/*
* Wrapper functions for libnettle and libgmp
* Copyright (c) 2017, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include <nettle/nettle-meta.h>
#include <nettle/des.h>
#undef des_encrypt
#include <nettle/hmac.h>
#include <nettle/aes.h>
#undef aes_encrypt
#undef aes_decrypt
#include <nettle/arcfour.h>
#include <nettle/bignum.h>
#include "common.h"
#include "md5.h"
#include "sha1.h"
#include "sha256.h"
#include "sha384.h"
#include "sha512.h"
#include "crypto.h"
int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
{
struct des_ctx ctx;
u8 pkey[8], next, tmp;
int i;
/* Add parity bits to the key */
next = 0;
for (i = 0; i < 7; i++) {
tmp = key[i];
pkey[i] = (tmp >> i) | next | 1;
next = tmp << (7 - i);
}
pkey[i] = next | 1;
nettle_des_set_key(&ctx, pkey);
nettle_des_encrypt(&ctx, DES_BLOCK_SIZE, cypher, clear);
os_memset(&ctx, 0, sizeof(ctx));
return 0;
}
static int nettle_digest_vector(const struct nettle_hash *alg, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
void *ctx;
size_t i;
if (TEST_FAIL())
return -1;
ctx = os_malloc(alg->context_size);
if (!ctx)
return -1;
alg->init(ctx);
for (i = 0; i < num_elem; i++)
alg->update(ctx, len[i], addr[i]);
alg->digest(ctx, alg->digest_size, mac);
bin_clear_free(ctx, alg->context_size);
return 0;
}
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return nettle_digest_vector(&nettle_md4, num_elem, addr, len, mac);
}
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return nettle_digest_vector(&nettle_md5, num_elem, addr, len, mac);
}
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return nettle_digest_vector(&nettle_sha1, num_elem, addr, len, mac);
}
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return nettle_digest_vector(&nettle_sha256, num_elem, addr, len, mac);
}
int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return nettle_digest_vector(&nettle_sha384, num_elem, addr, len, mac);
}
int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return nettle_digest_vector(&nettle_sha512, num_elem, addr, len, mac);
}
int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
struct hmac_md5_ctx ctx;
size_t i;
if (TEST_FAIL())
return -1;
hmac_md5_set_key(&ctx, key_len, key);
for (i = 0; i < num_elem; i++)
hmac_md5_update(&ctx, len[i], addr[i]);
hmac_md5_digest(&ctx, MD5_DIGEST_SIZE, mac);
os_memset(&ctx, 0, sizeof(ctx));
return 0;
}
int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
}
int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
struct hmac_sha1_ctx ctx;
size_t i;
if (TEST_FAIL())
return -1;
hmac_sha1_set_key(&ctx, key_len, key);
for (i = 0; i < num_elem; i++)
hmac_sha1_update(&ctx, len[i], addr[i]);
hmac_sha1_digest(&ctx, SHA1_DIGEST_SIZE, mac);
os_memset(&ctx, 0, sizeof(ctx));
return 0;
}
int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}
#ifdef CONFIG_SHA256
int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
struct hmac_sha256_ctx ctx;
size_t i;
if (TEST_FAIL())
return -1;
hmac_sha256_set_key(&ctx, key_len, key);
for (i = 0; i < num_elem; i++)
hmac_sha256_update(&ctx, len[i], addr[i]);
hmac_sha256_digest(&ctx, SHA256_DIGEST_SIZE, mac);
os_memset(&ctx, 0, sizeof(ctx));
return 0;
}
int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA256 */
#ifdef CONFIG_SHA384
int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
struct hmac_sha384_ctx ctx;
size_t i;
if (TEST_FAIL())
return -1;
hmac_sha384_set_key(&ctx, key_len, key);
for (i = 0; i < num_elem; i++)
hmac_sha384_update(&ctx, len[i], addr[i]);
hmac_sha384_digest(&ctx, SHA384_DIGEST_SIZE, mac);
os_memset(&ctx, 0, sizeof(ctx));
return 0;
}
int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA384 */
#ifdef CONFIG_SHA512
int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
struct hmac_sha512_ctx ctx;
size_t i;
if (TEST_FAIL())
return -1;
hmac_sha512_set_key(&ctx, key_len, key);
for (i = 0; i < num_elem; i++)
hmac_sha512_update(&ctx, len[i], addr[i]);
hmac_sha512_digest(&ctx, SHA512_DIGEST_SIZE, mac);
os_memset(&ctx, 0, sizeof(ctx));
return 0;
}
int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA512 */
