// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_AARCH32_OPERANDS_AARCH32_H_
#define VIXL_AARCH32_OPERANDS_AARCH32_H_
#include "aarch32/instructions-aarch32.h"
namespace vixl {
namespace aarch32 {
// Operand represents generic set of arguments to pass to an instruction.
//
// Usage: <instr> <Rd> , <Operand>
//
// where <instr> is the instruction to use (e.g., Mov(), Rsb(), etc.)
// <Rd> is the destination register
// <Operand> is the rest of the arguments to the instruction
//
// <Operand> can be one of:
//
// #<imm> - an unsigned 32-bit immediate value
// <Rm>, <shift> <#amount> - immediate shifted register
// <Rm>, <shift> <Rs> - register shifted register
//
class Operand {
public:
// { #<immediate> }
// where <immediate> is uint32_t.
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
Operand(uint32_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoReg),
shift_(LSL),
amount_(0),
rs_(NoReg) {}
Operand(int32_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoReg),
shift_(LSL),
amount_(0),
rs_(NoReg) {}
// rm
// where rm is the base register
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
Operand(Register rm) // NOLINT(runtime/explicit)
: imm_(0),
rm_(rm),
shift_(LSL),
amount_(0),
rs_(NoReg) {
VIXL_ASSERT(rm_.IsValid());
}
// rm, <shift>
// where rm is the base register, and
// <shift> is RRX
Operand(Register rm, Shift shift)
: imm_(0), rm_(rm), shift_(shift), amount_(0), rs_(NoReg) {
VIXL_ASSERT(rm_.IsValid());
VIXL_ASSERT(shift_.IsRRX());
}
// rm, <shift> #<amount>
// where rm is the base register, and
// <shift> is one of {LSL, LSR, ASR, ROR}, and
// <amount> is uint6_t.
Operand(Register rm, Shift shift, uint32_t amount)
: imm_(0), rm_(rm), shift_(shift), amount_(amount), rs_(NoReg) {
VIXL_ASSERT(rm_.IsValid());
VIXL_ASSERT(!shift_.IsRRX());
#ifdef VIXL_DEBUG
switch (shift_.GetType()) {
case LSL:
VIXL_ASSERT(amount_ <= 31);
break;
case ROR:
VIXL_ASSERT(amount_ <= 31);
break;
case LSR:
case ASR:
VIXL_ASSERT(amount_ <= 32);
break;
case RRX:
default:
VIXL_UNREACHABLE();
break;
}
#endif
}
// rm, <shift> rs
// where rm is the base register, and
// <shift> is one of {LSL, LSR, ASR, ROR}, and
// rs is the shifted register
Operand(Register rm, Shift shift, Register rs)
: imm_(0), rm_(rm), shift_(shift), amount_(0), rs_(rs) {
VIXL_ASSERT(rm_.IsValid() && rs_.IsValid());
VIXL_ASSERT(!shift_.IsRRX());
}
// Factory methods creating operands from any integral or pointer type. The
// source must fit into 32 bits.
template <typename T>
static Operand From(T immediate) {
#if __cplusplus >= 201103L
VIXL_STATIC_ASSERT_MESSAGE(std::is_integral<T>::value,
"An integral type is required to build an "
"immediate operand.");
#endif
// Allow both a signed or unsigned 32 bit integer to be passed, but store it
// as a uint32_t. The signedness information will be lost. We have to add a
// static_cast to make sure the compiler does not complain about implicit 64
// to 32 narrowing. It's perfectly acceptable for the user to pass a 64-bit
// value, as long as it can be encoded in 32 bits.
