/* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (C) 2015-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Dave Houlton <daveh@lunarg.com>
*/
#include <cinttypes>
#include <cassert>
#include <chrono>
#include <vector>
#include <unordered_map>
#include <string>
#include <sstream>
#include <SPIRV/spirv.hpp>
#include "vk_loader_platform.h"
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_extension_utils.h"
#include "vk_layer_utils.h"
#include "chassis.h"
#include "core_validation.h"
#include "shader_validation.h"
#include "spirv-tools/libspirv.h"
#include "xxhash.h"
enum FORMAT_TYPE {
FORMAT_TYPE_FLOAT = 1, // UNORM, SNORM, FLOAT, USCALED, SSCALED, SRGB -- anything we consider float in the shader
FORMAT_TYPE_SINT = 2,
FORMAT_TYPE_UINT = 4,
};
typedef std::pair<unsigned, unsigned> location_t;
struct interface_var {
uint32_t id;
uint32_t type_id;
uint32_t offset;
bool is_patch;
bool is_block_member;
bool is_relaxed_precision;
// TODO: collect the name, too? Isn't required to be present.
};
struct shader_stage_attributes {
char const *const name;
bool arrayed_input;
bool arrayed_output;
};
static shader_stage_attributes shader_stage_attribs[] = {
{"vertex shader", false, false}, {"tessellation control shader", true, true}, {"tessellation evaluation shader", true, false},
{"geometry shader", true, false}, {"fragment shader", false, false},
};
// SPIRV utility functions
void shader_module::BuildDefIndex() {
for (auto insn : *this) {
switch (insn.opcode()) {
// Types
case spv::OpTypeVoid:
case spv::OpTypeBool:
case spv::OpTypeInt:
case spv::OpTypeFloat:
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeImage:
case spv::OpTypeSampler:
case spv::OpTypeSampledImage:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeStruct:
case spv::OpTypeOpaque:
case spv::OpTypePointer:
case spv::OpTypeFunction:
case spv::OpTypeEvent:
case spv::OpTypeDeviceEvent:
case spv::OpTypeReserveId:
case spv::OpTypeQueue:
case spv::OpTypePipe:
case spv::OpTypeAccelerationStructureNV:
def_index[insn.word(1)] = insn.offset();
break;
// Fixed constants
case spv::OpConstantTrue:
case spv::OpConstantFalse:
case spv::OpConstant:
case spv::OpConstantComposite:
case spv::OpConstantSampler:
case spv::OpConstantNull:
def_index[insn.word(2)] = insn.offset();
break;
// Specialization constants
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
def_index[insn.word(2)] = insn.offset();
break;
// Variables
case spv::OpVariable:
def_index[insn.word(2)] = insn.offset();
break;
// Functions
case spv::OpFunction:
def_index[insn.word(2)] = insn.offset();
break;
default:
// We don't care about any other defs for now.
break;
}
}
}
unsigned ExecutionModelToShaderStageFlagBits(unsigned mode) {
switch (mode) {
case spv::ExecutionModelVertex:
return VK_SHADER_STAGE_VERTEX_BIT;
case spv::ExecutionModelTessellationControl:
return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
case spv::ExecutionModelTessellationEvaluation:
return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
case spv::ExecutionModelGeometry:
return VK_SHADER_STAGE_GEOMETRY_BIT;
case spv::ExecutionModelFragment:
return VK_SHADER_STAGE_FRAGMENT_BIT;
case spv::ExecutionModelGLCompute:
return VK_SHADER_STAGE_COMPUTE_BIT;
case spv::ExecutionModelRayGenerationNV:
return VK_SHADER_STAGE_RAYGEN_BIT_NV;
case spv::ExecutionModelAnyHitNV:
return VK_SHADER_STAGE_ANY_HIT_BIT_NV;
case spv::ExecutionModelClosestHitNV:
return VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV;
case spv::ExecutionModelMissNV:
return VK_SHADER_STAGE_MISS_BIT_NV;
case spv::ExecutionModelIntersectionNV:
return VK_SHADER_STAGE_INTERSECTION_BIT_NV;
case spv::ExecutionModelCallableNV:
return VK_SHADER_STAGE_CALLABLE_BIT_NV;
case spv::ExecutionModelTaskNV:
return VK_SHADER_STAGE_TASK_BIT_NV;
case spv::ExecutionModelMeshNV:
return VK_SHADER_STAGE_MESH_BIT_NV;
default:
return 0;
}
}
static spirv_inst_iter FindEntrypoint(shader_module const *src, char const *name, VkShaderStageFlagBits stageBits) {
for (auto insn : *src) {
if (insn.opcode() == spv::OpEntryPoint) {
auto entrypointName = (char const *)&insn.word(3);
auto executionModel = insn.word(1);
auto entrypointStageBits = ExecutionModelToShaderStageFlagBits(executionModel);
if (!strcmp(entrypointName, name) && (entrypointStageBits & stageBits)) {
return insn;
}
}
}
return src->end();
}
static char const *StorageClassName(unsigned sc) {
switch (sc) {
case spv::StorageClassInput:
return "input";
case spv::StorageClassOutput:
return "output";
case spv::StorageClassUniformConstant:
return "const uniform";
case spv::StorageClassUniform:
return "uniform";
case spv::StorageClassWorkgroup:
return "workgroup local";
case spv::StorageClassCrossWorkgroup:
return "workgroup global";
case spv::StorageClassPrivate:
return "private global";
case spv::StorageClassFunction:
return "function";
case spv::StorageClassGeneric:
return "generic";
case spv::StorageClassAtomicCounter:
return "atomic counter";
case spv::StorageClassImage:
return "image";
case spv::StorageClassPushConstant:
return "push constant";
case spv::StorageClassStorageBuffer:
return "storage buffer";
default:
return "unknown";
}
}
// Get the value of an integral constant
unsigned GetConstantValue(shader_module const *src, unsigned id) {
auto value = src->get_def(id);
assert(value != src->end());
if (value.opcode() != spv::OpConstant) {
// TODO: Either ensure that the specialization transform is already performed on a module we're
// considering here, OR -- specialize on the fly now.
return 1;
}
return value.word(3);
}
static void DescribeTypeInner(std::ostringstream &ss, shader_module const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeBool:
ss << "bool";
break;
case spv::OpTypeInt:
ss << (insn.word(3) ? 's' : 'u') << "int" << insn.word(2);
break;
case spv::OpTypeFloat:
ss << "float" << insn.word(2);
break;
case spv::OpTypeVector:
ss << "vec" << insn.word(3) << " of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeMatrix:
ss << "mat" << insn.word(3) << " of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeArray:
ss << "arr[" << GetConstantValue(src, insn.word(3)) << "] of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeRuntimeArray:
ss << "runtime arr[] of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypePointer:
ss << "ptr to " << StorageClassName(insn.word(2)) << " ";
DescribeTypeInner(ss, src, insn.word(3));
break;
case spv::OpTypeStruct: {
ss << "struct of (";
for (unsigned i = 2; i < insn.len(); i++) {
DescribeTypeInner(ss, src, insn.word(i));
if (i == insn.len() - 1) {
ss << ")";
} else {
ss << ", ";
}
}
break;
}
case spv::OpTypeSampler:
ss << "sampler";
break;
case spv::OpTypeSampledImage:
ss << "sampler+";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeImage:
ss << "image(dim=" << insn.word(3) << ", sampled=" << insn.word(7) << ")";
break;
case spv::OpTypeAccelerationStructureNV:
ss << "accelerationStruture";
break;
default:
ss << "oddtype";
break;
}
}
static std::string DescribeType(shader_module const *src, unsigned type) {
std::ostringstream ss;
DescribeTypeInner(ss, src, type);
return ss.str();
}
static bool IsNarrowNumericType(spirv_inst_iter type) {
if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat) return false;
return type.word(2) < 64;
}
static bool TypesMatch(shader_module const *a, shader_module const *b, unsigned a_type, unsigned b_type, bool a_arrayed,
bool b_arrayed, bool relaxed) {
// Walk two type trees together, and complain about differences
auto a_insn = a->get_def(a_type);
auto b_insn = b->get_def(b_type);
assert(a_insn != a->end());
assert(b_insn != b->end());
// Ignore runtime-sized arrays-- they cannot appear in these interfaces.
if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) {
return TypesMatch(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed);
}
if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) {
// We probably just found the extra level of arrayness in b_type: compare the type inside it to a_type
return TypesMatch(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed);
}
if (a_insn.opcode() == spv::OpTypeVector && relaxed && IsNarrowNumericType(b_insn)) {
return TypesMatch(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false);
}
if (a_insn.opcode() != b_insn.opcode()) {
return false;
}
if (a_insn.opcode() == spv::OpTypePointer) {
// Match on pointee type. storage class is expected to differ
return TypesMatch(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed);
}
if (a_arrayed || b_arrayed) {
// If we havent resolved array-of-verts by here, we're not going to.
return false;
}
switch (a_insn.opcode()) {
case spv::OpTypeBool:
return true;
case spv::OpTypeInt:
// Match on width, signedness
return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3);
case spv::OpTypeFloat:
// Match on width
return a_insn.word(2) == b_insn.word(2);
case spv::OpTypeVector:
// Match on element type, count.
if (!TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false)) return false;
if (relaxed && IsNarrowNumericType(a->get_def(a_insn.word(2)))) {
return a_insn.word(3) >= b_insn.word(3);
} else {
return a_insn.word(3) == b_insn.word(3);
}
case spv::OpTypeMatrix:
// Match on element type, count.