void * aes_encrypt_init(const u8 *key, size_t len)
{
struct aes_ctx *ctx;
if (TEST_FAIL())
return NULL;
ctx = os_malloc(sizeof(*ctx));
if (!ctx)
return NULL;
nettle_aes_set_encrypt_key(ctx, len, key);
return ctx;
}
int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
{
struct aes_ctx *actx = ctx;
nettle_aes_encrypt(actx, AES_BLOCK_SIZE, crypt, plain);
return 0;
}
void aes_encrypt_deinit(void *ctx)
{
struct aes_ctx *actx = ctx;
bin_clear_free(actx, sizeof(*actx));
}
void * aes_decrypt_init(const u8 *key, size_t len)
{
struct aes_ctx *ctx;
if (TEST_FAIL())
return NULL;
ctx = os_malloc(sizeof(*ctx));
if (!ctx)
return NULL;
nettle_aes_set_decrypt_key(ctx, len, key);
return ctx;
}
int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
{
struct aes_ctx *actx = ctx;
nettle_aes_decrypt(actx, AES_BLOCK_SIZE, plain, crypt);
return 0;
}
void aes_decrypt_deinit(void *ctx)
{
struct aes_ctx *actx = ctx;
bin_clear_free(actx, sizeof(*actx));
}
int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
u8 *pubkey)
{
size_t pubkey_len, pad;
if (os_get_random(privkey, prime_len) < 0)
return -1;
if (os_memcmp(privkey, prime, prime_len) > 0) {
/* Make sure private value is smaller than prime */
privkey[0] = 0;
}
pubkey_len = prime_len;
if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len,
pubkey, &pubkey_len) < 0)
return -1;
if (pubkey_len < prime_len) {
pad = prime_len - pubkey_len;
os_memmove(pubkey + pad, pubkey, pubkey_len);
os_memset(pubkey, 0, pad);
}
return 0;
}
int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
const u8 *order, size_t order_len,
const u8 *privkey, size_t privkey_len,
const u8 *pubkey, size_t pubkey_len,
u8 *secret, size_t *len)
{
mpz_t pub;
int res = -1;
if (pubkey_len > prime_len ||
(pubkey_len == prime_len &&
os_memcmp(pubkey, prime, prime_len) >= 0))
return -1;
mpz_init(pub);
mpz_import(pub, pubkey_len, 1, 1, 1, 0, pubkey);
if (mpz_cmp_d(pub, 1) <= 0)
goto fail;
if (order) {
mpz_t p, q, tmp;
int failed;
/* verify: pubkey^q == 1 mod p */
mpz_inits(p, q, tmp, NULL);
mpz_import(p, prime_len, 1, 1, 1, 0, prime);
mpz_import(q, order_len, 1, 1, 1, 0, order);
mpz_powm(tmp, pub, q, p);
failed = mpz_cmp_d(tmp, 1) != 0;
mpz_clears(p, q, tmp, NULL);
if (failed)
goto fail;
}
res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len,
prime, prime_len, secret, len);
fail:
mpz_clear(pub);
return res;
}
int crypto_mod_exp(const u8 *base, size_t base_len,
const u8 *power, size_t power_len,
const u8 *modulus, size_t modulus_len,
u8 *result, size_t *result_len)
{
mpz_t bn_base, bn_exp, bn_modulus, bn_result;
int ret = -1;
size_t len;
mpz_inits(bn_base, bn_exp, bn_modulus, bn_result, NULL);
mpz_import(bn_base, base_len, 1, 1, 1, 0, base);
mpz_import(bn_exp, power_len, 1, 1, 1, 0, power);
mpz_import(bn_modulus, modulus_len, 1, 1, 1, 0, modulus);
mpz_powm(bn_result, bn_base, bn_exp, bn_modulus);
len = mpz_sizeinbase(bn_result, 2);
len = (len + 7) / 8;
if (*result_len < len)
goto error;
mpz_export(result, result_len, 1, 1, 1, 0, bn_result);
ret = 0;
error:
mpz_clears(bn_base, bn_exp, bn_modulus, bn_result, NULL);
return ret;
}
struct crypto_cipher {
enum crypto_cipher_alg alg;
union {
struct arcfour_ctx arcfour_ctx;
} u;
};
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len)
{
struct crypto_cipher *ctx;
ctx = os_zalloc(sizeof(*ctx));
if (!ctx)
return NULL;
ctx->alg = alg;
switch (alg) {
case CRYPTO_CIPHER_ALG_RC4:
nettle_arcfour_set_key(&ctx->u.arcfour_ctx, key_len, key);
break;
default:
os_free(ctx);
return NULL;
}
return ctx;
}
int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
u8 *crypt, size_t len)
{
switch (ctx->alg) {
case CRYPTO_CIPHER_ALG_RC4:
nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, crypt, plain);
break;
default:
return -1;
}
return 0;
}
int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
u8 *plain, size_t len)
{
switch (ctx->alg) {
case CRYPTO_CIPHER_ALG_RC4:
nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, plain, crypt);
break;
default:
return -1;
}
return 0;
}
void crypto_cipher_deinit(struct crypto_cipher *ctx)
{
bin_clear_free(ctx, sizeof(*ctx));
}