VIXL_ASSERT(IsInt32(immediate) || IsUint32(immediate));
return Operand(static_cast<uint32_t>(immediate));
}
template <typename T>
static Operand From(T* address) {
uintptr_t address_as_integral = reinterpret_cast<uintptr_t>(address);
VIXL_ASSERT(IsUint32(address_as_integral));
return Operand(static_cast<uint32_t>(address_as_integral));
}
bool IsImmediate() const { return !rm_.IsValid(); }
bool IsPlainRegister() const {
return rm_.IsValid() && !shift_.IsRRX() && !rs_.IsValid() && (amount_ == 0);
}
bool IsImmediateShiftedRegister() const {
return rm_.IsValid() && !rs_.IsValid();
}
bool IsRegisterShiftedRegister() const {
return rm_.IsValid() && rs_.IsValid();
}
uint32_t GetImmediate() const {
VIXL_ASSERT(IsImmediate());
return imm_;
}
int32_t GetSignedImmediate() const {
VIXL_ASSERT(IsImmediate());
int32_t result;
memcpy(&result, &imm_, sizeof(result));
return result;
}
Register GetBaseRegister() const {
VIXL_ASSERT(IsImmediateShiftedRegister() || IsRegisterShiftedRegister());
return rm_;
}
Shift GetShift() const {
VIXL_ASSERT(IsImmediateShiftedRegister() || IsRegisterShiftedRegister());
return shift_;
}
uint32_t GetShiftAmount() const {
VIXL_ASSERT(IsImmediateShiftedRegister());
return amount_;
}
Register GetShiftRegister() const {
VIXL_ASSERT(IsRegisterShiftedRegister());
return rs_;
}
uint32_t GetTypeEncodingValue() const {
return shift_.IsRRX() ? kRRXEncodedValue : shift_.GetValue();
}
private:
// Forbid implicitely creating operands around types that cannot be encoded
// into a uint32_t without loss.
#if __cplusplus >= 201103L
Operand(int64_t) = delete; // NOLINT(runtime/explicit)
Operand(uint64_t) = delete; // NOLINT(runtime/explicit)
Operand(float) = delete; // NOLINT(runtime/explicit)
Operand(double) = delete; // NOLINT(runtime/explicit)
#else
VIXL_NO_RETURN_IN_DEBUG_MODE Operand(int64_t) { // NOLINT(runtime/explicit)
VIXL_UNREACHABLE();
}
VIXL_NO_RETURN_IN_DEBUG_MODE Operand(uint64_t) { // NOLINT(runtime/explicit)
VIXL_UNREACHABLE();
}
VIXL_NO_RETURN_IN_DEBUG_MODE Operand(float) { // NOLINT
VIXL_UNREACHABLE();
}
VIXL_NO_RETURN_IN_DEBUG_MODE Operand(double) { // NOLINT
VIXL_UNREACHABLE();
}
#endif
uint32_t imm_;
Register rm_;
Shift shift_;
uint32_t amount_;
Register rs_;
};
std::ostream& operator<<(std::ostream& os, const Operand& operand);
class NeonImmediate {
template <typename T>
struct DataTypeIdentity {
T data_type_;
};
public:
// { #<immediate> }
// where <immediate> is 32 bit number.
// This is allowed to be an implicit constructor because NeonImmediate is
// a wrapper class that doesn't normally perform any type conversion.
NeonImmediate(uint32_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
immediate_type_(I32) {}
NeonImmediate(int immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
immediate_type_(I32) {}
// { #<immediate> }
// where <immediate> is a 64 bit number
// This is allowed to be an implicit constructor because NeonImmediate is
// a wrapper class that doesn't normally perform any type conversion.
NeonImmediate(int64_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
immediate_type_(I64) {}
NeonImmediate(uint64_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
immediate_type_(I64) {}
// { #<immediate> }
// where <immediate> is a non zero floating point number which can be encoded
// as an 8 bit floating point (checked by the constructor).
// This is allowed to be an implicit constructor because NeonImmediate is
// a wrapper class that doesn't normally perform any type conversion.
