#!/usr/bin/python3 -i
#
# Copyright (c) 2015-2019 Valve Corporation
# Copyright (c) 2015-2019 LunarG, Inc.
# Copyright (c) 2015-2019 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Tobin Ehlis <tobine@google.com>
# Author: Mark Lobodzinski <mark@lunarg.com>
#
# This script generates the dispatch portion of a factory layer which intercepts
# all Vulkan functions. The resultant factory layer allows rapid development of
# layers and interceptors.
import os,re,sys
from generator import *
from common_codegen import *
# LayerFactoryGeneratorOptions - subclass of GeneratorOptions.
#
# Adds options used by LayerFactoryOutputGenerator objects during factory
# layer generation.
#
# Additional members
# prefixText - list of strings to prefix generated header with
# (usually a copyright statement + calling convention macros).
# protectFile - True if multiple inclusion protection should be
# generated (based on the filename) around the entire header.
# protectFeature - True if #ifndef..#endif protection should be
# generated around a feature interface in the header file.
# genFuncPointers - True if function pointer typedefs should be
# generated
# protectProto - If conditional protection should be generated
# around prototype declarations, set to either '#ifdef'
# to require opt-in (#ifdef protectProtoStr) or '#ifndef'
# to require opt-out (#ifndef protectProtoStr). Otherwise
# set to None.
# protectProtoStr - #ifdef/#ifndef symbol to use around prototype
# declarations, if protectProto is set
# apicall - string to use for the function declaration prefix,
# such as APICALL on Windows.
# apientry - string to use for the calling convention macro,
# in typedefs, such as APIENTRY.
# apientryp - string to use for the calling convention macro
# in function pointer typedefs, such as APIENTRYP.
# indentFuncProto - True if prototype declarations should put each
# parameter on a separate line
# indentFuncPointer - True if typedefed function pointers should put each
# parameter on a separate line
# alignFuncParam - if nonzero and parameters are being put on a
# separate line, align parameter names at the specified column
class LayerChassisGeneratorOptions(GeneratorOptions):
def __init__(self,
filename = None,
directory = '.',
apiname = None,
profile = None,
versions = '.*',
emitversions = '.*',
defaultExtensions = None,
addExtensions = None,
removeExtensions = None,
emitExtensions = None,
sortProcedure = regSortFeatures,
prefixText = "",
genFuncPointers = True,
protectFile = True,
protectFeature = True,
apicall = '',
apientry = '',
apientryp = '',
indentFuncProto = True,
indentFuncPointer = False,
alignFuncParam = 0,
helper_file_type = '',
expandEnumerants = True):
GeneratorOptions.__init__(self, filename, directory, apiname, profile,
versions, emitversions, defaultExtensions,
addExtensions, removeExtensions, emitExtensions, sortProcedure)
self.prefixText = prefixText
self.genFuncPointers = genFuncPointers
self.protectFile = protectFile
self.protectFeature = protectFeature
self.apicall = apicall
self.apientry = apientry
self.apientryp = apientryp
self.indentFuncProto = indentFuncProto
self.indentFuncPointer = indentFuncPointer
self.alignFuncParam = alignFuncParam
# LayerChassisOutputGenerator - subclass of OutputGenerator.
# Generates a LayerFactory layer that intercepts all API entrypoints
# This is intended to be used as a starting point for creating custom layers
#
# ---- methods ----
# LayerChassisOutputGenerator(errFile, warnFile, diagFile) - args as for
# OutputGenerator. Defines additional internal state.
# ---- methods overriding base class ----
# beginFile(genOpts)
# endFile()
# beginFeature(interface, emit)
# endFeature()
# genType(typeinfo,name)
# genStruct(typeinfo,name)
# genGroup(groupinfo,name)
# genEnum(enuminfo, name)
# genCmd(cmdinfo)
class LayerChassisOutputGenerator(OutputGenerator):
"""Generate specified API interfaces in a specific style, such as a C header"""
# This is an ordered list of sections in the header file.
TYPE_SECTIONS = ['include', 'define', 'basetype', 'handle', 'enum',
'group', 'bitmask', 'funcpointer', 'struct']
ALL_SECTIONS = TYPE_SECTIONS + ['command']
manual_functions = [
# Include functions here to be interecpted w/ manually implemented function bodies
'vkGetDeviceProcAddr',
'vkGetInstanceProcAddr',
'vkGetPhysicalDeviceProcAddr',
'vkCreateDevice',
'vkDestroyDevice',
'vkCreateInstance',
'vkDestroyInstance',
'vkEnumerateInstanceLayerProperties',
'vkEnumerateInstanceExtensionProperties',
'vkEnumerateDeviceLayerProperties',
'vkEnumerateDeviceExtensionProperties',
# Functions that are handled explicitly due to chassis architecture violations
'vkCreateGraphicsPipelines',
'vkCreateComputePipelines',
'vkCreateRayTracingPipelinesNV',
'vkCreatePipelineLayout',
'vkCreateShaderModule',
'vkAllocateDescriptorSets',
# ValidationCache functions do not get dispatched
'vkCreateValidationCacheEXT',
'vkDestroyValidationCacheEXT',
'vkMergeValidationCachesEXT',
'vkGetValidationCacheDataEXT',
]
alt_ret_codes = [
# Include functions here which must tolerate VK_INCOMPLETE as a return code
'vkEnumeratePhysicalDevices',
'vkEnumeratePhysicalDeviceGroupsKHR',
'vkGetValidationCacheDataEXT',
'vkGetPipelineCacheData',
'vkGetShaderInfoAMD',
'vkGetPhysicalDeviceDisplayPropertiesKHR',
'vkGetPhysicalDeviceDisplayProperties2KHR',
'vkGetPhysicalDeviceDisplayPlanePropertiesKHR',
'vkGetDisplayPlaneSupportedDisplaysKHR',
'vkGetDisplayModePropertiesKHR',
'vkGetDisplayModeProperties2KHR',
'vkGetPhysicalDeviceSurfaceFormatsKHR',
'vkGetPhysicalDeviceSurfacePresentModesKHR',
'vkGetPhysicalDevicePresentRectanglesKHR',
'vkGetPastPresentationTimingGOOGLE',
'vkGetSwapchainImagesKHR',
'vkEnumerateInstanceLayerProperties',
'vkEnumerateDeviceLayerProperties',
'vkEnumerateInstanceExtensionProperties',
'vkEnumerateDeviceExtensionProperties',
'vkGetPhysicalDeviceCalibrateableTimeDomainsEXT',
]
pre_dispatch_debug_utils_functions = {
'vkDebugMarkerSetObjectNameEXT' : 'layer_data->report_data->DebugReportSetMarkerObjectName(pNameInfo);',
'vkSetDebugUtilsObjectNameEXT' : 'layer_data->report_data->DebugReportSetUtilsObjectName(pNameInfo);',
'vkQueueBeginDebugUtilsLabelEXT' : 'BeginQueueDebugUtilsLabel(layer_data->report_data, queue, pLabelInfo);',
'vkQueueInsertDebugUtilsLabelEXT' : 'InsertQueueDebugUtilsLabel(layer_data->report_data, queue, pLabelInfo);',
'vkCmdBeginDebugUtilsLabelEXT' : 'BeginCmdDebugUtilsLabel(layer_data->report_data, commandBuffer, pLabelInfo);',
'vkCmdInsertDebugUtilsLabelEXT' : 'InsertCmdDebugUtilsLabel(layer_data->report_data, commandBuffer, pLabelInfo);'
}
post_dispatch_debug_utils_functions = {
'vkQueueEndDebugUtilsLabelEXT' : 'EndQueueDebugUtilsLabel(layer_data->report_data, queue);',
'vkCmdEndDebugUtilsLabelEXT' : 'EndCmdDebugUtilsLabel(layer_data->report_data, commandBuffer);',
'vkCmdInsertDebugUtilsLabelEXT' : 'InsertCmdDebugUtilsLabel(layer_data->report_data, commandBuffer, pLabelInfo);',
'vkCreateDebugReportCallbackEXT' : 'layer_create_report_callback(layer_data->report_data, false, pCreateInfo, pAllocator, pCallback);',