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
a_insn.word(3) == b_insn.word(3);
case spv::OpTypeArray:
// Match on element type, count. these all have the same layout. we don't get here if b_arrayed. This differs from
// vector & matrix types in that the array size is the id of a constant instruction, * not a literal within OpTypeArray
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
GetConstantValue(a, a_insn.word(3)) == GetConstantValue(b, b_insn.word(3));
case spv::OpTypeStruct:
// Match on all element types
{
if (a_insn.len() != b_insn.len()) {
return false; // Structs cannot match if member counts differ
}
for (unsigned i = 2; i < a_insn.len(); i++) {
if (!TypesMatch(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) {
return false;
}
}
return true;
}
default:
// Remaining types are CLisms, or may not appear in the interfaces we are interested in. Just claim no match.
return false;
}
}
static unsigned ValueOrDefault(std::unordered_map<unsigned, unsigned> const &map, unsigned id, unsigned def) {
auto it = map.find(id);
if (it == map.end())
return def;
else
return it->second;
}
static unsigned GetLocationsConsumedByType(shader_module const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetLocationsConsumedByType(src, insn.word(3), strip_array_level);
case spv::OpTypeArray:
if (strip_array_level) {
return GetLocationsConsumedByType(src, insn.word(2), false);
} else {
return GetConstantValue(src, insn.word(3)) * GetLocationsConsumedByType(src, insn.word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn.word(3) * GetLocationsConsumedByType(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width =
(scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32;
// Locations are 128-bit wide; 3- and 4-component vectors of 64 bit types require two.
return (bit_width * insn.word(3) + 127) / 128;
}
default:
// Everything else is just 1.
return 1;
// TODO: extend to handle 64bit scalar types, whose vectors may need multiple locations.
}
}
static unsigned GetComponentsConsumedByType(shader_module const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetComponentsConsumedByType(src, insn.word(3), strip_array_level);
case spv::OpTypeStruct: {
uint32_t sum = 0;
for (uint32_t i = 2; i < insn.len(); i++) { // i=2 to skip word(0) and word(1)=ID of struct
sum += GetComponentsConsumedByType(src, insn.word(i), false);
}
return sum;
}
case spv::OpTypeArray: {
uint32_t sum = 0;
for (uint32_t i = 2; i < insn.len(); i++) {
sum += GetComponentsConsumedByType(src, insn.word(i), false);
}
return sum;
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn.word(3) * GetComponentsConsumedByType(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width =
(scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32;
// One component is 32-bit
return (bit_width * insn.word(3) + 31) / 32;
}
case spv::OpTypeFloat: {
auto bit_width = insn.word(2);
return (bit_width + 31) / 32;
}
case spv::OpTypeInt: {
auto bit_width = insn.word(2);
return (bit_width + 31) / 32;
}
case spv::OpConstant:
return GetComponentsConsumedByType(src, insn.word(1), false);
default:
return 0;
}
}
static unsigned GetLocationsConsumedByFormat(VkFormat format) {
switch (format) {
case VK_FORMAT_R64G64B64A64_SFLOAT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_R64G64B64_SFLOAT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64_UINT:
return 2;
default:
return 1;
}
}
static unsigned GetFormatType(VkFormat fmt) {
if (FormatIsSInt(fmt)) return FORMAT_TYPE_SINT;
if (FormatIsUInt(fmt)) return FORMAT_TYPE_UINT;
if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT;
if (fmt == VK_FORMAT_UNDEFINED) return 0;
// everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader.
return FORMAT_TYPE_FLOAT;
}
// characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above.
// also used for input attachments, as we statically know their format.
static unsigned GetFundamentalType(shader_module const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeInt:
return insn.word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT;
case spv::OpTypeFloat:
return FORMAT_TYPE_FLOAT;
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeImage:
return GetFundamentalType(src, insn.word(2));
case spv::OpTypePointer:
return GetFundamentalType(src, insn.word(3));
default:
return 0;
}
}
static uint32_t GetShaderStageId(VkShaderStageFlagBits stage) {
uint32_t bit_pos = uint32_t(u_ffs(stage));
return bit_pos - 1;
}
static spirv_inst_iter GetStructType(shader_module const *src, spirv_inst_iter def, bool is_array_of_verts) {
while (true) {
if (def.opcode() == spv::OpTypePointer) {
def = src->get_def(def.word(3));
} else if (def.opcode() == spv::OpTypeArray && is_array_of_verts) {
def = src->get_def(def.word(2));
is_array_of_verts = false;
} else if (def.opcode() == spv::OpTypeStruct) {
return def;
} else {
return src->end();
}
}
}
static bool CollectInterfaceBlockMembers(shader_module const *src, std::map<location_t, interface_var> *out,
std::unordered_map<unsigned, unsigned> const &blocks, bool is_array_of_verts, uint32_t id,
uint32_t type_id, bool is_patch, int /*first_location*/) {
// Walk down the type_id presented, trying to determine whether it's actually an interface block.
auto type = GetStructType(src, src->get_def(type_id), is_array_of_verts && !is_patch);
if (type == src->end() || blocks.find(type.word(1)) == blocks.end()) {
// This isn't an interface block.
return false;
}
std::unordered_map<unsigned, unsigned> member_components;
std::unordered_map<unsigned, unsigned> member_relaxed_precision;
std::unordered_map<unsigned, unsigned> member_patch;
// Walk all the OpMemberDecorate for type's result id -- first pass, collect components.
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
if (insn.word(3) == spv::DecorationComponent) {
unsigned component = insn.word(4);
member_components[member_index] = component;
}
if (insn.word(3) == spv::DecorationRelaxedPrecision) {
member_relaxed_precision[member_index] = 1;
}
if (insn.word(3) == spv::DecorationPatch) {
member_patch[member_index] = 1;
}
}
}
// TODO: correctly handle location assignment from outside
// Second pass -- produce the output, from Location decorations
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
unsigned member_type_id = type.word(2 + member_index);
if (insn.word(3) == spv::DecorationLocation) {
unsigned location = insn.word(4);
unsigned num_locations = GetLocationsConsumedByType(src, member_type_id, false);
auto component_it = member_components.find(member_index);
unsigned component = component_it == member_components.end() ? 0 : component_it->second;
bool is_relaxed_precision = member_relaxed_precision.find(member_index) != member_relaxed_precision.end();
bool member_is_patch = is_patch || member_patch.count(member_index) > 0;
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
// TODO: member index in interface_var too?
v.type_id = member_type_id;
v.offset = offset;
v.is_patch = member_is_patch;
v.is_block_member = true;
v.is_relaxed_precision = is_relaxed_precision;
(*out)[std::make_pair(location + offset, component)] = v;
}
}
}
}
return true;
}
static std::map<location_t, interface_var> CollectInterfaceByLocation(shader_module const *src, spirv_inst_iter entrypoint,
spv::StorageClass sinterface, bool is_array_of_verts) {
std::unordered_map<unsigned, unsigned> var_locations;
std::unordered_map<unsigned, unsigned> var_builtins;
std::unordered_map<unsigned, unsigned> var_components;
std::unordered_map<unsigned, unsigned> blocks;
std::unordered_map<unsigned, unsigned> var_patch;
std::unordered_map<unsigned, unsigned> var_relaxed_precision;
for (auto insn : *src) {
// We consider two interface models: SSO rendezvous-by-location, and builtins. Complain about anything that
// fits neither model.
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationLocation) {
var_locations[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationBuiltIn) {
var_builtins[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationComponent) {
var_components[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationBlock) {
blocks[insn.word(1)] = 1;
}
if (insn.word(2) == spv::DecorationPatch) {
var_patch[insn.word(1)] = 1;
}
if (insn.word(2) == spv::DecorationRelaxedPrecision) {
var_relaxed_precision[insn.word(1)] = 1;
}
}
}
// TODO: handle grouped decorations
// TODO: handle index=1 dual source outputs from FS -- two vars will have the same location, and we DON'T want to clobber.
// Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out the
// rest of the word - so we only need to look at the last byte in the word to determine which word contains the terminator.
uint32_t word = 3;
while (entrypoint.word(word) & 0xff000000u) {
++word;
}
++word;
std::map<location_t, interface_var> out;
for (; word < entrypoint.len(); word++) {
auto insn = src->get_def(entrypoint.word(word));
assert(insn != src->end());
assert(insn.opcode() == spv::OpVariable);
if (insn.word(3) == static_cast<uint32_t>(sinterface)) {
unsigned id = insn.word(2);
unsigned type = insn.word(1);
int location = ValueOrDefault(var_locations, id, static_cast<unsigned>(-1));
int builtin = ValueOrDefault(var_builtins, id, static_cast<unsigned>(-1));
unsigned component = ValueOrDefault(var_components, id, 0); // Unspecified is OK, is 0
bool is_patch = var_patch.find(id) != var_patch.end();
bool is_relaxed_precision = var_relaxed_precision.find(id) != var_relaxed_precision.end();
if (builtin != -1)
continue;
else if (!CollectInterfaceBlockMembers(src, &out, blocks, is_array_of_verts, id, type, is_patch, location)) {
// A user-defined interface variable, with a location. Where a variable occupied multiple locations, emit
// one result for each.
unsigned num_locations = GetLocationsConsumedByType(src, type, is_array_of_verts && !is_patch);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
v.type_id = type;
v.offset = offset;
v.is_patch = is_patch;
v.is_relaxed_precision = is_relaxed_precision;
out[std::make_pair(location + offset, component)] = v;
}
}
}
}
return out;
}
static std::vector<std::pair<uint32_t, interface_var>> CollectInterfaceByInputAttachmentIndex(
shader_module const *src, std::unordered_set<uint32_t> const &accessible_ids) {
std::vector<std::pair<uint32_t, interface_var>> out;
for (auto insn : *src) {
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationInputAttachmentIndex) {
auto attachment_index = insn.word(3);
auto id = insn.word(1);
if (accessible_ids.count(id)) {
auto def = src->get_def(id);
assert(def != src->end());
if (def.opcode() == spv::OpVariable && insn.word(3) == spv::StorageClassUniformConstant) {
auto num_locations = GetLocationsConsumedByType(src, def.word(1), false);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
v.type_id = def.word(1);
v.offset = offset;
out.emplace_back(attachment_index + offset, v);
}
}
}
}
}
}
return out;
}
static bool IsWritableDescriptorType(shader_module const *module, uint32_t type_id, bool is_storage_buffer) {
auto type = module->get_def(type_id);
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) {
if (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypeRuntimeArray) {
type = module->get_def(type.word(2)); // Element type
} else {
type = module->get_def(type.word(3)); // Pointee type
}
}
switch (type.opcode()) {
case spv::OpTypeImage: {
auto dim = type.word(3);
auto sampled = type.word(7);
return sampled == 2 && dim != spv::DimSubpassData;
}
case spv::OpTypeStruct: {
std::unordered_set<unsigned> nonwritable_members;
for (auto insn : *module) {
if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) {
if (insn.word(2) == spv::DecorationBufferBlock) {
// Legacy storage block in the Uniform storage class
// has its struct type decorated with BufferBlock.
is_storage_buffer = true;
}
} else if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1) &&
insn.word(3) == spv::DecorationNonWritable) {
nonwritable_members.insert(insn.word(2));
}
}
// A buffer is writable if it's either flavor of storage buffer, and has any member not decorated
// as nonwritable.
return is_storage_buffer && nonwritable_members.size() != type.len() - 2;
}
}
return false;
}
static std::vector<std::pair<descriptor_slot_t, interface_var>> CollectInterfaceByDescriptorSlot(
debug_report_data const *report_data, shader_module const *src, std::unordered_set<uint32_t> const &accessible_ids,
bool *has_writable_descriptor) {
std::unordered_map<unsigned, unsigned> var_sets;
std::unordered_map<unsigned, unsigned> var_bindings;
std::unordered_map<unsigned, unsigned> var_nonwritable;
for (auto insn : *src) {
// All variables in the Uniform or UniformConstant storage classes are required to be decorated with both
// DecorationDescriptorSet and DecorationBinding.
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationDescriptorSet) {
var_sets[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationBinding) {
var_bindings[insn.word(1)] = insn.word(3);
}
// Note: do toplevel DecorationNonWritable out here; it applies to
// the OpVariable rather than the type.
if (insn.word(2) == spv::DecorationNonWritable) {
var_nonwritable[insn.word(1)] = 1;
}
}
}
std::vector<std::pair<descriptor_slot_t, interface_var>> out;
for (auto id : accessible_ids) {
auto insn = src->get_def(id);
assert(insn != src->end());
if (insn.opcode() == spv::OpVariable &&
(insn.word(3) == spv::StorageClassUniform || insn.word(3) == spv::StorageClassUniformConstant ||
insn.word(3) == spv::StorageClassStorageBuffer)) {
unsigned set = ValueOrDefault(var_sets, insn.word(2), 0);
unsigned binding = ValueOrDefault(var_bindings, insn.word(2), 0);
interface_var v = {};
v.id = insn.word(2);
v.type_id = insn.word(1);
out.emplace_back(std::make_pair(set, binding), v);
if (var_nonwritable.find(id) == var_nonwritable.end() &&
IsWritableDescriptorType(src, insn.word(1), insn.word(3) == spv::StorageClassStorageBuffer)) {
*has_writable_descriptor = true;
}
}
}
return out;
}
static bool ValidateViConsistency(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi) {
// Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should
// be specified only once.
std::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings;
bool skip = false;
for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) {
auto desc = &vi->pVertexBindingDescriptions[i];
auto &binding = bindings[desc->binding];
if (binding) {
// TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps?
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_InconsistentVi, "Duplicate vertex input binding descriptions for binding %d",
desc->binding);
} else {
binding = desc;
}
}
return skip;
}
static bool ValidateViAgainstVsInputs(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi,
shader_module const *vs, spirv_inst_iter entrypoint) {
bool skip = false;
auto inputs = CollectInterfaceByLocation(vs, entrypoint, spv::StorageClassInput, false);
// Build index by location
std::map<uint32_t, VkVertexInputAttributeDescription const *> attribs;
if (vi) {
for (unsigned i = 0; i < vi->vertexAttributeDescriptionCount; i++) {
auto num_locations = GetLocationsConsumedByFormat(vi->pVertexAttributeDescriptions[i].format);
for (auto j = 0u; j < num_locations; j++) {
attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i];
}
}
}
auto it_a = attribs.begin();
auto it_b = inputs.begin();
bool used = false;
while ((attribs.size() > 0 && it_a != attribs.end()) || (inputs.size() > 0 && it_b != inputs.end())) {
bool a_at_end = attribs.size() == 0 || it_a == attribs.end();
bool b_at_end = inputs.size() == 0 || it_b == inputs.end();
auto a_first = a_at_end ? 0 : it_a->first;
auto b_first = b_at_end ? 0 : it_b->first.first;
if (!a_at_end && (b_at_end || a_first < b_first)) {
if (!used &&
log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed,
"Vertex attribute at location %d not consumed by vertex shader", a_first)) {
skip = true;
}
used = false;
it_a++;
} else if (!b_at_end && (a_at_end || b_first < a_first)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_InputNotProduced,
"Vertex shader consumes input at location %d but not provided", b_first);
it_b++;
} else {
unsigned attrib_type = GetFormatType(it_a->second->format);
unsigned input_type = GetFundamentalType(vs, it_b->second.type_id);
// Type checking
if (!(attrib_type & input_type)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attribute type of `%s` at location %d does not match vertex shader input type of `%s`",
string_VkFormat(it_a->second->format), a_first, DescribeType(vs, it_b->second.type_id).c_str());
}
// OK!
used = true;
it_b++;
}
}
return skip;
}
static bool ValidateFsOutputsAgainstRenderPass(debug_report_data const *report_data, shader_module const *fs,
spirv_inst_iter entrypoint, PIPELINE_STATE const *pipeline, uint32_t subpass_index) {
auto rpci = pipeline->rp_state->createInfo.ptr();
std::map<uint32_t, VkFormat> color_attachments;
auto subpass = rpci->pSubpasses[subpass_index];
for (auto i = 0u; i < subpass.colorAttachmentCount; ++i) {
uint32_t attachment = subpass.pColorAttachments[i].attachment;
if (attachment == VK_ATTACHMENT_UNUSED) continue;
if (rpci->pAttachments[attachment].format != VK_FORMAT_UNDEFINED) {
color_attachments[i] = rpci->pAttachments[attachment].format;
}
}
bool skip = false;
// TODO: dual source blend index (spv::DecIndex, zero if not provided)
auto outputs = CollectInterfaceByLocation(fs, entrypoint, spv::StorageClassOutput, false);
auto it_a = outputs.begin();
auto it_b = color_attachments.begin();
bool used = false;
bool alphaToCoverageEnabled = pipeline->graphicsPipelineCI.pMultisampleState != NULL &&
pipeline->graphicsPipelineCI.pMultisampleState->alphaToCoverageEnable == VK_TRUE;
bool locationZeroHasAlpha = false;
// Walk attachment list and outputs together
while ((outputs.size() > 0 && it_a != outputs.end()) || (color_attachments.size() > 0 && it_b != color_attachments.end())) {
bool a_at_end = outputs.size() == 0 || it_a == outputs.end();
bool b_at_end = color_attachments.size() == 0 || it_b == color_attachments.end();
if (!a_at_end && it_a->first.first == 0 && fs->get_def(it_a->second.type_id) != fs->end() &&
GetComponentsConsumedByType(fs, it_a->second.type_id, false) == 4)
locationZeroHasAlpha = true;
if (!a_at_end && (b_at_end || it_a->first.first < it_b->first)) {
if (!alphaToCoverageEnabled || it_a->first.first != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed,
"fragment shader writes to output location %d with no matching attachment", it_a->first.first);
}
it_a++;
} else if (!b_at_end && (a_at_end || it_a->first.first > it_b->first)) {
// Only complain if there are unmasked channels for this attachment. If the writemask is 0, it's acceptable for the
// shader to not produce a matching output.
if (!used) {
if (pipeline->attachments[it_b->first].colorWriteMask != 0) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_InputNotProduced,
"Attachment %d not written by fragment shader; undefined values will be written to attachment",
it_b->first);
}
}
used = false;
it_b++;
} else {
unsigned output_type = GetFundamentalType(fs, it_a->second.type_id);
unsigned att_type = GetFormatType(it_b->second);
// Type checking
if (!(output_type & att_type)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attachment %d of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined",
it_b->first, string_VkFormat(it_b->second), DescribeType(fs, it_a->second.type_id).c_str());
}
// OK!
it_a++;
used = true;
}
}
if (alphaToCoverageEnabled && !locationZeroHasAlpha) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage,
"fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled.");
}
return skip;
}
// For PointSize analysis we need to know if the variable decorated with the PointSize built-in was actually written to.