NeonImmediate(float immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
immediate_type_(F32) {}
NeonImmediate(double immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
immediate_type_(F64) {}
NeonImmediate(const NeonImmediate& src)
: imm_(src.imm_), immediate_type_(src.immediate_type_) {}
template <typename T>
T GetImmediate() const {
return GetImmediate(DataTypeIdentity<T>());
}
template <typename T>
T GetImmediate(const DataTypeIdentity<T>&) const {
VIXL_ASSERT(sizeof(T) <= sizeof(uint32_t));
VIXL_ASSERT(CanConvert<T>());
if (immediate_type_.Is(I64))
return static_cast<T>(imm_.u64_ & static_cast<T>(-1));
if (immediate_type_.Is(F64) || immediate_type_.Is(F32)) return 0;
return static_cast<T>(imm_.u32_ & static_cast<T>(-1));
}
uint64_t GetImmediate(const DataTypeIdentity<uint64_t>&) const {
VIXL_ASSERT(CanConvert<uint64_t>());
if (immediate_type_.Is(I32)) return imm_.u32_;
if (immediate_type_.Is(F64) || immediate_type_.Is(F32)) return 0;
return imm_.u64_;
}
float GetImmediate(const DataTypeIdentity<float>&) const {
VIXL_ASSERT(CanConvert<float>());
if (immediate_type_.Is(F64)) return static_cast<float>(imm_.d_);
return imm_.f_;
}
double GetImmediate(const DataTypeIdentity<double>&) const {
VIXL_ASSERT(CanConvert<double>());
if (immediate_type_.Is(F32)) return static_cast<double>(imm_.f_);
return imm_.d_;
}
bool IsInteger32() const { return immediate_type_.Is(I32); }
bool IsInteger64() const { return immediate_type_.Is(I64); }
bool IsInteger() const { return IsInteger32() | IsInteger64(); }
bool IsFloat() const { return immediate_type_.Is(F32); }
bool IsDouble() const { return immediate_type_.Is(F64); }
bool IsFloatZero() const {
if (immediate_type_.Is(F32)) return imm_.f_ == 0.0f;
if (immediate_type_.Is(F64)) return imm_.d_ == 0.0;
return false;
}
template <typename T>
bool CanConvert() const {
return CanConvert(DataTypeIdentity<T>());
}
template <typename T>
bool CanConvert(const DataTypeIdentity<T>&) const {
VIXL_ASSERT(sizeof(T) < sizeof(uint32_t));
return (immediate_type_.Is(I32) && ((imm_.u32_ >> (8 * sizeof(T))) == 0)) ||
(immediate_type_.Is(I64) && ((imm_.u64_ >> (8 * sizeof(T))) == 0)) ||
(immediate_type_.Is(F32) && (imm_.f_ == 0.0f)) ||
(immediate_type_.Is(F64) && (imm_.d_ == 0.0));
}
bool CanConvert(const DataTypeIdentity<uint32_t>&) const {
return immediate_type_.Is(I32) ||
(immediate_type_.Is(I64) && ((imm_.u64_ >> 32) == 0)) ||
(immediate_type_.Is(F32) && (imm_.f_ == 0.0f)) ||
(immediate_type_.Is(F64) && (imm_.d_ == 0.0));
}
bool CanConvert(const DataTypeIdentity<uint64_t>&) const {
return IsInteger() || CanConvert<uint32_t>();
}
bool CanConvert(const DataTypeIdentity<float>&) const {
return IsFloat() || IsDouble();
}
bool CanConvert(const DataTypeIdentity<double>&) const {
return IsFloat() || IsDouble();
}
friend std::ostream& operator<<(std::ostream& os,
const NeonImmediate& operand);
private:
union NeonImmediateType {
uint64_t u64_;
double d_;
uint32_t u32_;
float f_;
NeonImmediateType(uint64_t u) : u64_(u) {}
NeonImmediateType(int64_t u) : u64_(u) {}
NeonImmediateType(uint32_t u) : u32_(u) {}
NeonImmediateType(int32_t u) : u32_(u) {}
NeonImmediateType(double d) : d_(d) {}
NeonImmediateType(float f) : f_(f) {}
NeonImmediateType(const NeonImmediateType& ref) : u64_(ref.u64_) {}
} imm_;
DataType immediate_type_;
};
std::ostream& operator<<(std::ostream& os, const NeonImmediate& operand);
class NeonOperand {
public:
NeonOperand(int32_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoDReg) {}
NeonOperand(uint32_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoDReg) {}
NeonOperand(int64_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoDReg) {}
NeonOperand(uint64_t immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoDReg) {}
NeonOperand(float immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoDReg) {}
NeonOperand(double immediate) // NOLINT(runtime/explicit)
: imm_(immediate),
rm_(NoDReg) {}
NeonOperand(const NeonImmediate& imm) // NOLINT(runtime/explicit)
: imm_(imm),
rm_(NoDReg) {}
NeonOperand(const VRegister& rm) // NOLINT(runtime/explicit)
: imm_(0),
rm_(rm) {
VIXL_ASSERT(rm_.IsValid());
}
bool IsImmediate() const { return !rm_.IsValid(); }
bool IsRegister() const { return rm_.IsValid(); }
bool IsFloatZero() const {
VIXL_ASSERT(IsImmediate());
return imm_.IsFloatZero();
}
const NeonImmediate& GetNeonImmediate() const { return imm_; }
VRegister GetRegister() const {
VIXL_ASSERT(IsRegister());
return rm_;
}
protected:
NeonImmediate imm_;
VRegister rm_;
};
std::ostream& operator<<(std::ostream& os, const NeonOperand& operand);
// SOperand represents either an immediate or a SRegister.