'vkDestroyDebugReportCallbackEXT' : 'layer_destroy_report_callback(layer_data->report_data, callback, pAllocator);',
'vkCreateDebugUtilsMessengerEXT' : 'layer_create_messenger_callback(layer_data->report_data, false, pCreateInfo, pAllocator, pMessenger);',
'vkDestroyDebugUtilsMessengerEXT' : 'layer_destroy_messenger_callback(layer_data->report_data, messenger, pAllocator);',
}
precallvalidate_loop = "for (auto intercept : layer_data->object_dispatch) {"
precallrecord_loop = precallvalidate_loop
postcallrecord_loop = "for (auto intercept : layer_data->object_dispatch) {"
inline_custom_header_preamble = """
#define NOMINMAX
#include <mutex>
#include <cinttypes>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unordered_map>
#include <unordered_set>
#include <algorithm>
#include <memory>
#include "vk_loader_platform.h"
#include "vulkan/vulkan.h"
#include "vk_layer_config.h"
#include "vk_layer_data.h"
#include "vk_layer_logging.h"
#include "vk_object_types.h"
#include "vulkan/vk_layer.h"
#include "vk_enum_string_helper.h"
#include "vk_layer_extension_utils.h"
#include "vk_layer_utils.h"
#include "vulkan/vk_layer.h"
#include "vk_dispatch_table_helper.h"
#include "vk_validation_error_messages.h"
#include "vk_extension_helper.h"
#include "vk_safe_struct.h"
#include "vk_typemap_helper.h"
extern uint64_t global_unique_id;
extern std::unordered_map<uint64_t, uint64_t> unique_id_mapping;
"""
inline_custom_header_class_definition = """
// Layer object type identifiers
enum LayerObjectTypeId {
LayerObjectTypeInstance, // Container for an instance dispatch object
LayerObjectTypeDevice, // Container for a device dispatch object
LayerObjectTypeThreading, // Instance or device threading layer object
LayerObjectTypeParameterValidation, // Instance or device parameter validation layer object
LayerObjectTypeObjectTracker, // Instance or device object tracker layer object
LayerObjectTypeCoreValidation, // Instance or device core validation layer object
};
struct TEMPLATE_STATE {
VkDescriptorUpdateTemplateKHR desc_update_template;
safe_VkDescriptorUpdateTemplateCreateInfo create_info;
TEMPLATE_STATE(VkDescriptorUpdateTemplateKHR update_template, safe_VkDescriptorUpdateTemplateCreateInfo *pCreateInfo)
: desc_update_template(update_template), create_info(*pCreateInfo) {}
};
class LAYER_PHYS_DEV_PROPERTIES {
public:
VkPhysicalDeviceProperties properties;
std::vector<VkQueueFamilyProperties> queue_family_properties;
};
// CHECK_DISABLED struct is a container for bools that can block validation checks from being performed.
// The end goal is to have all checks guarded by a bool. The bools are all "false" by default meaning that all checks
// are enabled. At CreateInstance time, the user can use the VK_EXT_validation_flags extension to pass in enum values
// of VkValidationCheckEXT that will selectively disable checks.
// The VK_EXT_validation_features extension can also be used with the VkValidationFeaturesEXT structure to set
// disables in the CHECK_DISABLED struct and/or enables in the CHECK_ENABLED struct.
struct CHECK_DISABLED {
bool command_buffer_state;
bool create_descriptor_set_layout;
bool destroy_buffer_view; // Skip validation at DestroyBufferView time
bool destroy_image_view; // Skip validation at DestroyImageView time
bool destroy_pipeline; // Skip validation at DestroyPipeline time
bool destroy_descriptor_pool; // Skip validation at DestroyDescriptorPool time
bool destroy_framebuffer; // Skip validation at DestroyFramebuffer time
bool destroy_renderpass; // Skip validation at DestroyRenderpass time
bool destroy_image; // Skip validation at DestroyImage time
bool destroy_sampler; // Skip validation at DestroySampler time
bool destroy_command_pool; // Skip validation at DestroyCommandPool time
bool destroy_event; // Skip validation at DestroyEvent time
bool free_memory; // Skip validation at FreeMemory time
bool object_in_use; // Skip all object in_use checking
bool idle_descriptor_set; // Skip check to verify that descriptor set is no in-use
bool push_constant_range; // Skip push constant range checks
bool free_descriptor_sets; // Skip validation prior to vkFreeDescriptorSets()
bool allocate_descriptor_sets; // Skip validation prior to vkAllocateDescriptorSets()
bool update_descriptor_sets; // Skip validation prior to vkUpdateDescriptorSets()
bool wait_for_fences;
bool get_fence_state;
bool queue_wait_idle;
bool device_wait_idle;
bool destroy_fence;
bool destroy_semaphore;
bool destroy_query_pool;
bool get_query_pool_results;
bool destroy_buffer;
bool shader_validation; // Skip validation for shaders
void SetAll(bool value) { std::fill(&command_buffer_state, &shader_validation + 1, value); }
};
struct CHECK_ENABLED {
bool gpu_validation;
bool gpu_validation_reserve_binding_slot;
void SetAll(bool value) { std::fill(&gpu_validation, &gpu_validation_reserve_binding_slot + 1, value); }
};
// Layer chassis validation object base class definition
class ValidationObject {
public:
uint32_t api_version;
debug_report_data* report_data = nullptr;
std::vector<VkDebugReportCallbackEXT> logging_callback;
std::vector<VkDebugUtilsMessengerEXT> logging_messenger;
VkLayerInstanceDispatchTable instance_dispatch_table;
VkLayerDispatchTable device_dispatch_table;
InstanceExtensions instance_extensions;
DeviceExtensions device_extensions = {};
CHECK_DISABLED disabled = {};
CHECK_ENABLED enabled = {};
VkInstance instance = VK_NULL_HANDLE;
VkPhysicalDevice physical_device = VK_NULL_HANDLE;
VkDevice device = VK_NULL_HANDLE;
LAYER_PHYS_DEV_PROPERTIES phys_dev_properties = {};
std::vector<ValidationObject*> object_dispatch;
LayerObjectTypeId container_type;
std::string layer_name = "CHASSIS";
// Constructor
ValidationObject(){};
// Destructor
virtual ~ValidationObject() {};
std::mutex validation_object_mutex;
virtual std::unique_lock<std::mutex> write_lock() {
return std::unique_lock<std::mutex>(validation_object_mutex);
}
ValidationObject* GetValidationObject(std::vector<ValidationObject*>& object_dispatch, LayerObjectTypeId object_type) {
for (auto validation_object : object_dispatch) {
if (validation_object->container_type == object_type) {
return validation_object;
}
}
return nullptr;
};
// Handle Wrapping Data
// Reverse map display handles
std::unordered_map<VkDisplayKHR, uint64_t> display_id_reverse_mapping;
std::unordered_map<uint64_t, std::unique_ptr<TEMPLATE_STATE>> desc_template_map;
struct SubpassesUsageStates {
std::unordered_set<uint32_t> subpasses_using_color_attachment;
std::unordered_set<uint32_t> subpasses_using_depthstencil_attachment;
};
// Uses unwrapped handles
std::unordered_map<VkRenderPass, SubpassesUsageStates> renderpasses_states;
// Map of wrapped swapchain handles to arrays of wrapped swapchain image IDs
// Each swapchain has an immutable list of wrapped swapchain image IDs -- always return these IDs if they exist
std::unordered_map<VkSwapchainKHR, std::vector<VkImage>> swapchain_wrapped_image_handle_map;
// Map of wrapped descriptor pools to set of wrapped descriptor sets allocated from each pool
std::unordered_map<VkDescriptorPool, std::unordered_set<VkDescriptorSet>> pool_descriptor_sets_map;
// Unwrap a handle. Must hold lock.