// This function examines instructions in the static call tree for a write to this variable.
static bool IsPointSizeWritten(shader_module const *src, spirv_inst_iter builtin_instr, spirv_inst_iter entrypoint) {
auto type = builtin_instr.opcode();
uint32_t target_id = builtin_instr.word(1);
bool init_complete = false;
if (type == spv::OpMemberDecorate) {
// Built-in is part of a structure -- examine instructions up to first function body to get initial IDs
auto insn = entrypoint;
while (!init_complete && (insn.opcode() != spv::OpFunction)) {
switch (insn.opcode()) {
case spv::OpTypePointer:
if ((insn.word(3) == target_id) && (insn.word(2) == spv::StorageClassOutput)) {
target_id = insn.word(1);
}
break;
case spv::OpVariable:
if (insn.word(1) == target_id) {
target_id = insn.word(2);
init_complete = true;
}
break;
}
insn++;
}
}
if (!init_complete && (type == spv::OpMemberDecorate)) return false;
bool found_write = false;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
// Follow instructions in call graph looking for writes to target
while (!worklist.empty() && !found_write) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
continue;
}
if (insn.opcode() == spv::OpFunction) {
// Scan body of function looking for other function calls or items in our ID chain
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpAccessChain:
if (insn.word(3) == target_id) {
if (type == spv::OpMemberDecorate) {
auto value = GetConstantValue(src, insn.word(4));
if (value == builtin_instr.word(2)) {
target_id = insn.word(2);
}
} else {
target_id = insn.word(2);
}
}
break;
case spv::OpStore:
if (insn.word(1) == target_id) {
found_write = true;
}
break;
case spv::OpFunctionCall:
worklist.insert(insn.word(3));
break;
}
}
}
}
return found_write;
}
// For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is
// important for identifying the set of shader resources actually used by an entrypoint, for example.
// Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
// - NOT the shader input/output interfaces.
//
// TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
// converting parts of this to be generated from the machine-readable spec instead.
static std::unordered_set<uint32_t> MarkAccessibleIds(shader_module const *src, spirv_inst_iter entrypoint) {
std::unordered_set<uint32_t> ids;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
while (!worklist.empty()) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
// ID is something we didn't collect in BuildDefIndex. that's OK -- we'll stumble across all kinds of things here
// that we may not care about.
continue;
}
// Try to add to the output set
if (!ids.insert(id).second) {
continue; // If we already saw this id, we don't want to walk it again.
}
switch (insn.opcode()) {
case spv::OpFunction:
// Scan whole body of the function, enlisting anything interesting
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpLoad:
case spv::OpAtomicLoad:
case spv::OpAtomicExchange:
case spv::OpAtomicCompareExchange:
case spv::OpAtomicCompareExchangeWeak:
case spv::OpAtomicIIncrement:
case spv::OpAtomicIDecrement:
case spv::OpAtomicIAdd:
case spv::OpAtomicISub:
case spv::OpAtomicSMin:
case spv::OpAtomicUMin:
case spv::OpAtomicSMax:
case spv::OpAtomicUMax:
case spv::OpAtomicAnd:
case spv::OpAtomicOr:
case spv::OpAtomicXor:
worklist.insert(insn.word(3)); // ptr
break;
case spv::OpStore:
case spv::OpAtomicStore:
worklist.insert(insn.word(1)); // ptr
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
worklist.insert(insn.word(3)); // base ptr
break;
case spv::OpSampledImage:
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageDrefGather:
case spv::OpImageRead:
case spv::OpImage:
case spv::OpImageQueryFormat:
case spv::OpImageQueryOrder:
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLod:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageTexelPointer:
worklist.insert(insn.word(3)); // Image or sampled image
break;
case spv::OpImageWrite:
worklist.insert(insn.word(1)); // Image -- different operand order to above
break;
case spv::OpFunctionCall:
for (uint32_t i = 3; i < insn.len(); i++) {
worklist.insert(insn.word(i)); // fn itself, and all args
}
break;
case spv::OpExtInst:
for (uint32_t i = 5; i < insn.len(); i++) {
worklist.insert(insn.word(i)); // Operands to ext inst
}
break;
}
}
break;
}
}
return ids;
}
static bool ValidatePushConstantBlockAgainstPipeline(debug_report_data const *report_data,
std::vector<VkPushConstantRange> const *push_constant_ranges,
shader_module const *src, spirv_inst_iter type, VkShaderStageFlagBits stage) {
bool skip = false;
// Strip off ptrs etc
type = GetStructType(src, type, false);
assert(type != src->end());
// Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step.
// TODO: arrays, matrices, weird sizes
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
if (insn.word(3) == spv::DecorationOffset) {
unsigned offset = insn.word(4);
auto size = 4; // Bytes; TODO: calculate this based on the type
bool found_range = false;
for (auto const &range : *push_constant_ranges) {
if (range.offset <= offset && range.offset + range.size >= offset + size) {
found_range = true;
if ((range.stageFlags & stage) == 0) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_PushConstantNotAccessibleFromStage,
"Push constant range covering variable starting at offset %u not accessible from stage %s",
offset, string_VkShaderStageFlagBits(stage));
}
break;
}
}
if (!found_range) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_PushConstantOutOfRange,
"Push constant range covering variable starting at offset %u not declared in layout", offset);
}
}
}
}
return skip;
}
static bool ValidatePushConstantUsage(debug_report_data const *report_data,
std::vector<VkPushConstantRange> const *push_constant_ranges, shader_module const *src,
std::unordered_set<uint32_t> accessible_ids, VkShaderStageFlagBits stage) {
bool skip = false;
for (auto id : accessible_ids) {
auto def_insn = src->get_def(id);
if (def_insn.opcode() == spv::OpVariable && def_insn.word(3) == spv::StorageClassPushConstant) {
skip |= ValidatePushConstantBlockAgainstPipeline(report_data, push_constant_ranges, src, src->get_def(def_insn.word(1)),
stage);
}
}
return skip;
}
// Validate that data for each specialization entry is fully contained within the buffer.
static bool ValidateSpecializationOffsets(debug_report_data const *report_data, VkPipelineShaderStageCreateInfo const *info) {
bool skip = false;
VkSpecializationInfo const *spec = info->pSpecializationInfo;
if (spec) {
for (auto i = 0u; i < spec->mapEntryCount; i++) {
// TODO: This is a good place for "VUID-VkSpecializationInfo-offset-00773".
if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0,
"VUID-VkSpecializationInfo-pMapEntries-00774",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize);
}
}
}
return skip;
}
// TODO (jbolz): Can this return a const reference?
static std::set<uint32_t> TypeToDescriptorTypeSet(shader_module const *module, uint32_t type_id, unsigned &descriptor_count) {
auto type = module->get_def(type_id);
bool is_storage_buffer = false;
descriptor_count = 1;
std::set<uint32_t> ret;
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) {
if (type.opcode() == spv::OpTypeRuntimeArray) {
descriptor_count = 0;
type = module->get_def(type.word(2));
} else if (type.opcode() == spv::OpTypeArray) {
descriptor_count *= GetConstantValue(module, type.word(3));
type = module->get_def(type.word(2));
} else {
if (type.word(2) == spv::StorageClassStorageBuffer) {
is_storage_buffer = true;
}
type = module->get_def(type.word(3));
}
}
switch (type.opcode()) {
case spv::OpTypeStruct: {
for (auto insn : *module) {
if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) {
if (insn.word(2) == spv::DecorationBlock) {
if (is_storage_buffer) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
ret.insert(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
return ret;
}
} else if (insn.word(2) == spv::DecorationBufferBlock) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
}
}
}
// Invalid
return ret;
}
case spv::OpTypeSampler:
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLER);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeSampledImage: {
// Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel
// buffer descriptor doesn't really provide one. Allow this slight mismatch.
auto image_type = module->get_def(type.word(2));
auto dim = image_type.word(3);
auto sampled = image_type.word(7);
if (dim == spv::DimBuffer && sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
}
}
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeImage: {
// Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler.
// SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable.
auto dim = type.word(3);
auto sampled = type.word(7);
if (dim == spv::DimSubpassData) {
ret.insert(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
return ret;
} else if (dim == spv::DimBuffer) {
if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
return ret;
}
} else if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
return ret;
}
}
case spv::OpTypeAccelerationStructureNV:
ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV);
return ret;
// We shouldn't really see any other junk types -- but if we do, they're a mismatch.
default:
return ret; // Matches nothing
}
}
static std::string string_descriptorTypes(const std::set<uint32_t> &descriptor_types) {
std::stringstream ss;
for (auto it = descriptor_types.begin(); it != descriptor_types.end(); ++it) {
if (ss.tellp()) ss << ", ";
ss << string_VkDescriptorType(VkDescriptorType(*it));
}
return ss.str();
}
static bool RequireFeature(debug_report_data const *report_data, VkBool32 feature, char const *feature_name) {
if (!feature) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled, "Shader requires %s but is not enabled on the device", feature_name)) {
return true;
}
}
return false;
}
static bool RequireExtension(debug_report_data const *report_data, bool extension, char const *extension_name) {
if (!extension) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_FeatureNotEnabled, "Shader requires extension %s but is not enabled on the device",
extension_name)) {
return true;
}
}
return false;
}
bool CoreChecks::ValidateShaderCapabilities(layer_data *dev_data, shader_module const *src, VkShaderStageFlagBits stage,
bool has_writable_descriptor) {
bool skip = false;
auto const &features = GetEnabledFeatures();
auto const &extensions = GetDeviceExtensions();
struct FeaturePointer {
// Callable object to test if this feature is enabled in the given aggregate feature struct
const std::function<VkBool32(const DeviceFeatures &)> IsEnabled;
// Test if feature pointer is populated
explicit operator bool() const { return static_cast<bool>(IsEnabled); }
// Default and nullptr constructor to create an empty FeaturePointer
FeaturePointer() : IsEnabled(nullptr) {}
FeaturePointer(std::nullptr_t ptr) : IsEnabled(nullptr) {}
// Constructors to populate FeaturePointer based on given pointer to member
FeaturePointer(VkBool32 VkPhysicalDeviceFeatures::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.core.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceDescriptorIndexingFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.descriptor_indexing.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDevice8BitStorageFeaturesKHR::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.eight_bit_storage.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceTransformFeedbackFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.transform_feedback_features.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceFloat16Int8FeaturesKHR::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.float16_int8.*ptr; }) {}
FeaturePointer(VkBool32 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT::*ptr)
: IsEnabled([=](const DeviceFeatures &features) { return features.scalar_block_layout_features.*ptr; }) {}
};
struct CapabilityInfo {
char const *name;
FeaturePointer feature;
bool DeviceExtensions::*extension;
};
// clang-format off
static const std::unordered_multimap<uint32_t, CapabilityInfo> capabilities = {
// Capabilities always supported by a Vulkan 1.0 implementation -- no
// feature bits.
{spv::CapabilityMatrix, {nullptr}},
{spv::CapabilityShader, {nullptr}},
{spv::CapabilityInputAttachment, {nullptr}},
{spv::CapabilitySampled1D, {nullptr}},
{spv::CapabilityImage1D, {nullptr}},
{spv::CapabilitySampledBuffer, {nullptr}},
{spv::CapabilityImageQuery, {nullptr}},
{spv::CapabilityDerivativeControl, {nullptr}},
// Capabilities that are optionally supported, but require a feature to
// be enabled on the device
{spv::CapabilityGeometry, {"VkPhysicalDeviceFeatures::geometryShader", &VkPhysicalDeviceFeatures::geometryShader}},
{spv::CapabilityTessellation, {"VkPhysicalDeviceFeatures::tessellationShader", &VkPhysicalDeviceFeatures::tessellationShader}},
{spv::CapabilityFloat64, {"VkPhysicalDeviceFeatures::shaderFloat64", &VkPhysicalDeviceFeatures::shaderFloat64}},
{spv::CapabilityInt64, {"VkPhysicalDeviceFeatures::shaderInt64", &VkPhysicalDeviceFeatures::shaderInt64}},
{spv::CapabilityTessellationPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize}},
{spv::CapabilityGeometryPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize}},
{spv::CapabilityImageGatherExtended, {"VkPhysicalDeviceFeatures::shaderImageGatherExtended", &VkPhysicalDeviceFeatures::shaderImageGatherExtended}},
{spv::CapabilityStorageImageMultisample, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &VkPhysicalDeviceFeatures::shaderStorageImageMultisample}},
{spv::CapabilityUniformBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing}},
{spv::CapabilitySampledImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing}},
{spv::CapabilityStorageBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing}},
{spv::CapabilityStorageImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing}},
{spv::CapabilityClipDistance, {"VkPhysicalDeviceFeatures::shaderClipDistance", &VkPhysicalDeviceFeatures::shaderClipDistance}},
{spv::CapabilityCullDistance, {"VkPhysicalDeviceFeatures::shaderCullDistance", &VkPhysicalDeviceFeatures::shaderCullDistance}},
{spv::CapabilityImageCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &VkPhysicalDeviceFeatures::imageCubeArray}},
{spv::CapabilitySampleRateShading, {"VkPhysicalDeviceFeatures::sampleRateShading", &VkPhysicalDeviceFeatures::sampleRateShading}},
{spv::CapabilitySparseResidency, {"VkPhysicalDeviceFeatures::shaderResourceResidency", &VkPhysicalDeviceFeatures::shaderResourceResidency}},
{spv::CapabilityMinLod, {"VkPhysicalDeviceFeatures::shaderResourceMinLod", &VkPhysicalDeviceFeatures::shaderResourceMinLod}},
{spv::CapabilitySampledCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &VkPhysicalDeviceFeatures::imageCubeArray}},
{spv::CapabilityImageMSArray, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &VkPhysicalDeviceFeatures::shaderStorageImageMultisample}},
{spv::CapabilityStorageImageExtendedFormats, {"VkPhysicalDeviceFeatures::shaderStorageImageExtendedFormats", &VkPhysicalDeviceFeatures::shaderStorageImageExtendedFormats}},
{spv::CapabilityInterpolationFunction, {"VkPhysicalDeviceFeatures::sampleRateShading", &VkPhysicalDeviceFeatures::sampleRateShading}},
{spv::CapabilityStorageImageReadWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat", &VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat}},
{spv::CapabilityStorageImageWriteWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat", &VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat}},
{spv::CapabilityMultiViewport, {"VkPhysicalDeviceFeatures::multiViewport", &VkPhysicalDeviceFeatures::multiViewport}},
{spv::CapabilityShaderNonUniformEXT, {VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_descriptor_indexing}},
{spv::CapabilityRuntimeDescriptorArrayEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray}},
{spv::CapabilityInputAttachmentArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing}},
{spv::CapabilityUniformTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing}},
{spv::CapabilityStorageTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing}},
{spv::CapabilityUniformBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing}},
{spv::CapabilitySampledImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing}},
{spv::CapabilityStorageBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing}},
{spv::CapabilityStorageImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing}},
{spv::CapabilityInputAttachmentArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing}},
{spv::CapabilityUniformTexelBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing}},
{spv::CapabilityStorageTexelBufferArrayNonUniformIndexingEXT , {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing}},
// Capabilities that require an extension
{spv::CapabilityDrawParameters, {VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_draw_parameters}},
{spv::CapabilityGeometryShaderPassthroughNV, {VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_geometry_shader_passthrough}},
{spv::CapabilitySampleMaskOverrideCoverageNV, {VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_sample_mask_override_coverage}},
{spv::CapabilityShaderViewportIndexLayerEXT, {VK_EXT_SHADER_VIEWPORT_INDEX_LAYER_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_viewport_index_layer}},
{spv::CapabilityShaderViewportIndexLayerNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_viewport_array2}},
{spv::CapabilityShaderViewportMaskNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_viewport_array2}},
{spv::CapabilitySubgroupBallotKHR, {VK_EXT_SHADER_SUBGROUP_BALLOT_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_subgroup_ballot }},
{spv::CapabilitySubgroupVoteKHR, {VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_subgroup_vote }},
{spv::CapabilityInt64Atomics, {VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_atomic_int64 }},
{spv::CapabilityStorageBuffer8BitAccess , {"VkPhysicalDevice8BitStorageFeaturesKHR::storageBuffer8BitAccess", &VkPhysicalDevice8BitStorageFeaturesKHR::storageBuffer8BitAccess, &DeviceExtensions::vk_khr_8bit_storage}},
{spv::CapabilityUniformAndStorageBuffer8BitAccess , {"VkPhysicalDevice8BitStorageFeaturesKHR::uniformAndStorageBuffer8BitAccess", &VkPhysicalDevice8BitStorageFeaturesKHR::uniformAndStorageBuffer8BitAccess, &DeviceExtensions::vk_khr_8bit_storage}},
