// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/zone/accounting-allocator.h"
#include <cstdlib>
#if V8_LIBC_BIONIC
#include <malloc.h> // NOLINT
#endif
#include "src/allocation.h"
namespace v8 {
namespace internal {
AccountingAllocator::AccountingAllocator() : unused_segments_mutex_() {
static const size_t kDefaultBucketMaxSize = 5;
memory_pressure_level_.SetValue(MemoryPressureLevel::kNone);
std::fill(unused_segments_heads_, unused_segments_heads_ + kNumberBuckets,
nullptr);
std::fill(unused_segments_sizes_, unused_segments_sizes_ + kNumberBuckets, 0);
std::fill(unused_segments_max_sizes_,
unused_segments_max_sizes_ + kNumberBuckets, kDefaultBucketMaxSize);
}
AccountingAllocator::~AccountingAllocator() { ClearPool(); }
void AccountingAllocator::MemoryPressureNotification(
MemoryPressureLevel level) {
memory_pressure_level_.SetValue(level);
if (level != MemoryPressureLevel::kNone) {
ClearPool();
}
}
void AccountingAllocator::ConfigureSegmentPool(const size_t max_pool_size) {
// The sum of the bytes of one segment of each size.
static const size_t full_size = (size_t(1) << (kMaxSegmentSizePower + 1)) -
(size_t(1) << kMinSegmentSizePower);
size_t fits_fully = max_pool_size / full_size;
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
// We assume few zones (less than 'fits_fully' many) to be active at the same
// time. When zones grow regularly, they will keep requesting segments of
// increasing size each time. Therefore we try to get as many segments with an
// equal number of segments of each size as possible.
// The remaining space is used to make more room for an 'incomplete set' of
// segments beginning with the smaller ones.
// This code will work best if the max_pool_size is a multiple of the
// full_size. If max_pool_size is no sum of segment sizes the actual pool
// size might be smaller then max_pool_size. Note that no actual memory gets
// wasted though.
// TODO(heimbuef): Determine better strategy generating a segment sizes
// distribution that is closer to real/benchmark usecases and uses the given
// max_pool_size more efficiently.
size_t total_size = fits_fully * full_size;
for (size_t power = 0; power < kNumberBuckets; ++power) {
if (total_size + (size_t(1) << (power + kMinSegmentSizePower)) <=
max_pool_size) {
unused_segments_max_sizes_[power] = fits_fully + 1;
total_size += size_t(1) << power;
} else {
unused_segments_max_sizes_[power] = fits_fully;
}
}
}
Segment* AccountingAllocator::GetSegment(size_t bytes) {
Segment* result = GetSegmentFromPool(bytes);
if (result == nullptr) {
result = AllocateSegment(bytes);
if (result != nullptr) {
result->Initialize(bytes);
}
}
return result;
}
Segment* AccountingAllocator::AllocateSegment(size_t bytes) {
void* memory = AllocWithRetry(bytes);
if (memory != nullptr) {
base::AtomicWord current =
base::Relaxed_AtomicIncrement(¤t_memory_usage_, bytes);
base::AtomicWord max = base::Relaxed_Load(&max_memory_usage_);
while (current > max) {
max = base::Relaxed_CompareAndSwap(&max_memory_usage_, max, current);
}
}
return reinterpret_cast<Segment*>(memory);
}
void AccountingAllocator::ReturnSegment(Segment* segment) {
segment->ZapContents();
if (memory_pressure_level_.Value() != MemoryPressureLevel::kNone) {
FreeSegment(segment);
} else if (!AddSegmentToPool(segment)) {
FreeSegment(segment);
}
}
void AccountingAllocator::FreeSegment(Segment* memory) {
base::Relaxed_AtomicIncrement(¤t_memory_usage_,
-static_cast<base::AtomicWord>(memory->size()));
memory->ZapHeader();
free(memory);
}
size_t AccountingAllocator::GetCurrentMemoryUsage() const {
return base::Relaxed_Load(¤t_memory_usage_);
}
size_t AccountingAllocator::GetMaxMemoryUsage() const {
return base::Relaxed_Load(&max_memory_usage_);
}
size_t AccountingAllocator::GetCurrentPoolSize() const {
return base::Relaxed_Load(¤t_pool_size_);
}
Segment* AccountingAllocator::GetSegmentFromPool(size_t requested_size) {
if (requested_size > (1 << kMaxSegmentSizePower)) {
return nullptr;
}
size_t power = kMinSegmentSizePower;
while (requested_size > (static_cast<size_t>(1) << power)) power++;
DCHECK_GE(power, kMinSegmentSizePower + 0);
power -= kMinSegmentSizePower;
Segment* segment;
{
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
segment = unused_segments_heads_[power];
if (segment != nullptr) {
unused_segments_heads_[power] = segment->next();
segment->set_next(nullptr);
unused_segments_sizes_[power]--;
base::Relaxed_AtomicIncrement(
¤t_pool_size_, -static_cast<base::AtomicWord>(segment->size()));
}
}
if (segment) {
DCHECK_GE(segment->size(), requested_size);
}
return segment;
}
bool AccountingAllocator::AddSegmentToPool(Segment* segment) {
size_t size = segment->size();
if (size >= (1 << (kMaxSegmentSizePower + 1))) return false;
if (size < (1 << kMinSegmentSizePower)) return false;
size_t power = kMaxSegmentSizePower;
while (size < (static_cast<size_t>(1) << power)) power--;
DCHECK_GE(power, kMinSegmentSizePower + 0);
power -= kMinSegmentSizePower;
{
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
if (unused_segments_sizes_[power] >= unused_segments_max_sizes_[power]) {
return false;
}
segment->set_next(unused_segments_heads_[power]);
unused_segments_heads_[power] = segment;
base::Relaxed_AtomicIncrement(¤t_pool_size_, size);
unused_segments_sizes_[power]++;
}
return true;
}
void AccountingAllocator::ClearPool() {
base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
for (size_t power = 0; power <= kMaxSegmentSizePower - kMinSegmentSizePower;
power++) {
Segment* current = unused_segments_heads_[power];
while (current) {
Segment* next = current->next();
FreeSegment(current);
current = next;
}
unused_segments_heads_[power] = nullptr;
}
}
} // namespace internal
} // namespace v8