class SOperand : public NeonOperand {
public:
// #<immediate>
// where <immediate> is 32bit int
// This is allowed to be an implicit constructor because SOperand is
// a wrapper class that doesn't normally perform any type conversion.
SOperand(int32_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
SOperand(uint32_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
// #<immediate>
// where <immediate> is 32bit float
SOperand(float immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
// where <immediate> is 64bit float
SOperand(double immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
SOperand(const NeonImmediate& imm) // NOLINT(runtime/explicit)
: NeonOperand(imm) {}
// rm
// This is allowed to be an implicit constructor because SOperand is
// a wrapper class that doesn't normally perform any type conversion.
SOperand(SRegister rm) // NOLINT(runtime/explicit)
: NeonOperand(rm) {}
SRegister GetRegister() const {
VIXL_ASSERT(IsRegister() && (rm_.GetType() == CPURegister::kSRegister));
return SRegister(rm_.GetCode());
}
};
// DOperand represents either an immediate or a DRegister.
std::ostream& operator<<(std::ostream& os, const SOperand& operand);
class DOperand : public NeonOperand {
public:
// #<immediate>
// where <immediate> is uint32_t.
// This is allowed to be an implicit constructor because DOperand is
// a wrapper class that doesn't normally perform any type conversion.
DOperand(int32_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
DOperand(uint32_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
DOperand(int64_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
DOperand(uint64_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
// #<immediate>
// where <immediate> is a non zero floating point number which can be encoded
// as an 8 bit floating point (checked by the constructor).
// This is allowed to be an implicit constructor because DOperand is
// a wrapper class that doesn't normally perform any type conversion.
DOperand(float immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
DOperand(double immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
DOperand(const NeonImmediate& imm) // NOLINT(runtime/explicit)
: NeonOperand(imm) {}
// rm
// This is allowed to be an implicit constructor because DOperand is
// a wrapper class that doesn't normally perform any type conversion.
DOperand(DRegister rm) // NOLINT(runtime/explicit)
: NeonOperand(rm) {}
DRegister GetRegister() const {
VIXL_ASSERT(IsRegister() && (rm_.GetType() == CPURegister::kDRegister));
return DRegister(rm_.GetCode());
}
};
std::ostream& operator<<(std::ostream& os, const DOperand& operand);
// QOperand represents either an immediate or a QRegister.
class QOperand : public NeonOperand {
public:
// #<immediate>
// where <immediate> is uint32_t.
// This is allowed to be an implicit constructor because QOperand is
// a wrapper class that doesn't normally perform any type conversion.
QOperand(int32_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
QOperand(uint32_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
QOperand(int64_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
QOperand(uint64_t immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
QOperand(float immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
QOperand(double immediate) // NOLINT(runtime/explicit)
: NeonOperand(immediate) {}
QOperand(const NeonImmediate& imm) // NOLINT(runtime/explicit)
: NeonOperand(imm) {}
// rm
// This is allowed to be an implicit constructor because QOperand is
// a wrapper class that doesn't normally perform any type conversion.