{spv::CapabilityStoragePushConstant8 , {"VkPhysicalDevice8BitStorageFeaturesKHR::storagePushConstant8", &VkPhysicalDevice8BitStorageFeaturesKHR::storagePushConstant8, &DeviceExtensions::vk_khr_8bit_storage}},
{spv::CapabilityTransformFeedback , { "VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback", &VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback, &DeviceExtensions::vk_ext_transform_feedback}},
{spv::CapabilityGeometryStreams , { "VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams", &VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams, &DeviceExtensions::vk_ext_transform_feedback}},
{spv::CapabilityFloat16 , {"VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderFloat16", &VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderFloat16, &DeviceExtensions::vk_khr_shader_float16_int8}},
{spv::CapabilityInt8 , {"VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderInt8", &VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderInt8, &DeviceExtensions::vk_khr_shader_float16_int8}},
};
// clang-format on
for (auto insn : *src) {
if (insn.opcode() == spv::OpCapability) {
size_t n = capabilities.count(insn.word(1));
if (1 == n) { // key occurs exactly once
auto it = capabilities.find(insn.word(1));
if (it != capabilities.end()) {
if (it->second.feature) {
skip |= RequireFeature(report_data, it->second.feature.IsEnabled(*features), it->second.name);
}
if (it->second.extension) {
skip |= RequireExtension(report_data, extensions->*(it->second.extension), it->second.name);
}
}
} else if (1 < n) { // key occurs multiple times, at least one must be enabled
bool needs_feature = false, has_feature = false;
bool needs_ext = false, has_ext = false;
std::string feature_names = "(one of) [ ";
std::string extension_names = feature_names;
auto caps = capabilities.equal_range(insn.word(1));
for (auto it = caps.first; it != caps.second; ++it) {
if (it->second.feature) {
needs_feature = true;
has_feature = has_feature || it->second.feature.IsEnabled(*features);
feature_names += it->second.name;
feature_names += " ";
}
if (it->second.extension) {
needs_ext = true;
has_ext = has_ext || extensions->*(it->second.extension);
extension_names += it->second.name;
extension_names += " ";
}
}
if (needs_feature) {
feature_names += "]";
skip |= RequireFeature(report_data, has_feature, feature_names.c_str());
}
if (needs_ext) {
extension_names += "]";
skip |= RequireExtension(report_data, has_ext, extension_names.c_str());
}
}
}
}
if (has_writable_descriptor) {
switch (stage) {
case VK_SHADER_STAGE_COMPUTE_BIT:
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
/* No feature requirements for writes and atomics from compute
* raytracing, or mesh stages */
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
skip |= RequireFeature(report_data, features->core.fragmentStoresAndAtomics, "fragmentStoresAndAtomics");
break;
default:
skip |=
RequireFeature(report_data, features->core.vertexPipelineStoresAndAtomics, "vertexPipelineStoresAndAtomics");
break;
}
}
return skip;
}
static bool VariableIsBuiltIn(shader_module const *src, const uint32_t ID, std::vector<uint32_t> const &builtInBlockIDs,
std::vector<uint32_t> const &builtInIDs) {
auto insn = src->get_def(ID);
switch (insn.opcode()) {
case spv::OpVariable: {
// First check if the variable is a "pure" built-in type, e.g. gl_ViewportIndex
uint32_t ID = insn.word(2);
for (auto builtInID : builtInIDs) {
if (ID == builtInID) {
return true;
}
}
VariableIsBuiltIn(src, insn.word(1), builtInBlockIDs, builtInIDs);
break;
}
case spv::OpTypePointer:
VariableIsBuiltIn(src, insn.word(3), builtInBlockIDs, builtInIDs);
break;
case spv::OpTypeArray:
VariableIsBuiltIn(src, insn.word(2), builtInBlockIDs, builtInIDs);
break;
case spv::OpTypeStruct: {
uint32_t ID = insn.word(1); // We only need to check the first member as either all will be, or none will be built-in
for (auto builtInBlockID : builtInBlockIDs) {
if (ID == builtInBlockID) {
return true;
}
}
return false;
}
default:
return false;
}
return false;
}
bool CoreChecks::ValidateShaderStageInputOutputLimits(layer_data *dev_data, shader_module const *src,
VkPipelineShaderStageCreateInfo const *pStage, PIPELINE_STATE *pipeline) {
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT || pStage->stage == VK_SHADER_STAGE_ALL_GRAPHICS ||
pStage->stage == VK_SHADER_STAGE_ALL) {
return false;
}
bool skip = false;
auto const &limits = dev_data->phys_dev_props.limits;
std::vector<uint32_t> builtInBlockIDs;
std::vector<uint32_t> builtInIDs;
struct Variable {
uint32_t baseTypePtrID;
uint32_t ID;
uint32_t storageClass;
};
std::vector<Variable> variables;
for (auto insn : *src) {
switch (insn.opcode()) {
// Find all built-in member decorations
case spv::OpMemberDecorate:
if (insn.word(3) == spv::DecorationBuiltIn) {
builtInBlockIDs.push_back(insn.word(1));
}
break;
// Find all built-in decorations
case spv::OpDecorate:
switch (insn.word(2)) {
case spv::DecorationBlock: {
uint32_t blockID = insn.word(1);
for (auto builtInBlockID : builtInBlockIDs) {
// Check if one of the members of the block are built-in -> the block is built-in
if (blockID == builtInBlockID) {
builtInIDs.push_back(blockID);
break;
}
}
break;
}
case spv::DecorationBuiltIn:
builtInIDs.push_back(insn.word(1));
break;
default:
break;
}
break;
// Find all input and output variables
case spv::OpVariable: {
Variable var = {};
var.storageClass = insn.word(3);
if (var.storageClass == spv::StorageClassInput || var.storageClass == spv::StorageClassOutput) {
var.baseTypePtrID = insn.word(1);
var.ID = insn.word(2);
variables.push_back(var);
}
break;
}
default:
break;
}
}
uint32_t numCompIn = 0, numCompOut = 0;
for (auto &var : variables) {
// Check the variable's ID
if (VariableIsBuiltIn(src, var.ID, builtInBlockIDs, builtInIDs)) {
continue;
}
// Check the variable's type's ID - e.g. gl_PerVertex is made of basic types, not built-in types
if (VariableIsBuiltIn(src, src->get_def(var.baseTypePtrID).word(3), builtInBlockIDs, builtInIDs)) {
continue;
}
if (var.storageClass == spv::StorageClassInput) {
numCompIn += GetComponentsConsumedByType(src, var.baseTypePtrID, false);
} else { // var.storageClass == spv::StorageClassOutput
numCompOut += GetComponentsConsumedByType(src, var.baseTypePtrID, false);
}
}
switch (pStage->stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
if (numCompOut > limits.maxVertexOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader exceeds "
"VkPhysicalDeviceLimits::maxVertexOutputComponents of %u "
"components by %u components",
limits.maxVertexOutputComponents, numCompOut - limits.maxVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
if (numCompIn > limits.maxTessellationControlPerVertexInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexInputComponents,
numCompIn - limits.maxTessellationControlPerVertexInputComponents);
}
if (numCompOut > limits.maxTessellationControlPerVertexOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexOutputComponents,
numCompOut - limits.maxTessellationControlPerVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
if (numCompIn > limits.maxTessellationEvaluationInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationInputComponents,
numCompIn - limits.maxTessellationEvaluationInputComponents);
}
if (numCompOut > limits.maxTessellationEvaluationOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationOutputComponents,
numCompOut - limits.maxTessellationEvaluationOutputComponents);
}
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
if (numCompIn > limits.maxGeometryInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryInputComponents of %u "
"components by %u components",
limits.maxGeometryInputComponents, numCompIn - limits.maxGeometryInputComponents);
}
if (numCompOut > limits.maxGeometryOutputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryOutputComponents of %u "
"components by %u components",
limits.maxGeometryOutputComponents, numCompOut - limits.maxGeometryOutputComponents);
}
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
if (numCompIn > limits.maxFragmentInputComponents) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader exceeds "
"VkPhysicalDeviceLimits::maxFragmentInputComponents of %u "
"components by %u components",
limits.maxFragmentInputComponents, numCompIn - limits.maxFragmentInputComponents);
}
break;
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
break;
default:
assert(false); // This should never happen
}
return skip;
}
uint32_t DescriptorTypeToReqs(shader_module const *module, uint32_t type_id) {
auto type = module->get_def(type_id);
while (true) {
switch (type.opcode()) {
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeSampledImage:
type = module->get_def(type.word(2));
break;
case spv::OpTypePointer:
type = module->get_def(type.word(3));
break;
case spv::OpTypeImage: {
auto dim = type.word(3);
auto arrayed = type.word(5);
auto msaa = type.word(6);
uint32_t bits = 0;
switch (GetFundamentalType(module, type.word(2))) {
case FORMAT_TYPE_FLOAT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_FLOAT;
break;
case FORMAT_TYPE_UINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_UINT;
break;
case FORMAT_TYPE_SINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_SINT;
break;
default:
break;
}
switch (dim) {
case spv::Dim1D:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D;
return bits;
case spv::Dim2D:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D;
return bits;
case spv::Dim3D:
bits |= DESCRIPTOR_REQ_VIEW_TYPE_3D;
return bits;
case spv::DimCube:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE;
return bits;
case spv::DimSubpassData:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
return bits;
default: // buffer, etc.