template <typename HandleType>
HandleType Unwrap(HandleType wrappedHandle) {
// TODO: don't use operator[] here.
return (HandleType)unique_id_mapping[reinterpret_cast<uint64_t const &>(wrappedHandle)];
}
// Wrap a newly created handle with a new unique ID, and return the new ID -- must hold lock.
template <typename HandleType>
HandleType WrapNew(HandleType newlyCreatedHandle) {
auto unique_id = global_unique_id++;
unique_id_mapping[unique_id] = reinterpret_cast<uint64_t const &>(newlyCreatedHandle);
return (HandleType)unique_id;
}
// Specialized handling for VkDisplayKHR. Adds an entry to enable reverse-lookup. Must hold lock.
VkDisplayKHR WrapDisplay(VkDisplayKHR newlyCreatedHandle, ValidationObject *map_data) {
auto unique_id = global_unique_id++;
unique_id_mapping[unique_id] = reinterpret_cast<uint64_t const &>(newlyCreatedHandle);
map_data->display_id_reverse_mapping[newlyCreatedHandle] = unique_id;
return (VkDisplayKHR)unique_id;
}
// VkDisplayKHR objects don't have a single point of creation, so we need to see if one already exists in the map before
// creating another. Must hold lock.
VkDisplayKHR MaybeWrapDisplay(VkDisplayKHR handle, ValidationObject *map_data) {
// See if this display is already known
auto it = map_data->display_id_reverse_mapping.find(handle);
if (it != map_data->display_id_reverse_mapping.end()) return (VkDisplayKHR)it->second;
// Unknown, so wrap
return WrapDisplay(handle, map_data);
}
// Pre/post hook point declarations
"""
inline_copyright_message = """
// This file is ***GENERATED***. Do Not Edit.
// See layer_chassis_generator.py for modifications.
/* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (c) 2015-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Mark Lobodzinski <mark@lunarg.com>
*/"""
inline_custom_source_preamble = """
#include <string.h>
#include <mutex>
#define VALIDATION_ERROR_MAP_IMPL
#include "chassis.h"
#include "layer_chassis_dispatch.h"
std::unordered_map<void*, ValidationObject*> layer_data_map;
// Global unique object identifier. All increments must be guarded by a lock.
uint64_t global_unique_id = 1;
// Map uniqueID to actual object handle
std::unordered_map<uint64_t, uint64_t> unique_id_mapping;
// TODO: This variable controls handle wrapping -- in the future it should be hooked
// up to the new VALIDATION_FEATURES extension. Temporarily, control with a compile-time flag.
#if defined(LAYER_CHASSIS_CAN_WRAP_HANDLES)
bool wrap_handles = true;
#else
const bool wrap_handles = false;
#endif
// Include child object (layer) definitions
#if BUILD_OBJECT_TRACKER
#include "object_lifetime_validation.h"
#define OBJECT_LAYER_NAME "VK_LAYER_LUNARG_object_tracker"
#elif BUILD_THREAD_SAFETY
#include "thread_safety.h"
#define OBJECT_LAYER_NAME "VK_LAYER_GOOGLE_threading"
#elif BUILD_PARAMETER_VALIDATION
#include "stateless_validation.h"
#define OBJECT_LAYER_NAME "VK_LAYER_LUNARG_parameter_validation"
#elif BUILD_CORE_VALIDATION
#include "core_validation.h"
#define OBJECT_LAYER_NAME "VK_LAYER_LUNARG_core_validation"
#else
#define OBJECT_LAYER_NAME "VK_LAYER_GOOGLE_unique_objects"
#endif
namespace vulkan_layer_chassis {
using std::unordered_map;
static const VkLayerProperties global_layer = {
OBJECT_LAYER_NAME, VK_LAYER_API_VERSION, 1, "LunarG validation Layer",
};
static const VkExtensionProperties instance_extensions[] = {{VK_EXT_DEBUG_REPORT_EXTENSION_NAME, VK_EXT_DEBUG_REPORT_SPEC_VERSION}};
extern const std::unordered_map<std::string, void*> name_to_funcptr_map;
// Manually written functions
// Check enabled instance extensions against supported instance extension whitelist
static void InstanceExtensionWhitelist(ValidationObject *layer_data, const VkInstanceCreateInfo *pCreateInfo, VkInstance instance) {
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
// Check for recognized instance extensions
if (!white_list(pCreateInfo->ppEnabledExtensionNames[i], kInstanceExtensionNames)) {
log_msg(layer_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUIDUndefined,
"Instance Extension %s is not supported by this layer. Using this extension may adversely affect validation "
"results and/or produce undefined behavior.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
}
}
// Check enabled device extensions against supported device extension whitelist
static void DeviceExtensionWhitelist(ValidationObject *layer_data, const VkDeviceCreateInfo *pCreateInfo, VkDevice device) {
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
// Check for recognized device extensions
if (!white_list(pCreateInfo->ppEnabledExtensionNames[i], kDeviceExtensionNames)) {
log_msg(layer_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUIDUndefined,
"Device Extension %s is not supported by this layer. Using this extension may adversely affect validation "
"results and/or produce undefined behavior.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
}
}
// For the given ValidationCheck enum, set all relevant instance disabled flags to true
void SetDisabledFlags(ValidationObject *instance_data, const VkValidationFlagsEXT *val_flags_struct) {
for (uint32_t i = 0; i < val_flags_struct->disabledValidationCheckCount; ++i) {
switch (val_flags_struct->pDisabledValidationChecks[i]) {
case VK_VALIDATION_CHECK_SHADERS_EXT:
instance_data->disabled.shader_validation = true;
break;
case VK_VALIDATION_CHECK_ALL_EXT:
// Set all disabled flags to true
instance_data->disabled.SetAll(true);
break;
default:
break;
}
}
}
void SetValidationFeatures(ValidationObject *instance_data, const VkValidationFeaturesEXT *val_features_struct) {
for (uint32_t i = 0; i < val_features_struct->disabledValidationFeatureCount; ++i) {
switch (val_features_struct->pDisabledValidationFeatures[i]) {
case VK_VALIDATION_FEATURE_DISABLE_SHADERS_EXT:
instance_data->disabled.shader_validation = true;
break;
case VK_VALIDATION_FEATURE_DISABLE_ALL_EXT:
// Set all disabled flags to true
instance_data->disabled.SetAll(true);
break;
default:
break;
}
}
for (uint32_t i = 0; i < val_features_struct->enabledValidationFeatureCount; ++i) {
switch (val_features_struct->pEnabledValidationFeatures[i]) {
case VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT:
instance_data->enabled.gpu_validation = true;
break;
case VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_RESERVE_BINDING_SLOT_EXT:
instance_data->enabled.gpu_validation_reserve_binding_slot = true;
break;
default:
break;
}
}
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetDeviceProcAddr(VkDevice device, const char *funcName) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!ApiParentExtensionEnabled(funcName, layer_data->device_extensions.device_extension_set)) {
return nullptr;
}
const auto &item = name_to_funcptr_map.find(funcName);
if (item != name_to_funcptr_map.end()) {
return reinterpret_cast<PFN_vkVoidFunction>(item->second);
}
auto &table = layer_data->device_dispatch_table;
if (!table.GetDeviceProcAddr) return nullptr;
return table.GetDeviceProcAddr(device, funcName);
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetInstanceProcAddr(VkInstance instance, const char *funcName) {
const auto &item = name_to_funcptr_map.find(funcName);
if (item != name_to_funcptr_map.end()) {
return reinterpret_cast<PFN_vkVoidFunction>(item->second);
}
auto layer_data = GetLayerDataPtr(get_dispatch_key(instance), layer_data_map);
auto &table = layer_data->instance_dispatch_table;
if (!table.GetInstanceProcAddr) return nullptr;
return table.GetInstanceProcAddr(instance, funcName);
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetPhysicalDeviceProcAddr(VkInstance instance, const char *funcName) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(instance), layer_data_map);