QOperand(QRegister rm) // NOLINT(runtime/explicit)
: NeonOperand(rm) {
VIXL_ASSERT(rm_.IsValid());
}
QRegister GetRegister() const {
VIXL_ASSERT(IsRegister() && (rm_.GetType() == CPURegister::kQRegister));
return QRegister(rm_.GetCode());
}
};
std::ostream& operator<<(std::ostream& os, const QOperand& operand);
class ImmediateVFP : public EncodingValue {
template <typename T>
struct FloatType {
typedef T base_type;
};
public:
explicit ImmediateVFP(const NeonImmediate& neon_imm) {
if (neon_imm.IsFloat()) {
const float imm = neon_imm.GetImmediate<float>();
if (VFP::IsImmFP32(imm)) {
SetEncodingValue(VFP::FP32ToImm8(imm));
}
} else if (neon_imm.IsDouble()) {
const double imm = neon_imm.GetImmediate<double>();
if (VFP::IsImmFP64(imm)) {
SetEncodingValue(VFP::FP64ToImm8(imm));
}
}
}
template <typename T>
static T Decode(uint32_t v) {
return Decode(v, FloatType<T>());
}
static float Decode(uint32_t imm8, const FloatType<float>&) {
return VFP::Imm8ToFP32(imm8);
}
static double Decode(uint32_t imm8, const FloatType<double>&) {
return VFP::Imm8ToFP64(imm8);
}
};
class ImmediateVbic : public EncodingValueAndImmediate {
public:
ImmediateVbic(DataType dt, const NeonImmediate& neon_imm);
static DataType DecodeDt(uint32_t cmode);
static NeonImmediate DecodeImmediate(uint32_t cmode, uint32_t immediate);
};
class ImmediateVand : public ImmediateVbic {
public:
ImmediateVand(DataType dt, const NeonImmediate neon_imm)
: ImmediateVbic(dt, neon_imm) {
if (IsValid()) {
SetEncodedImmediate(~GetEncodedImmediate() & 0xff);
}
}
};
class ImmediateVmov : public EncodingValueAndImmediate {
public:
ImmediateVmov(DataType dt, const NeonImmediate& neon_imm);
static DataType DecodeDt(uint32_t cmode);
static NeonImmediate DecodeImmediate(uint32_t cmode, uint32_t immediate);
};
class ImmediateVmvn : public EncodingValueAndImmediate {
public:
ImmediateVmvn(DataType dt, const NeonImmediate& neon_imm);
static DataType DecodeDt(uint32_t cmode);
static NeonImmediate DecodeImmediate(uint32_t cmode, uint32_t immediate);
};
class ImmediateVorr : public EncodingValueAndImmediate {
public:
ImmediateVorr(DataType dt, const NeonImmediate& neon_imm);
static DataType DecodeDt(uint32_t cmode);
static NeonImmediate DecodeImmediate(uint32_t cmode, uint32_t immediate);
};
class ImmediateVorn : public ImmediateVorr {
public:
ImmediateVorn(DataType dt, const NeonImmediate& neon_imm)
: ImmediateVorr(dt, neon_imm) {
if (IsValid()) {
SetEncodedImmediate(~GetEncodedImmediate() & 0xff);
}
}
};
// MemOperand represents the addressing mode of a load or store instruction.
//
// Usage: <instr> <Rt> , <MemOperand>
//
// where <instr> is the instruction to use (e.g., Ldr(), Str(), etc.),
// <Rt> is general purpose register to be transferred,
// <MemOperand> is the rest of the arguments to the instruction
//
// <MemOperand> can be in one of 3 addressing modes:
//
// [ <Rn>, <offset> ] == offset addressing
// [ <Rn>, <offset> ]! == pre-indexed addressing
// [ <Rn> ], <offset> == post-indexed addressing
//
// where <offset> can be one of:
// - an immediate constant, such as <imm8>, <imm12>
// - an index register <Rm>
// - a shifted index register <Rm>, <shift> #<amount>
//
// The index register may have an associated {+/-} sign,
// which if ommitted, defaults to + .
//
// We have two constructors for the offset:
//
// One with a signed value offset parameter. The value of sign_ is
// "sign_of(constructor's offset parameter) and the value of offset_ is
// "constructor's offset parameter".
