(mActive.mMutex);
int cleaned = 0;
for (auto it = mActive.mClients.begin(); it != mActive.mClients.end();) {
if (!it->second->isActive(&lastTransactionUs, clearCache)) {
if (lastTransactionUs + kClientTimeoutUs < now) {
sp<IAccessor> accessor;
it->second->getAccessor(&accessor);
it = mActive.mClients.erase(it);
++cleaned;
continue;
}
}
++it;
}
for (auto cit = mCache.mClients.begin(); cit != mCache.mClients.end();) {
// clean up dead client caches
sp<IAccessor> cAccessor = cit->first.promote();
if (!cAccessor) {
cit = mCache.mClients.erase(cit);
} else {
++cit;
}
}
ALOGV("# of cleaned connections: %d", cleaned);
mCache.mLastCleanUpUs = now;
}
}
// Methods from ::android::hardware::media::bufferpool::V2_0::IClientManager follow.
Return<void> ClientManager::registerSender(const sp<::android::hardware::media::bufferpool::V2_0::IAccessor>& bufferPool, registerSender_cb _hidl_cb) {
if (mImpl) {
ConnectionId connectionId = -1;
ResultStatus status = mImpl->registerSender(bufferPool, &connectionId);
_hidl_cb(status, connectionId);
} else {
_hidl_cb(ResultStatus::CRITICAL_ERROR, -1);
}
return Void();
}
// Methods for local use.
sp<ClientManager> ClientManager::sInstance;
std::mutex ClientManager::sInstanceLock;
sp<ClientManager> ClientManager::getInstance() {
std::lock_guard<std::mutex> lock(sInstanceLock);
if (!sInstance) {
sInstance = new ClientManager();
}
Accessor::createInvalidator();
return sInstance;
}
ClientManager::ClientManager() : mImpl(new Impl()) {}
ClientManager::~ClientManager() {
}
ResultStatus ClientManager::create(
const std::shared_ptr<BufferPoolAllocator> &allocator,
ConnectionId *pConnectionId) {
if (mImpl) {
return mImpl->create(allocator, pConnectionId);
}
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::registerSender(
const sp<IClientManager> &receiver,
ConnectionId senderId,
ConnectionId *receiverId) {
if (mImpl) {
return mImpl->registerSender(receiver, senderId, receiverId);
}
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::close(ConnectionId connectionId) {
if (mImpl) {
return mImpl->close(connectionId);
}
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::flush(ConnectionId connectionId) {
if (mImpl) {
return mImpl->flush(connectionId);
}
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::allocate(
ConnectionId connectionId, const std::vector<uint8_t> ¶ms,
native_handle_t **handle, std::shared_ptr<BufferPoolData> *buffer) {
if (mImpl) {
return mImpl->allocate(connectionId, params, handle, buffer);
}
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::receive(
ConnectionId connectionId, TransactionId transactionId,
BufferId bufferId, int64_t timestampUs,
native_handle_t **handle, std::shared_ptr<BufferPoolData> *buffer) {
if (mImpl) {
return mImpl->receive(connectionId, transactionId, bufferId,
timestampUs, handle, buffer);
}
return ResultStatus::CRITICAL_ERROR;
}
ResultStatus ClientManager::postSend(
ConnectionId receiverId, const std::shared_ptr<BufferPoolData> &buffer,
TransactionId *transactionId, int64_t* timestampUs) {
if (mImpl && buffer) {
return mImpl->postSend(receiverId, buffer, transactionId, timestampUs);
}
return ResultStatus::CRITICAL_ERROR;
}
void ClientManager::cleanUp() {
if (mImpl) {
mImpl->cleanUp(true);
}
}
} // namespace implementation
} // namespace V2_0
} // namespace bufferpool
} // namespace media
} // namespace hardware
} // namespace android