auto &table = layer_data->instance_dispatch_table;
if (!table.GetPhysicalDeviceProcAddr) return nullptr;
return table.GetPhysicalDeviceProcAddr(instance, funcName);
}
VKAPI_ATTR VkResult VKAPI_CALL EnumerateInstanceLayerProperties(uint32_t *pCount, VkLayerProperties *pProperties) {
return util_GetLayerProperties(1, &global_layer, pCount, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkLayerProperties *pProperties) {
return util_GetLayerProperties(1, &global_layer, pCount, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount,
VkExtensionProperties *pProperties) {
if (pLayerName && !strcmp(pLayerName, global_layer.layerName))
return util_GetExtensionProperties(1, instance_extensions, pCount, pProperties);
return VK_ERROR_LAYER_NOT_PRESENT;
}
VKAPI_ATTR VkResult VKAPI_CALL EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName,
uint32_t *pCount, VkExtensionProperties *pProperties) {
if (pLayerName && !strcmp(pLayerName, global_layer.layerName)) return util_GetExtensionProperties(0, NULL, pCount, pProperties);
assert(physicalDevice);
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
return layer_data->instance_dispatch_table.EnumerateDeviceExtensionProperties(physicalDevice, NULL, pCount, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkInstance *pInstance) {
VkLayerInstanceCreateInfo* chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) return VK_ERROR_INITIALIZATION_FAILED;
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
uint32_t specified_version = (pCreateInfo->pApplicationInfo ? pCreateInfo->pApplicationInfo->apiVersion : VK_API_VERSION_1_0);
uint32_t api_version = (specified_version < VK_API_VERSION_1_1) ? VK_API_VERSION_1_0 : VK_API_VERSION_1_1;
// Create temporary dispatch vector for pre-calls until instance is created
std::vector<ValidationObject*> local_object_dispatch;
#if BUILD_OBJECT_TRACKER
auto object_tracker = new ObjectLifetimes;
local_object_dispatch.emplace_back(object_tracker);
object_tracker->container_type = LayerObjectTypeObjectTracker;
object_tracker->api_version = api_version;
#elif BUILD_THREAD_SAFETY
auto thread_checker = new ThreadSafety;
local_object_dispatch.emplace_back(thread_checker);
thread_checker->container_type = LayerObjectTypeThreading;
thread_checker->api_version = api_version;
#elif BUILD_PARAMETER_VALIDATION
auto parameter_validation = new StatelessValidation;
local_object_dispatch.emplace_back(parameter_validation);
parameter_validation->container_type = LayerObjectTypeParameterValidation;
parameter_validation->api_version = api_version;
#elif BUILD_CORE_VALIDATION
auto core_checks = new CoreChecks;
local_object_dispatch.emplace_back(core_checks);
core_checks->container_type = LayerObjectTypeCoreValidation;
core_checks->api_version = api_version;
#endif
// Init dispatch array and call registration functions
for (auto intercept : local_object_dispatch) {
intercept->PreCallValidateCreateInstance(pCreateInfo, pAllocator, pInstance);
}
for (auto intercept : local_object_dispatch) {
intercept->PreCallRecordCreateInstance(pCreateInfo, pAllocator, pInstance);
}
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) return result;
auto framework = GetLayerDataPtr(get_dispatch_key(*pInstance), layer_data_map);
framework->object_dispatch = local_object_dispatch;
framework->container_type = LayerObjectTypeInstance;
framework->instance = *pInstance;
layer_init_instance_dispatch_table(*pInstance, &framework->instance_dispatch_table, fpGetInstanceProcAddr);
framework->report_data = debug_utils_create_instance(&framework->instance_dispatch_table, *pInstance, pCreateInfo->enabledExtensionCount,
pCreateInfo->ppEnabledExtensionNames);
framework->api_version = api_version;
framework->instance_extensions.InitFromInstanceCreateInfo(specified_version, pCreateInfo);
// Parse any pNext chains for validation features and flags
const auto *validation_flags_ext = lvl_find_in_chain<VkValidationFlagsEXT>(pCreateInfo->pNext);
if (validation_flags_ext) {
SetDisabledFlags(framework, validation_flags_ext);
}
const auto *validation_features_ext = lvl_find_in_chain<VkValidationFeaturesEXT>(pCreateInfo->pNext);
if (validation_features_ext) {
SetValidationFeatures(framework, validation_features_ext);
}
#if BUILD_OBJECT_TRACKER
layer_debug_messenger_actions(framework->report_data, framework->logging_messenger, pAllocator, "lunarg_object_tracker");
object_tracker->report_data = framework->report_data;
#elif BUILD_THREAD_SAFETY
layer_debug_messenger_actions(framework->report_data, framework->logging_messenger, pAllocator, "google_thread_checker");
thread_checker->report_data = framework->report_data;
#elif BUILD_PARAMETER_VALIDATION
layer_debug_messenger_actions(framework->report_data, framework->logging_messenger, pAllocator, "lunarg_parameter_validation");
parameter_validation->report_data = framework->report_data;
#elif BUILD_CORE_VALIDATION
layer_debug_messenger_actions(framework->report_data, framework->logging_messenger, pAllocator, "lunarg_core_validation");
core_checks->report_data = framework->report_data;
core_checks->instance_dispatch_table = framework->instance_dispatch_table;
core_checks->instance = *pInstance;
core_checks->enabled = framework->enabled;
core_checks->disabled = framework->disabled;
core_checks->instance_state = core_checks;
#else
layer_debug_messenger_actions(framework->report_data, framework->logging_messenger, pAllocator, "lunarg_unique_objects");
#endif
for (auto intercept : framework->object_dispatch) {
intercept->PostCallRecordCreateInstance(pCreateInfo, pAllocator, pInstance, result);
}
InstanceExtensionWhitelist(framework, pCreateInfo, *pInstance);
return result;
}
VKAPI_ATTR void VKAPI_CALL DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) {
dispatch_key key = get_dispatch_key(instance);
auto layer_data = GetLayerDataPtr(key, layer_data_map);
""" + precallvalidate_loop + """
auto lock = intercept->write_lock();
intercept->PreCallValidateDestroyInstance(instance, pAllocator);
}
""" + precallrecord_loop + """
auto lock = intercept->write_lock();
intercept->PreCallRecordDestroyInstance(instance, pAllocator);
}
layer_data->instance_dispatch_table.DestroyInstance(instance, pAllocator);
""" + postcallrecord_loop + """
auto lock = intercept->write_lock();
intercept->PostCallRecordDestroyInstance(instance, pAllocator);
}
// Clean up logging callback, if any
while (layer_data->logging_messenger.size() > 0) {
VkDebugUtilsMessengerEXT messenger = layer_data->logging_messenger.back();
layer_destroy_messenger_callback(layer_data->report_data, messenger, pAllocator);
layer_data->logging_messenger.pop_back();
}
while (layer_data->logging_callback.size() > 0) {
VkDebugReportCallbackEXT callback = layer_data->logging_callback.back();
layer_destroy_report_callback(layer_data->report_data, callback, pAllocator);
layer_data->logging_callback.pop_back();
}
layer_debug_utils_destroy_instance(layer_data->report_data);
for (auto item = layer_data->object_dispatch.begin(); item != layer_data->object_dispatch.end(); item++) {
delete *item;
}
FreeLayerDataPtr(key, layer_data_map);
}
VKAPI_ATTR VkResult VKAPI_CALL CreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
auto instance_interceptor = GetLayerDataPtr(get_dispatch_key(gpu), layer_data_map);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(instance_interceptor->instance, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
// Get physical device limits for device
VkPhysicalDeviceProperties device_properties = {};