//
// The other with a sign and a positive value offset parameters. The value of
// sign_ is "constructor's sign parameter" and the value of offset_ is
// "constructor's sign parameter * constructor's offset parameter".
//
// The value of offset_ reflects the effective offset. For an offset_ of 0,
// sign_ can be positive or negative. Otherwise, sign_ always agrees with
// the sign of offset_.
class MemOperand {
public:
// rn
// where rn is the general purpose base register only
explicit MemOperand(Register rn, AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(plus),
rm_(NoReg),
shift_(LSL),
shift_amount_(0),
addrmode_(addrmode | kMemOperandRegisterOnly) {
VIXL_ASSERT(rn_.IsValid());
}
// rn, #<imm>
// where rn is the general purpose base register,
// <imm> is a 32-bit offset to add to rn
//
// Note: if rn is PC, then this form is equivalent to a "label"
// Note: the second constructor allow minus zero (-0).
MemOperand(Register rn, int32_t offset, AddrMode addrmode = Offset)
: rn_(rn),
offset_(offset),
sign_((offset < 0) ? minus : plus),
rm_(NoReg),
shift_(LSL),
shift_amount_(0),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid());
}
MemOperand(Register rn, Sign sign, int32_t offset, AddrMode addrmode = Offset)
: rn_(rn),
offset_(sign.IsPlus() ? offset : -offset),
sign_(sign),
rm_(NoReg),
shift_(LSL),
shift_amount_(0),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid());
// With this constructor, the sign must only be specified by "sign".
VIXL_ASSERT(offset >= 0);
}
// rn, {+/-}rm
// where rn is the general purpose base register,
// {+/-} is the sign of the index register,
// rm is the general purpose index register,
MemOperand(Register rn, Sign sign, Register rm, AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(sign),
rm_(rm),
shift_(LSL),
shift_amount_(0),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid() && rm_.IsValid());
}
// rn, rm
// where rn is the general purpose base register,
// rm is the general purpose index register,
MemOperand(Register rn, Register rm, AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(plus),
rm_(rm),
shift_(LSL),
shift_amount_(0),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid() && rm_.IsValid());
}
// rn, {+/-}rm, <shift>
// where rn is the general purpose base register,
// {+/-} is the sign of the index register,
// rm is the general purpose index register,
// <shift> is RRX, applied to value from rm
MemOperand(Register rn,
Sign sign,
Register rm,
Shift shift,
AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(sign),
rm_(rm),
shift_(shift),
shift_amount_(0),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid() && rm_.IsValid());
VIXL_ASSERT(shift_.IsRRX());
}
// rn, rm, <shift>
// where rn is the general purpose base register,
// rm is the general purpose index register,
// <shift> is RRX, applied to value from rm
MemOperand(Register rn, Register rm, Shift shift, AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(plus),
rm_(rm),
shift_(shift),
shift_amount_(0),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid() && rm_.IsValid());
VIXL_ASSERT(shift_.IsRRX());
}
// rn, {+/-}rm, <shift> #<amount>
// where rn is the general purpose base register,
// {+/-} is the sign of the index register,
// rm is the general purpose index register,
// <shift> is one of {LSL, LSR, ASR, ROR}, applied to value from rm
// <shift_amount> is optional size to apply to value from rm
MemOperand(Register rn,
Sign sign,
Register rm,
Shift shift,
uint32_t shift_amount,
AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(sign),
rm_(rm),
shift_(shift),
shift_amount_(shift_amount),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid() && rm_.IsValid());
CheckShift();