return bits;
}
}
default:
return 0;
}
}
}
// For given pipelineLayout verify that the set_layout_node at slot.first
// has the requested binding at slot.second and return ptr to that binding
static VkDescriptorSetLayoutBinding const *GetDescriptorBinding(PIPELINE_LAYOUT_NODE const *pipelineLayout,
descriptor_slot_t slot) {
if (!pipelineLayout) return nullptr;
if (slot.first >= pipelineLayout->set_layouts.size()) return nullptr;
return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second);
}
static void ProcessExecutionModes(shader_module const *src, spirv_inst_iter entrypoint, PIPELINE_STATE *pipeline) {
auto entrypoint_id = entrypoint.word(2);
bool is_point_mode = false;
for (auto insn : *src) {
if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) {
switch (insn.word(2)) {
case spv::ExecutionModePointMode:
// In tessellation shaders, PointMode is separate and trumps the tessellation topology.
is_point_mode = true;
break;
case spv::ExecutionModeOutputPoints:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
break;
case spv::ExecutionModeIsolines:
case spv::ExecutionModeOutputLineStrip:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
break;
case spv::ExecutionModeTriangles:
case spv::ExecutionModeQuads:
case spv::ExecutionModeOutputTriangleStrip:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
break;
}
}
}
if (is_point_mode) pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
}
// If PointList topology is specified in the pipeline, verify that a shader geometry stage writes PointSize
// o If there is only a vertex shader : gl_PointSize must be written when using points
// o If there is a geometry or tessellation shader:
// - If shaderTessellationAndGeometryPointSize feature is enabled:
// * gl_PointSize must be written in the final geometry stage
// - If shaderTessellationAndGeometryPointSize feature is disabled:
// * gl_PointSize must NOT be written and a default of 1.0 is assumed
bool CoreChecks::ValidatePointListShaderState(const layer_data *dev_data, const PIPELINE_STATE *pipeline, shader_module const *src,
spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) {
if (pipeline->topology_at_rasterizer != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
return false;
}
bool pointsize_written = false;
bool skip = false;
// Search for PointSize built-in decorations
std::vector<uint32_t> pointsize_builtin_offsets;
spirv_inst_iter insn = entrypoint;
while (!pointsize_written && (insn.opcode() != spv::OpFunction)) {
if (insn.opcode() == spv::OpMemberDecorate) {
if (insn.word(3) == spv::DecorationBuiltIn) {
if (insn.word(4) == spv::BuiltInPointSize) {
pointsize_written = IsPointSizeWritten(src, insn, entrypoint);
}
}
} else if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationBuiltIn) {
if (insn.word(3) == spv::BuiltInPointSize) {
pointsize_written = IsPointSizeWritten(src, insn, entrypoint);
}
}
}
insn++;
}
if ((stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || stage == VK_SHADER_STAGE_GEOMETRY_BIT) &&
!GetEnabledFeatures()->core.shaderTessellationAndGeometryPointSize) {
if (pointsize_written) {
skip |= log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_PointSizeBuiltInOverSpecified,
"Pipeline topology is set to POINT_LIST and geometry or tessellation shaders write PointSize which "
"is prohibited when the shaderTessellationAndGeometryPointSize feature is not enabled.");
}
} else if (!pointsize_written) {
skip |=
log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_MissingPointSizeBuiltIn,
"Pipeline topology is set to POINT_LIST, but PointSize is not written to in the shader corresponding to %s.",
string_VkShaderStageFlagBits(stage));
}
return skip;
}
bool CoreChecks::ValidatePipelineShaderStage(layer_data *dev_data, VkPipelineShaderStageCreateInfo const *pStage,
PIPELINE_STATE *pipeline, shader_module const **out_module,
spirv_inst_iter *out_entrypoint, bool check_point_size) {
bool skip = false;
auto module = *out_module = GetShaderModuleState(pStage->module);
auto report_data = GetReportData();
if (!module->has_valid_spirv) return false;
// Find the entrypoint
auto entrypoint = *out_entrypoint = FindEntrypoint(module, pStage->pName, pStage->stage);
if (entrypoint == module->end()) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s..",
pStage->pName, string_VkShaderStageFlagBits(pStage->stage))) {
return true; // no point continuing beyond here, any analysis is just going to be garbage.
}
}
// Mark accessible ids
auto accessible_ids = MarkAccessibleIds(module, entrypoint);
ProcessExecutionModes(module, entrypoint, pipeline);
// Validate descriptor set layout against what the entrypoint actually uses
bool has_writable_descriptor = false;
auto descriptor_uses = CollectInterfaceByDescriptorSlot(report_data, module, accessible_ids, &has_writable_descriptor);
// Validate shader capabilities against enabled device features
skip |= ValidateShaderCapabilities(dev_data, module, pStage->stage, has_writable_descriptor);
skip |= ValidateShaderStageInputOutputLimits(dev_data, module, pStage, pipeline);
skip |= ValidateSpecializationOffsets(report_data, pStage);
skip |= ValidatePushConstantUsage(report_data, pipeline->pipeline_layout.push_constant_ranges.get(), module, accessible_ids,
pStage->stage);
if (check_point_size && !pipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) {
skip |= ValidatePointListShaderState(dev_data, pipeline, module, entrypoint, pStage->stage);
}
// Validate descriptor use
for (auto use : descriptor_uses) {
// While validating shaders capture which slots are used by the pipeline
auto &reqs = pipeline->active_slots[use.first.first][use.first.second];
reqs = descriptor_req(reqs | DescriptorTypeToReqs(module, use.second.type_id));
// Verify given pipelineLayout has requested setLayout with requested binding
const auto &binding = GetDescriptorBinding(&pipeline->pipeline_layout, use.first);
unsigned required_descriptor_count;
std::set<uint32_t> descriptor_types = TypeToDescriptorTypeSet(module, use.second.type_id, required_descriptor_count);
if (!binding) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_MissingDescriptor,
"Shader uses descriptor slot %u.%u (expected `%s`) but not declared in pipeline layout",
use.first.first, use.first.second, string_descriptorTypes(descriptor_types).c_str());
} else if (~binding->stageFlags & pStage->stage) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0,
kVUID_Core_Shader_DescriptorNotAccessibleFromStage,
"Shader uses descriptor slot %u.%u but descriptor not accessible from stage %s", use.first.first,
use.first.second, string_VkShaderStageFlagBits(pStage->stage));
} else if (descriptor_types.find(binding->descriptorType) == descriptor_types.end()) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_DescriptorTypeMismatch,
"Type mismatch on descriptor slot %u.%u (expected `%s`) but descriptor of type %s", use.first.first,
use.first.second, string_descriptorTypes(descriptor_types).c_str(),
string_VkDescriptorType(binding->descriptorType));
} else if (binding->descriptorCount < required_descriptor_count) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_DescriptorTypeMismatch,
"Shader expects at least %u descriptors for binding %u.%u but only %u provided",
required_descriptor_count, use.first.first, use.first.second, binding->descriptorCount);
}
}
// Validate use of input attachments against subpass structure
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
auto input_attachment_uses = CollectInterfaceByInputAttachmentIndex(module, accessible_ids);
auto rpci = pipeline->rp_state->createInfo.ptr();
auto subpass = pipeline->graphicsPipelineCI.subpass;
for (auto use : input_attachment_uses) {
auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments;
auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount)
? input_attachments[use.first].attachment
: VK_ATTACHMENT_UNUSED;
if (index == VK_ATTACHMENT_UNUSED) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_MissingInputAttachment,
"Shader consumes input attachment index %d but not provided in subpass", use.first);
} else if (!(GetFormatType(rpci->pAttachments[index].format) & GetFundamentalType(module, use.second.type_id))) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
kVUID_Core_Shader_InputAttachmentTypeMismatch,
"Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first,
string_VkFormat(rpci->pAttachments[index].format), DescribeType(module, use.second.type_id).c_str());
}
}
}
return skip;
}
static bool ValidateInterfaceBetweenStages(debug_report_data const *report_data, shader_module const *producer,
spirv_inst_iter producer_entrypoint, shader_stage_attributes const *producer_stage,
shader_module const *consumer, spirv_inst_iter consumer_entrypoint,
shader_stage_attributes const *consumer_stage) {
bool skip = false;
auto outputs =
CollectInterfaceByLocation(producer, producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output);
auto inputs = CollectInterfaceByLocation(consumer, consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input);
auto a_it = outputs.begin();
auto b_it = inputs.begin();
// Maps sorted by key (location); walk them together to find mismatches
while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) {
bool a_at_end = outputs.size() == 0 || a_it == outputs.end();
bool b_at_end = inputs.size() == 0 || b_it == inputs.end();
auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first;
auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first;
if (b_at_end || ((!a_at_end) && (a_first < b_first))) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed,
"%s writes to output location %u.%u which is not consumed by %s", producer_stage->name, a_first.first,
a_first.second, consumer_stage->name);
a_it++;
} else if (a_at_end || a_first > b_first) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(consumer->vk_shader_module), kVUID_Core_Shader_InputNotProduced,
"%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first,
b_first.second, producer_stage->name);
b_it++;
} else {
// subtleties of arrayed interfaces:
// - if is_patch, then the member is not arrayed, even though the interface may be.
