// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/profiler/profile-generator.h"
#include "src/base/adapters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/global-handles.h"
#include "src/objects-inl.h"
#include "src/profiler/cpu-profiler.h"
#include "src/profiler/profile-generator-inl.h"
#include "src/tracing/trace-event.h"
#include "src/tracing/traced-value.h"
#include "src/unicode.h"
namespace v8 {
namespace internal {
void SourcePositionTable::SetPosition(int pc_offset, int line) {
DCHECK_GE(pc_offset, 0);
DCHECK_GT(line, 0); // The 1-based number of the source line.
// Check that we are inserting in ascending order, so that the vector remains
// sorted.
DCHECK(pc_offsets_to_lines_.empty() ||
pc_offsets_to_lines_.back().pc_offset < pc_offset);
if (pc_offsets_to_lines_.empty() ||
pc_offsets_to_lines_.back().line_number != line) {
pc_offsets_to_lines_.push_back({pc_offset, line});
}
}
int SourcePositionTable::GetSourceLineNumber(int pc_offset) const {
if (pc_offsets_to_lines_.empty()) {
return v8::CpuProfileNode::kNoLineNumberInfo;
}
auto it =
std::upper_bound(pc_offsets_to_lines_.begin(), pc_offsets_to_lines_.end(),
PCOffsetAndLineNumber{pc_offset, 0});
if (it != pc_offsets_to_lines_.begin()) --it;
return it->line_number;
}
const char* const CodeEntry::kWasmResourceNamePrefix = "wasm ";
const char* const CodeEntry::kEmptyResourceName = "";
const char* const CodeEntry::kEmptyBailoutReason = "";
const char* const CodeEntry::kNoDeoptReason = "";
const char* const CodeEntry::kProgramEntryName = "(program)";
const char* const CodeEntry::kIdleEntryName = "(idle)";
const char* const CodeEntry::kGarbageCollectorEntryName = "(garbage collector)";
const char* const CodeEntry::kUnresolvedFunctionName = "(unresolved function)";
base::LazyDynamicInstance<CodeEntry, CodeEntry::ProgramEntryCreateTrait>::type
CodeEntry::kProgramEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
base::LazyDynamicInstance<CodeEntry, CodeEntry::IdleEntryCreateTrait>::type
CodeEntry::kIdleEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
base::LazyDynamicInstance<CodeEntry, CodeEntry::GCEntryCreateTrait>::type
CodeEntry::kGCEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
base::LazyDynamicInstance<CodeEntry,
CodeEntry::UnresolvedEntryCreateTrait>::type
CodeEntry::kUnresolvedEntry = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
CodeEntry* CodeEntry::ProgramEntryCreateTrait::Create() {
return new CodeEntry(Logger::FUNCTION_TAG, CodeEntry::kProgramEntryName);
}
CodeEntry* CodeEntry::IdleEntryCreateTrait::Create() {
return new CodeEntry(Logger::FUNCTION_TAG, CodeEntry::kIdleEntryName);
}
CodeEntry* CodeEntry::GCEntryCreateTrait::Create() {
return new CodeEntry(Logger::BUILTIN_TAG,
CodeEntry::kGarbageCollectorEntryName);
}
CodeEntry* CodeEntry::UnresolvedEntryCreateTrait::Create() {
return new CodeEntry(Logger::FUNCTION_TAG,
CodeEntry::kUnresolvedFunctionName);
}
uint32_t CodeEntry::GetHash() const {
uint32_t hash = ComputeIntegerHash(tag());
if (script_id_ != v8::UnboundScript::kNoScriptId) {
hash ^= ComputeIntegerHash(static_cast<uint32_t>(script_id_));
hash ^= ComputeIntegerHash(static_cast<uint32_t>(position_));
} else {
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)));
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)));
hash ^= ComputeIntegerHash(line_number_);
}
return hash;
}
bool CodeEntry::IsSameFunctionAs(const CodeEntry* entry) const {
if (this == entry) return true;
if (script_id_ != v8::UnboundScript::kNoScriptId) {
return script_id_ == entry->script_id_ && position_ == entry->position_;
}
return name_ == entry->name_ && resource_name_ == entry->resource_name_ &&
line_number_ == entry->line_number_;
}
void CodeEntry::SetBuiltinId(Builtins::Name id) {
bit_field_ = TagField::update(bit_field_, CodeEventListener::BUILTIN_TAG);
bit_field_ = BuiltinIdField::update(bit_field_, id);
}
int CodeEntry::GetSourceLine(int pc_offset) const {
if (line_info_) return line_info_->GetSourceLineNumber(pc_offset);
return v8::CpuProfileNode::kNoLineNumberInfo;
}
void CodeEntry::AddInlineStack(
int pc_offset, std::vector<std::unique_ptr<CodeEntry>> inline_stack) {
EnsureRareData()->inline_locations_.insert(
std::make_pair(pc_offset, std::move(inline_stack)));
}
const std::vector<std::unique_ptr<CodeEntry>>* CodeEntry::GetInlineStack(
int pc_offset) const {
if (!rare_data_) return nullptr;
auto it = rare_data_->inline_locations_.find(pc_offset);
return it != rare_data_->inline_locations_.end() ? &it->second : nullptr;
}
void CodeEntry::set_deopt_info(
const char* deopt_reason, int deopt_id,
std::vector<CpuProfileDeoptFrame> inlined_frames) {
DCHECK(!has_deopt_info());
RareData* rare_data = EnsureRareData();