}
// rn, rm, <shift> #<amount>
// where rn is the general purpose base register,
// rm is the general purpose index register,
// <shift> is one of {LSL, LSR, ASR, ROR}, applied to value from rm
// <shift_amount> is optional size to apply to value from rm
MemOperand(Register rn,
Register rm,
Shift shift,
uint32_t shift_amount,
AddrMode addrmode = Offset)
: rn_(rn),
offset_(0),
sign_(plus),
rm_(rm),
shift_(shift),
shift_amount_(shift_amount),
addrmode_(addrmode) {
VIXL_ASSERT(rn_.IsValid() && rm_.IsValid());
CheckShift();
}
Register GetBaseRegister() const { return rn_; }
int32_t GetOffsetImmediate() const { return offset_; }
bool IsOffsetImmediateWithinRange(int min,
int max,
int multiple_of = 1) const {
return (offset_ >= min) && (offset_ <= max) &&
((offset_ % multiple_of) == 0);
}
Sign GetSign() const { return sign_; }
Register GetOffsetRegister() const { return rm_; }
Shift GetShift() const { return shift_; }
unsigned GetShiftAmount() const { return shift_amount_; }
AddrMode GetAddrMode() const {
return static_cast<AddrMode>(addrmode_ & kMemOperandAddrModeMask);
}
bool IsRegisterOnly() const {
return (addrmode_ & kMemOperandRegisterOnly) != 0;
}
bool IsImmediate() const { return !rm_.IsValid(); }
bool IsImmediateZero() const { return !rm_.IsValid() && (offset_ == 0); }
bool IsPlainRegister() const {
return rm_.IsValid() && shift_.IsLSL() && (shift_amount_ == 0);
}
bool IsShiftedRegister() const { return rm_.IsValid(); }
bool IsImmediateOffset() const {
return (GetAddrMode() == Offset) && !rm_.IsValid();
}
bool IsImmediateZeroOffset() const {
return (GetAddrMode() == Offset) && !rm_.IsValid() && (offset_ == 0);
}
bool IsRegisterOffset() const {
return (GetAddrMode() == Offset) && rm_.IsValid() && shift_.IsLSL() &&
(shift_amount_ == 0);
}
bool IsShiftedRegisterOffset() const {
return (GetAddrMode() == Offset) && rm_.IsValid();
}
uint32_t GetTypeEncodingValue() const {
return shift_.IsRRX() ? kRRXEncodedValue : shift_.GetValue();
}
bool IsOffset() const { return GetAddrMode() == Offset; }
bool IsPreIndex() const { return GetAddrMode() == PreIndex; }
bool IsPostIndex() const { return GetAddrMode() == PostIndex; }
bool IsShiftValid() const { return shift_.IsValidAmount(shift_amount_); }
private:
static const int kMemOperandRegisterOnly = 0x1000;
static const int kMemOperandAddrModeMask = 0xfff;
void CheckShift() {
#ifdef VIXL_DEBUG
// Disallow any zero shift other than RRX #0 and LSL #0 .
if ((shift_amount_ == 0) && shift_.IsRRX()) return;
if ((shift_amount_ == 0) && !shift_.IsLSL()) {
VIXL_ABORT_WITH_MSG(
"A shift by 0 is only accepted in "
"the case of lsl and will be treated as "
"no shift.\n");
}
switch (shift_.GetType()) {
case LSL:
VIXL_ASSERT(shift_amount_ <= 31);
break;
case ROR:
VIXL_ASSERT(shift_amount_ <= 31);
break;
case LSR:
case ASR:
VIXL_ASSERT(shift_amount_ <= 32);
break;
case RRX:
default:
VIXL_UNREACHABLE();
break;
}
#endif
}
Register rn_;
int32_t offset_;
Sign sign_;
Register rm_;
Shift shift_;
uint32_t shift_amount_;
uint32_t addrmode_;
};
std::ostream& operator<<(std::ostream& os, const MemOperand& operand);
class AlignedMemOperand : public MemOperand {
public:
AlignedMemOperand(Register rn, Alignment align, AddrMode addrmode = Offset)
: MemOperand(rn, addrmode), align_(align) {
VIXL_ASSERT(addrmode != PreIndex);
}
AlignedMemOperand(Register rn,
Alignment align,
Register rm,
AddrMode addrmode)
: MemOperand(rn, rm, addrmode), align_(align) {
VIXL_ASSERT(addrmode != PreIndex);
}
Alignment GetAlignment() const { return align_; }
private:
Alignment align_;
};
std::ostream& operator<<(std::ostream& os, const AlignedMemOperand& operand);
} // namespace aarch32
} // namespace vixl
#endif // VIXL_AARCH32_OPERANDS_AARCH32_H_