instance_interceptor->instance_dispatch_table.GetPhysicalDeviceProperties(gpu, &device_properties);
// Setup the validation tables based on the application API version from the instance and the capabilities of the device driver
uint32_t effective_api_version = std::min(device_properties.apiVersion, instance_interceptor->api_version);
DeviceExtensions device_extensions = {};
device_extensions.InitFromDeviceCreateInfo(&instance_interceptor->instance_extensions, effective_api_version, pCreateInfo);
for (auto item : instance_interceptor->object_dispatch) {
item->device_extensions = device_extensions;
}
std::unique_ptr<safe_VkDeviceCreateInfo> modified_create_info(new safe_VkDeviceCreateInfo(pCreateInfo));
bool skip = false;
for (auto intercept : instance_interceptor->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateCreateDevice(gpu, pCreateInfo, pAllocator, pDevice);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : instance_interceptor->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordCreateDevice(gpu, pCreateInfo, pAllocator, pDevice, modified_create_info);
}
VkResult result = fpCreateDevice(gpu, reinterpret_cast<VkDeviceCreateInfo *>(modified_create_info.get()), pAllocator, pDevice);
if (result != VK_SUCCESS) {
return result;
}
auto device_interceptor = GetLayerDataPtr(get_dispatch_key(*pDevice), layer_data_map);
device_interceptor->container_type = LayerObjectTypeDevice;
// Save local info in device object
device_interceptor->phys_dev_properties.properties = device_properties;
device_interceptor->api_version = device_interceptor->device_extensions.InitFromDeviceCreateInfo(
&instance_interceptor->instance_extensions, effective_api_version, pCreateInfo);
device_interceptor->device_extensions = device_extensions;
layer_init_device_dispatch_table(*pDevice, &device_interceptor->device_dispatch_table, fpGetDeviceProcAddr);
device_interceptor->device = *pDevice;
device_interceptor->physical_device = gpu;
device_interceptor->instance = instance_interceptor->instance;
device_interceptor->report_data = layer_debug_utils_create_device(instance_interceptor->report_data, *pDevice);
#if BUILD_OBJECT_TRACKER
// Create child layer objects for this key and add to dispatch vector
auto object_tracker = new ObjectLifetimes;
// TODO: Initialize child objects with parent info thru constuctor taking a parent object
object_tracker->container_type = LayerObjectTypeObjectTracker;
object_tracker->physical_device = gpu;
object_tracker->instance = instance_interceptor->instance;
object_tracker->report_data = device_interceptor->report_data;
object_tracker->device_dispatch_table = device_interceptor->device_dispatch_table;
object_tracker->api_version = device_interceptor->api_version;
device_interceptor->object_dispatch.emplace_back(object_tracker);
#elif BUILD_THREAD_SAFETY
auto thread_safety = new ThreadSafety;
// TODO: Initialize child objects with parent info thru constuctor taking a parent object
thread_safety->container_type = LayerObjectTypeThreading;
thread_safety->physical_device = gpu;
thread_safety->instance = instance_interceptor->instance;
thread_safety->report_data = device_interceptor->report_data;
thread_safety->device_dispatch_table = device_interceptor->device_dispatch_table;
thread_safety->api_version = device_interceptor->api_version;
device_interceptor->object_dispatch.emplace_back(thread_safety);
#elif BUILD_PARAMETER_VALIDATION
auto stateless_validation = new StatelessValidation;
// TODO: Initialize child objects with parent info thru constuctor taking a parent object
stateless_validation->container_type = LayerObjectTypeParameterValidation;
stateless_validation->physical_device = gpu;
stateless_validation->instance = instance_interceptor->instance;
stateless_validation->report_data = device_interceptor->report_data;
stateless_validation->device_dispatch_table = device_interceptor->device_dispatch_table;
stateless_validation->api_version = device_interceptor->api_version;
device_interceptor->object_dispatch.emplace_back(stateless_validation);
#elif BUILD_CORE_VALIDATION
auto core_checks = new CoreChecks;
// TODO: Initialize child objects with parent info thru constuctor taking a parent object
core_checks->container_type = LayerObjectTypeCoreValidation;
core_checks->physical_device = gpu;
core_checks->instance = instance_interceptor->instance;
core_checks->report_data = device_interceptor->report_data;
core_checks->device_dispatch_table = device_interceptor->device_dispatch_table;
core_checks->instance_dispatch_table = instance_interceptor->instance_dispatch_table;
core_checks->api_version = device_interceptor->api_version;
core_checks->instance_extensions = instance_interceptor->instance_extensions;
core_checks->device_extensions = device_interceptor->device_extensions;
core_checks->instance_state = reinterpret_cast<CoreChecks *>(
core_checks->GetValidationObject(instance_interceptor->object_dispatch, LayerObjectTypeCoreValidation));
core_checks->device = *pDevice;
device_interceptor->object_dispatch.emplace_back(core_checks);
#endif
for (auto intercept : instance_interceptor->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordCreateDevice(gpu, pCreateInfo, pAllocator, pDevice, result);
}
DeviceExtensionWhitelist(device_interceptor, pCreateInfo, *pDevice);
return result;
}
VKAPI_ATTR void VKAPI_CALL DestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
dispatch_key key = get_dispatch_key(device);
auto layer_data = GetLayerDataPtr(key, layer_data_map);
""" + precallvalidate_loop + """
auto lock = intercept->write_lock();
intercept->PreCallValidateDestroyDevice(device, pAllocator);
}
""" + precallrecord_loop + """
auto lock = intercept->write_lock();
intercept->PreCallRecordDestroyDevice(device, pAllocator);
}
layer_debug_utils_destroy_device(device);
layer_data->device_dispatch_table.DestroyDevice(device, pAllocator);
""" + postcallrecord_loop + """
auto lock = intercept->write_lock();
intercept->PostCallRecordDestroyDevice(device, pAllocator);
}
for (auto item = layer_data->object_dispatch.begin(); item != layer_data->object_dispatch.end(); item++) {
delete *item;
}
FreeLayerDataPtr(key, layer_data_map);
}
// Special-case APIs for which core_validation needs custom parameter lists and/or modifies parameters
VKAPI_ATTR VkResult VKAPI_CALL CreateGraphicsPipelines(
VkDevice device,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
#ifdef BUILD_CORE_VALIDATION
create_graphics_pipeline_api_state cgpl_state{};
#else
struct create_graphics_pipeline_api_state {
const VkGraphicsPipelineCreateInfo* pCreateInfos;
} cgpl_state;
cgpl_state.pCreateInfos = pCreateInfos;
#endif
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, &cgpl_state);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, &cgpl_state);
}
VkResult result = DispatchCreateGraphicsPipelines(layer_data, device, pipelineCache, createInfoCount, cgpl_state.pCreateInfos, pAllocator, pPipelines);
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, result, &cgpl_state);
}
return result;
}
// This API saves some core_validation pipeline state state on the stack for performance purposes
VKAPI_ATTR VkResult VKAPI_CALL CreateComputePipelines(
VkDevice device,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
#ifndef BUILD_CORE_VALIDATION
struct PIPELINE_STATE {};
#endif
std::vector<std::unique_ptr<PIPELINE_STATE>> pipe_state;
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, &pipe_state);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
}
VkResult result = DispatchCreateComputePipelines(layer_data, device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, result, &pipe_state);