// - if is_block_member, then the extra array level of an arrayed interface is not
// expressed in the member type -- it's expressed in the block type.
if (!TypesMatch(producer, consumer, a_it->second.type_id, b_it->second.type_id,
producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member,
consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member, true)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Type mismatch on location %u.%u: '%s' vs '%s'", a_first.first, a_first.second,
DescribeType(producer, a_it->second.type_id).c_str(),
DescribeType(consumer, b_it->second.type_id).c_str());
}
if (a_it->second.is_patch != b_it->second.is_patch) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: is per-%s in %s stage but per-%s in %s stage",
a_first.first, a_first.second, a_it->second.is_patch ? "patch" : "vertex", producer_stage->name,
b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name);
}
if (a_it->second.is_relaxed_precision != b_it->second.is_relaxed_precision) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: %s and %s stages differ in precision", a_first.first,
a_first.second, producer_stage->name, consumer_stage->name);
}
a_it++;
b_it++;
}
}
return skip;
}
static inline uint32_t DetermineFinalGeomStage(PIPELINE_STATE *pipeline, VkGraphicsPipelineCreateInfo *pCreateInfo) {
uint32_t stage_mask = 0;
if (pipeline->topology_at_rasterizer == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
stage_mask |= pCreateInfo->pStages[i].stage;
}
// Determine which shader in which PointSize should be written (the final geometry stage)
if (stage_mask & VK_SHADER_STAGE_MESH_BIT_NV) {
stage_mask = VK_SHADER_STAGE_MESH_BIT_NV;
} else if (stage_mask & VK_SHADER_STAGE_GEOMETRY_BIT) {
stage_mask = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (stage_mask & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
stage_mask = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else if (stage_mask & VK_SHADER_STAGE_VERTEX_BIT) {
stage_mask = VK_SHADER_STAGE_VERTEX_BIT;
}
}
return stage_mask;
}
// Validate that the shaders used by the given pipeline and store the active_slots
// that are actually used by the pipeline into pPipeline->active_slots
bool CoreChecks::ValidateAndCapturePipelineShaderState(layer_data *dev_data, PIPELINE_STATE *pipeline) {
auto pCreateInfo = pipeline->graphicsPipelineCI.ptr();
int vertex_stage = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int fragment_stage = GetShaderStageId(VK_SHADER_STAGE_FRAGMENT_BIT);
auto report_data = GetReportData();
shader_module const *shaders[32];
memset(shaders, 0, sizeof(shaders));
spirv_inst_iter entrypoints[32];
memset(entrypoints, 0, sizeof(entrypoints));
bool skip = false;
uint32_t pointlist_stage_mask = DetermineFinalGeomStage(pipeline, pCreateInfo);
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
auto pStage = &pCreateInfo->pStages[i];
auto stage_id = GetShaderStageId(pStage->stage);
skip |= ValidatePipelineShaderStage(dev_data, pStage, pipeline, &shaders[stage_id], &entrypoints[stage_id],
(pointlist_stage_mask == pStage->stage));
}
// if the shader stages are no good individually, cross-stage validation is pointless.
if (skip) return true;
auto vi = pCreateInfo->pVertexInputState;
if (vi) {
skip |= ValidateViConsistency(report_data, vi);
}
if (shaders[vertex_stage] && shaders[vertex_stage]->has_valid_spirv) {
skip |= ValidateViAgainstVsInputs(report_data, vi, shaders[vertex_stage], entrypoints[vertex_stage]);
}
int producer = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int consumer = GetShaderStageId(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
while (!shaders[producer] && producer != fragment_stage) {
producer++;
consumer++;
}
for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) {
assert(shaders[producer]);
if (shaders[consumer]) {
if (shaders[consumer]->has_valid_spirv && shaders[producer]->has_valid_spirv) {
skip |= ValidateInterfaceBetweenStages(report_data, shaders[producer], entrypoints[producer],
&shader_stage_attribs[producer], shaders[consumer], entrypoints[consumer],
&shader_stage_attribs[consumer]);
}
producer = consumer;
}
}
if (shaders[fragment_stage] && shaders[fragment_stage]->has_valid_spirv) {
skip |= ValidateFsOutputsAgainstRenderPass(report_data, shaders[fragment_stage], entrypoints[fragment_stage], pipeline,
pCreateInfo->subpass);
}
return skip;
}
bool CoreChecks::ValidateComputePipeline(layer_data *dev_data, PIPELINE_STATE *pipeline) {
auto pCreateInfo = pipeline->computePipelineCI.ptr();
shader_module const *module;
spirv_inst_iter entrypoint;
return ValidatePipelineShaderStage(dev_data, &pCreateInfo->stage, pipeline, &module, &entrypoint, false);
}
bool CoreChecks::ValidateRayTracingPipelineNV(layer_data *dev_data, PIPELINE_STATE *pipeline) {
auto pCreateInfo = pipeline->raytracingPipelineCI.ptr();
shader_module const *module;
spirv_inst_iter entrypoint;
return ValidatePipelineShaderStage(dev_data, pCreateInfo->pStages, pipeline, &module, &entrypoint, false);
}
uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); }
static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) {
while ((pCreateInfo = (VkShaderModuleCreateInfo const *)pCreateInfo->pNext) != nullptr) {
if (pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT)
return (ValidationCache *)((VkShaderModuleValidationCacheCreateInfoEXT const *)pCreateInfo)->validationCache;
}
return nullptr;
}
bool CoreChecks::PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) {
layer_data *device_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
bool skip = false;
spv_result_t spv_valid = SPV_SUCCESS;
if (GetDisables()->shader_validation) {
return false;
}
auto have_glsl_shader = GetDeviceExtensions()->vk_nv_glsl_shader;
if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) {
skip |= log_msg(device_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
"VUID-VkShaderModuleCreateInfo-pCode-01376",
"SPIR-V module not valid: Codesize must be a multiple of 4 but is " PRINTF_SIZE_T_SPECIFIER ".",
pCreateInfo->codeSize);
} else {
auto cache = GetValidationCacheInfo(pCreateInfo);
uint32_t hash = 0;
if (cache) {
hash = ValidationCache::MakeShaderHash(pCreateInfo);
if (cache->Contains(hash)) return false;
}
// Use SPIRV-Tools validator to try and catch any issues with the module itself
spv_target_env spirv_environment = SPV_ENV_VULKAN_1_0;
if (GetApiVersion() >= VK_API_VERSION_1_1) {
spirv_environment = SPV_ENV_VULKAN_1_1;
}
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)};
spv_diagnostic diag = nullptr;
spv_validator_options options = spvValidatorOptionsCreate();
if (GetDeviceExtensions()->vk_khr_relaxed_block_layout) {
spvValidatorOptionsSetRelaxBlockLayout(options, true);
}
if (GetDeviceExtensions()->vk_ext_scalar_block_layout &&
GetEnabledFeatures()->scalar_block_layout_features.scalarBlockLayout == VK_TRUE) {
spvValidatorOptionsSetScalarBlockLayout(options, true);
}
spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) {
skip |= log_msg(device_data->report_data,
spv_valid == SPV_WARNING ? VK_DEBUG_REPORT_WARNING_BIT_EXT : VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_InconsistentSpirv,
"SPIR-V module not valid: %s", diag && diag->error ? diag->error : "(no error text)");
}
} else {
if (cache) {
cache->Insert(hash);
}
}
spvValidatorOptionsDestroy(options);
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
return skip;
}
void CoreChecks::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
void *csm_state_data) {
layer_data *device_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
if (GetEnables()->gpu_validation) {
GpuPreCallCreateShaderModule(device_data, pCreateInfo, pAllocator, pShaderModule, &csm_state->unique_shader_id,
&csm_state->instrumented_create_info, &csm_state->instrumented_pgm);
}
}
void CoreChecks::PostCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
VkResult result, void *csm_state_data) {
layer_data *device_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (VK_SUCCESS != result) return;
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
spv_target_env spirv_environment = ((GetApiVersion() >= VK_API_VERSION_1_1) ? SPV_ENV_VULKAN_1_1 : SPV_ENV_VULKAN_1_0);
bool is_spirv = (pCreateInfo->pCode[0] == spv::MagicNumber);
std::unique_ptr<shader_module> new_shader_module(
is_spirv ? new shader_module(pCreateInfo, *pShaderModule, spirv_environment, csm_state->unique_shader_id)
: new shader_module());
device_data->shaderModuleMap[*pShaderModule] = std::move(new_shader_module);
}