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateRayTracingPipelinesNV(
VkDevice device,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkRayTracingPipelineCreateInfoNV* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
#ifndef BUILD_CORE_VALIDATION
struct PIPELINE_STATE {};
#endif
std::vector<std::unique_ptr<PIPELINE_STATE>> pipe_state;
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateCreateRayTracingPipelinesNV(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, &pipe_state);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
}
VkResult result = DispatchCreateRayTracingPipelinesNV(layer_data, device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, result, &pipe_state);
}
return result;
}
// This API needs the ability to modify a down-chain parameter
VKAPI_ATTR VkResult VKAPI_CALL CreatePipelineLayout(
VkDevice device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineLayout* pPipelineLayout) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
#ifndef BUILD_CORE_VALIDATION
struct create_pipeline_layout_api_state {
VkPipelineLayoutCreateInfo modified_create_info;
};
#endif
create_pipeline_layout_api_state cpl_state{};
cpl_state.modified_create_info = *pCreateInfo;
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, &cpl_state);
}
VkResult result = DispatchCreatePipelineLayout(layer_data, device, &cpl_state.modified_create_info, pAllocator, pPipelineLayout);
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, result);
}
return result;
}
// This API needs some local stack data for performance reasons and also may modify a parameter
VKAPI_ATTR VkResult VKAPI_CALL CreateShaderModule(
VkDevice device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
#ifndef BUILD_CORE_VALIDATION
struct create_shader_module_api_state {
VkShaderModuleCreateInfo instrumented_create_info;
};
#endif
create_shader_module_api_state csm_state{};
csm_state.instrumented_create_info = *pCreateInfo;
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule, &csm_state);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule, &csm_state);
}
VkResult result = DispatchCreateShaderModule(layer_data, device, &csm_state.instrumented_create_info, pAllocator, pShaderModule);
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule, result, &csm_state);
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL AllocateDescriptorSets(
VkDevice device,
const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
#ifdef BUILD_CORE_VALIDATION
cvdescriptorset::AllocateDescriptorSetsData ads_state(pAllocateInfo->descriptorSetCount);
#else
struct ads_state {} ads_state;
#endif
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
skip |= intercept->PreCallValidateAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets, &ads_state);
if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
}
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PreCallRecordAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets);
}
VkResult result = DispatchAllocateDescriptorSets(layer_data, device, pAllocateInfo, pDescriptorSets);
for (auto intercept : layer_data->object_dispatch) {
auto lock = intercept->write_lock();
intercept->PostCallRecordAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets, result, &ads_state);
}
return result;
}
// ValidationCache APIs do not dispatch
VKAPI_ATTR VkResult VKAPI_CALL CreateValidationCacheEXT(
VkDevice device,
const VkValidationCacheCreateInfoEXT* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkValidationCacheEXT* pValidationCache) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
VkResult result = VK_SUCCESS;
ValidationObject *validation_data = layer_data->GetValidationObject(layer_data->object_dispatch, LayerObjectTypeCoreValidation);
if (validation_data) {
auto lock = validation_data->write_lock();
result = validation_data->CoreLayerCreateValidationCacheEXT(device, pCreateInfo, pAllocator, pValidationCache);
}
return result;
}
VKAPI_ATTR void VKAPI_CALL DestroyValidationCacheEXT(
VkDevice device,
VkValidationCacheEXT validationCache,
const VkAllocationCallbacks* pAllocator) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
ValidationObject *validation_data = layer_data->GetValidationObject(layer_data->object_dispatch, LayerObjectTypeCoreValidation);
if (validation_data) {
auto lock = validation_data->write_lock();
validation_data->CoreLayerDestroyValidationCacheEXT(device, validationCache, pAllocator);
}
}
VKAPI_ATTR VkResult VKAPI_CALL MergeValidationCachesEXT(
VkDevice device,
VkValidationCacheEXT dstCache,
uint32_t srcCacheCount,
const VkValidationCacheEXT* pSrcCaches) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
VkResult result = VK_SUCCESS;
ValidationObject *validation_data = layer_data->GetValidationObject(layer_data->object_dispatch, LayerObjectTypeCoreValidation);
if (validation_data) {
auto lock = validation_data->write_lock();
result = validation_data->CoreLayerMergeValidationCachesEXT(device, dstCache, srcCacheCount, pSrcCaches);
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL GetValidationCacheDataEXT(
VkDevice device,
VkValidationCacheEXT validationCache,
size_t* pDataSize,
void* pData) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
VkResult result = VK_SUCCESS;
ValidationObject *validation_data = layer_data->GetValidationObject(layer_data->object_dispatch, LayerObjectTypeCoreValidation);
if (validation_data) {
auto lock = validation_data->write_lock();
result = validation_data->CoreLayerGetValidationCacheDataEXT(device, validationCache, pDataSize, pData);
}
return result;
}"""
inline_custom_validation_class_definitions = """
virtual VkResult CoreLayerCreateValidationCacheEXT(VkDevice device, const VkValidationCacheCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkValidationCacheEXT* pValidationCache) { return VK_SUCCESS; };
virtual void CoreLayerDestroyValidationCacheEXT(VkDevice device, VkValidationCacheEXT validationCache, const VkAllocationCallbacks* pAllocator) {};
virtual VkResult CoreLayerMergeValidationCachesEXT(VkDevice device, VkValidationCacheEXT dstCache, uint32_t srcCacheCount, const VkValidationCacheEXT* pSrcCaches) { return VK_SUCCESS; };
virtual VkResult CoreLayerGetValidationCacheDataEXT(VkDevice device, VkValidationCacheEXT validationCache, size_t* pDataSize, void* pData) { return VK_SUCCESS; };
// Allow additional parameter for CreateGraphicsPipelines
virtual bool PreCallValidateCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, void* cgpl_state) {
return PreCallValidateCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
};
virtual void PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, void* cgpl_state) {
PreCallRecordCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
};
virtual void PostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, VkResult result, void* cgpl_state) {
PostCallRecordCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, result);
};
// Allow additional state parameter for CreateComputePipelines
virtual bool PreCallValidateCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, void* pipe_state) {
return PreCallValidateCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
};
virtual void PostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, VkResult result, void* pipe_state) {
PostCallRecordCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, result);
};
// Allow additional state parameter for CreateRayTracingPipelinesNV
virtual bool PreCallValidateCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkRayTracingPipelineCreateInfoNV* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, void* pipe_state) {
return PreCallValidateCreateRayTracingPipelinesNV(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
};
virtual void PostCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkRayTracingPipelineCreateInfoNV* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines, VkResult result, void* pipe_state) {
PostCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines, result);
};
// Allow modification of a down-chain parameter for CreatePipelineLayout
virtual void PreCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineLayout* pPipelineLayout, void *cpl_state) {
PreCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout);
};
// Enable the CreateShaderModule API to take an extra argument for state preservation and paramter modification
virtual bool PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule, void* csm_state) {
return PreCallValidateCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule);
};
virtual void PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule, void* csm_state) {
PreCallRecordCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule);
};
virtual void PostCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule, VkResult result, void* csm_state) {
PostCallRecordCreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule, result);
};
// Allow AllocateDescriptorSets to use some local stack storage for performance purposes
virtual bool PreCallValidateAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets, void* ads_state) {
return PreCallValidateAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets);
};
virtual void PostCallRecordAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets, VkResult result, void* ads_state) {
PostCallRecordAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets, result);
};
// Modify a parameter to CreateDevice
virtual void PreCallRecordCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice, std::unique_ptr<safe_VkDeviceCreateInfo> &modified_create_info) {
PreCallRecordCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice);
};
"""
inline_custom_source_postamble = """
// loader-layer interface v0, just wrappers since there is only a layer
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount,
VkExtensionProperties *pProperties) {
return vulkan_layer_chassis::EnumerateInstanceExtensionProperties(pLayerName, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(uint32_t *pCount,
VkLayerProperties *pProperties) {
return vulkan_layer_chassis::EnumerateInstanceLayerProperties(pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkLayerProperties *pProperties) {
// the layer command handles VK_NULL_HANDLE just fine internally
assert(physicalDevice == VK_NULL_HANDLE);
return vulkan_layer_chassis::EnumerateDeviceLayerProperties(VK_NULL_HANDLE, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName, uint32_t *pCount,
VkExtensionProperties *pProperties) {
// the layer command handles VK_NULL_HANDLE just fine internally
assert(physicalDevice == VK_NULL_HANDLE);
return vulkan_layer_chassis::EnumerateDeviceExtensionProperties(VK_NULL_HANDLE, pLayerName, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev, const char *funcName) {
return vulkan_layer_chassis::GetDeviceProcAddr(dev, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char *funcName) {
return vulkan_layer_chassis::GetInstanceProcAddr(instance, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_layerGetPhysicalDeviceProcAddr(VkInstance instance,
const char *funcName) {
return vulkan_layer_chassis::GetPhysicalDeviceProcAddr(instance, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkNegotiateLoaderLayerInterfaceVersion(VkNegotiateLayerInterface *pVersionStruct) {
assert(pVersionStruct != NULL);
assert(pVersionStruct->sType == LAYER_NEGOTIATE_INTERFACE_STRUCT);
// Fill in the function pointers if our version is at least capable of having the structure contain them.
if (pVersionStruct->loaderLayerInterfaceVersion >= 2) {
pVersionStruct->pfnGetInstanceProcAddr = vkGetInstanceProcAddr;
pVersionStruct->pfnGetDeviceProcAddr = vkGetDeviceProcAddr;
pVersionStruct->pfnGetPhysicalDeviceProcAddr = vk_layerGetPhysicalDeviceProcAddr;
}
return VK_SUCCESS;
}"""
def __init__(self,
errFile = sys.stderr,
warnFile = sys.stderr,
diagFile = sys.stdout):
OutputGenerator.__init__(self, errFile, warnFile, diagFile)
# Internal state - accumulators for different inner block text
self.sections = dict([(section, []) for section in self.ALL_SECTIONS])
self.intercepts = []
self.layer_factory = '' # String containing base layer factory class definition
# Check if the parameter passed in is a pointer to an array
def paramIsArray(self, param):
return param.attrib.get('len') is not None
# Check if the parameter passed in is a pointer
def paramIsPointer(self, param):
ispointer = False
for elem in param:
if ((elem.tag is not 'type') and (elem.tail is not None)) and '*' in elem.tail:
ispointer = True
return ispointer
# Check if an object is a non-dispatchable handle
def isHandleTypeNonDispatchable(self, handletype):
handle = self.registry.tree.find("types/type/[name='" + handletype + "'][@category='handle']")
if handle is not None and handle.find('type').text == 'VK_DEFINE_NON_DISPATCHABLE_HANDLE':
return True
else:
return False
# Check if an object is a dispatchable handle
def isHandleTypeDispatchable(self, handletype):
handle = self.registry.tree.find("types/type/[name='" + handletype + "'][@category='handle']")
if handle is not None and handle.find('type').text == 'VK_DEFINE_HANDLE':
return True
else:
return False
#
#
def beginFile(self, genOpts):
OutputGenerator.beginFile(self, genOpts)
# Output Copyright
write(self.inline_copyright_message, file=self.outFile)
# Multiple inclusion protection
self.header = False
if (self.genOpts.filename and 'h' == self.genOpts.filename[-1]):
self.header = True
write('#pragma once', file=self.outFile)
self.newline()
if self.header:
write(self.inline_custom_header_preamble, file=self.outFile)
else:
write(self.inline_custom_source_preamble, file=self.outFile)
self.layer_factory += self.inline_custom_header_class_definition
#
#
def endFile(self):
# Finish C++ namespace and multiple inclusion protection
self.newline()
if not self.header:
# Record intercepted procedures
write('// Map of all APIs to be intercepted by this layer', file=self.outFile)
write('const std::unordered_map<std::string, void*> name_to_funcptr_map = {', file=self.outFile)
write('\n'.join(self.intercepts), file=self.outFile)
write('};\n', file=self.outFile)
self.newline()
write('} // namespace vulkan_layer_chassis', file=self.outFile)
if self.header:
self.newline()
# Output Layer Factory Class Definitions
self.layer_factory += self.inline_custom_validation_class_definitions
self.layer_factory += '};\n\n'
self.layer_factory += 'extern std::unordered_map<void*, ValidationObject*> layer_data_map;'
write(self.layer_factory, file=self.outFile)
else:
write(self.inline_custom_source_postamble, file=self.outFile)
# Finish processing in superclass
OutputGenerator.endFile(self)
def beginFeature(self, interface, emit):
# Start processing in superclass
OutputGenerator.beginFeature(self, interface, emit)
# Get feature extra protect
self.featureExtraProtect = GetFeatureProtect(interface)
# Accumulate includes, defines, types, enums, function pointer typedefs, end function prototypes separately for this
# feature. They're only printed in endFeature().
self.sections = dict([(section, []) for section in self.ALL_SECTIONS])
def endFeature(self):
# Actually write the interface to the output file.
if (self.emit):
self.newline()
# If type declarations are needed by other features based on this one, it may be necessary to suppress the ExtraProtect,
# or move it below the 'for section...' loop.
if (self.featureExtraProtect != None):
write('#ifdef', self.featureExtraProtect, file=self.outFile)
for section in self.TYPE_SECTIONS:
contents = self.sections[section]
if contents:
write('\n'.join(contents), file=self.outFile)
self.newline()
if (self.sections['command']):
write('\n'.join(self.sections['command']), end=u'', file=self.outFile)
self.newline()
if (self.featureExtraProtect != None):
write('#endif //', self.featureExtraProtect, file=self.outFile)
# Finish processing in superclass
OutputGenerator.endFeature(self)
#
# Append a definition to the specified section
def appendSection(self, section, text):
self.sections[section].append(text)
#
# Type generation
def genType(self, typeinfo, name, alias):
pass
#
# Struct (e.g. C "struct" type) generation. This is a special case of the <type> tag where the contents are
# interpreted as a set of <member> tags instead of freeform C type declarations. The <member> tags are just like <param>
# tags - they are a declaration of a struct or union member. Only simple member declarations are supported (no nested
# structs etc.)
def genStruct(self, typeinfo, typeName):
OutputGenerator.genStruct(self, typeinfo, typeName)
body = 'typedef ' + typeinfo.elem.get('category') + ' ' + typeName + ' {\n'
# paramdecl = self.makeCParamDecl(typeinfo.elem, self.genOpts.alignFuncParam)
for member in typeinfo.elem.findall('.//member'):
body += self.makeCParamDecl(member, self.genOpts.alignFuncParam)
body += ';\n'
body += '} ' + typeName + ';\n'
self.appendSection('struct', body)
#
# Group (e.g. C "enum" type) generation. These are concatenated together with other types.
def genGroup(self, groupinfo, groupName, alias):
pass
# Enumerant generation
# <enum> tags may specify their values in several ways, but are usually just integers.
def genEnum(self, enuminfo, name, alias):
pass
#
# Customize Cdecl for layer factory base class
def BaseClassCdecl(self, elem, name):
raw = self.makeCDecls(elem)[1]
# Toss everything before the undecorated name
prototype = raw.split("VKAPI_PTR *PFN_vk")[1]
prototype = prototype.replace(")", "", 1)
prototype = prototype.replace(";", " {};")
# Build up pre/post call virtual function declarations
pre_call_validate = 'virtual bool PreCallValidate' + prototype
pre_call_validate = pre_call_validate.replace("{}", " { return false; }")
pre_call_record = 'virtual void PreCallRecord' + prototype
post_call_record = 'virtual void PostCallRecord' + prototype
resulttype = elem.find('proto/type')
if resulttype.text == 'VkResult':
post_call_record = post_call_record.replace(')', ', VkResult result)')
return ' %s\n %s\n %s\n' % (pre_call_validate, pre_call_record, post_call_record)
#
# Command generation
def genCmd(self, cmdinfo, name, alias):
ignore_functions = [
'vkEnumerateInstanceVersion',
]
if name in ignore_functions:
return
if self.header: # In the header declare all intercepts
self.appendSection('command', '')
self.appendSection('command', self.makeCDecls(cmdinfo.elem)[0])
if (self.featureExtraProtect != None):
self.layer_factory += '#ifdef %s\n' % self.featureExtraProtect
# Update base class with virtual function declarations
if 'ValidationCache' not in name:
self.layer_factory += self.BaseClassCdecl(cmdinfo.elem, name)
if (self.featureExtraProtect != None):
self.layer_factory += '#endif\n'
return
if name in self.manual_functions:
if 'ValidationCache' not in name:
self.intercepts += [ ' {"%s", (void*)%s},' % (name,name[2:]) ]
else:
self.intercepts += [ '#ifdef BUILD_CORE_VALIDATION' ]
self.intercepts += [ ' {"%s", (void*)%s},' % (name,name[2:]) ]
self.intercepts += [ '#endif' ]
return
# Record that the function will be intercepted
if (self.featureExtraProtect != None):
self.intercepts += [ '#ifdef %s' % self.featureExtraProtect ]
self.intercepts += [ ' {"%s", (void*)%s},' % (name,name[2:]) ]
if (self.featureExtraProtect != None):
self.intercepts += [ '#endif' ]
OutputGenerator.genCmd(self, cmdinfo, name, alias)
#
decls = self.makeCDecls(cmdinfo.elem)
self.appendSection('command', '')
self.appendSection('command', '%s {' % decls[0][:-1])
# Setup common to call wrappers. First parameter is always dispatchable
dispatchable_type = cmdinfo.elem.find('param/type').text
dispatchable_name = cmdinfo.elem.find('param/name').text
# Default to device
device_or_instance = 'device'
dispatch_table_name = 'VkLayerDispatchTable'
# Set to instance as necessary
if dispatchable_type in ["VkPhysicalDevice", "VkInstance"] or name == 'vkCreateInstance':
device_or_instance = 'instance'
dispatch_table_name = 'VkLayerInstanceDispatchTable'
self.appendSection('command', ' auto layer_data = GetLayerDataPtr(get_dispatch_key(%s), layer_data_map);' % (dispatchable_name))
api_function_name = cmdinfo.elem.attrib.get('name')
params = cmdinfo.elem.findall('param/name')
paramstext = ', '.join([str(param.text) for param in params])
API = api_function_name.replace('vk','Dispatch') + '(layer_data, '
# Declare result variable, if any.
return_map = {
'PFN_vkVoidFunction': 'return nullptr;',
'VkBool32': 'return VK_FALSE;',
'VkDeviceAddress': 'return 0;',
'VkResult': 'return VK_ERROR_VALIDATION_FAILED_EXT;',
'void': 'return;',
'uint32_t': 'return 0;'
}
resulttype = cmdinfo.elem.find('proto/type')
assignresult = ''
if (resulttype.text != 'void'):
assignresult = resulttype.text + ' result = '
# Set up skip and locking
self.appendSection('command', ' bool skip = false;')
# Generate pre-call validation source code
self.appendSection('command', ' %s' % self.precallvalidate_loop)
self.appendSection('command', ' auto lock = intercept->write_lock();')
self.appendSection('command', ' skip |= intercept->PreCallValidate%s(%s);' % (api_function_name[2:], paramstext))
self.appendSection('command', ' if (skip) %s' % return_map[resulttype.text])
self.appendSection('command', ' }')
# Generate pre-call state recording source code
self.appendSection('command', ' %s' % self.precallrecord_loop)
self.appendSection('command', ' auto lock = intercept->write_lock();')
self.appendSection('command', ' intercept->PreCallRecord%s(%s);' % (api_function_name[2:], paramstext))
self.appendSection('command', ' }')
# Insert pre-dispatch debug utils function call
if name in self.pre_dispatch_debug_utils_functions:
self.appendSection('command', ' %s' % self.pre_dispatch_debug_utils_functions[name])
# Output dispatch (down-chain) function call
self.appendSection('command', ' ' + assignresult + API + paramstext + ');')
# Insert post-dispatch debug utils function call
if name in self.post_dispatch_debug_utils_functions:
self.appendSection('command', ' %s' % self.post_dispatch_debug_utils_functions[name])
# Generate post-call object processing source code
self.appendSection('command', ' %s' % self.postcallrecord_loop)
returnparam = ''
if (resulttype.text == 'VkResult'):
returnparam = ', result'
self.appendSection('command', ' auto lock = intercept->write_lock();')
self.appendSection('command', ' intercept->PostCallRecord%s(%s%s);' % (api_function_name[2:], paramstext, returnparam))
self.appendSection('command', ' }')
# Return result variable, if any.
if (resulttype.text != 'void'):
self.appendSection('command', ' return result;')
self.appendSection('command', '}')
#
# Override makeProtoName to drop the "vk" prefix
def makeProtoName(self, name, tail):
return self.genOpts.apientry + name[2:] + tail