rare_data->deopt_reason_ = deopt_reason;
rare_data->deopt_id_ = deopt_id;
rare_data->deopt_inlined_frames_ = std::move(inlined_frames);
}
void CodeEntry::FillFunctionInfo(SharedFunctionInfo* shared) {
if (!shared->script()->IsScript()) return;
Script* script = Script::cast(shared->script());
set_script_id(script->id());
set_position(shared->StartPosition());
if (shared->optimization_disabled()) {
set_bailout_reason(GetBailoutReason(shared->disable_optimization_reason()));
}
}
CpuProfileDeoptInfo CodeEntry::GetDeoptInfo() {
DCHECK(has_deopt_info());
CpuProfileDeoptInfo info;
info.deopt_reason = rare_data_->deopt_reason_;
DCHECK_NE(kNoDeoptimizationId, rare_data_->deopt_id_);
if (rare_data_->deopt_inlined_frames_.empty()) {
info.stack.push_back(CpuProfileDeoptFrame(
{script_id_, static_cast<size_t>(std::max(0, position()))}));
} else {
info.stack = rare_data_->deopt_inlined_frames_;
}
return info;
}
CodeEntry::RareData* CodeEntry::EnsureRareData() {
if (!rare_data_) {
rare_data_.reset(new RareData());
}
return rare_data_.get();
}
void ProfileNode::CollectDeoptInfo(CodeEntry* entry) {
deopt_infos_.push_back(entry->GetDeoptInfo());
entry->clear_deopt_info();
}
ProfileNode* ProfileNode::FindChild(CodeEntry* entry, int line_number) {
auto map_entry = children_.find({entry, line_number});
return map_entry != children_.end() ? map_entry->second : nullptr;
}
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry, int line_number) {
auto map_entry = children_.find({entry, line_number});
if (map_entry == children_.end()) {
ProfileNode* node = new ProfileNode(tree_, entry, this, line_number);
children_[{entry, line_number}] = node;
children_list_.push_back(node);
return node;
} else {
return map_entry->second;
}
}
void ProfileNode::IncrementLineTicks(int src_line) {
if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) return;
// Increment a hit counter of a certain source line.
// Add a new source line if not found.
auto map_entry = line_ticks_.find(src_line);
if (map_entry == line_ticks_.end()) {
line_ticks_[src_line] = 1;
} else {
line_ticks_[src_line]++;
}
}
bool ProfileNode::GetLineTicks(v8::CpuProfileNode::LineTick* entries,
unsigned int length) const {
if (entries == nullptr || length == 0) return false;
unsigned line_count = static_cast<unsigned>(line_ticks_.size());
if (line_count == 0) return true;
if (length < line_count) return false;
v8::CpuProfileNode::LineTick* entry = entries;
for (auto p = line_ticks_.begin(); p != line_ticks_.end(); p++, entry++) {
entry->line = p->first;
entry->hit_count = p->second;
}
return true;
}
void ProfileNode::Print(int indent) {
int line_number = line_number_ != 0 ? line_number_ : entry_->line_number();
base::OS::Print("%5u %*s %s:%d %d #%d", self_ticks_, indent, "",
entry_->name(), line_number, entry_->script_id(), id());
if (entry_->resource_name()[0] != '\0')
base::OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
base::OS::Print("\n");
for (size_t i = 0; i < deopt_infos_.size(); ++i) {
CpuProfileDeoptInfo& info = deopt_infos_[i];
base::OS::Print("%*s;;; deopted at script_id: %d position: %" PRIuS
" with reason '%s'.\n",
indent + 10, "", info.stack[0].script_id,
info.stack[0].position, info.deopt_reason);
for (size_t index = 1; index < info.stack.size(); ++index) {
base::OS::Print("%*s;;; Inline point: script_id %d position: %" PRIuS
".\n",
indent + 10, "", info.stack[index].script_id,
info.stack[index].position);
}
}
const char* bailout_reason = entry_->bailout_reason();
if (bailout_reason != GetBailoutReason(BailoutReason::kNoReason) &&
bailout_reason != CodeEntry::kEmptyBailoutReason) {
base::OS::Print("%*s bailed out due to '%s'\n", indent + 10, "",
bailout_reason);
}
for (auto child : children_) {
child.second->Print(indent + 2);
}
}
class DeleteNodesCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
delete node;
}
void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};
ProfileTree::ProfileTree(Isolate* isolate)
: root_entry_(CodeEventListener::FUNCTION_TAG, "(root)"),
next_node_id_(1),
root_(new ProfileNode(this, &root_entry_, nullptr)),
isolate_(isolate),
next_function_id_(1) {}
ProfileTree::~ProfileTree() {
DeleteNodesCallback cb;
TraverseDepthFirst(&cb);
}
unsigned ProfileTree::GetFunctionId(const ProfileNode* node) {
CodeEntry* code_entry = node->entry();
auto map_entry = function_ids_.find(code_entry);
if (map_entry == function_ids_.end()) {
return function_ids_[code_entry] = next_function_id_++;
}
return function_ids_[code_entry];
}
ProfileNode* ProfileTree::AddPathFromEnd(const std::vector<CodeEntry*>& path,
int src_line, bool update_stats) {
ProfileNode* node = root_;
CodeEntry* last_entry = nullptr;
for (auto it = path.rbegin(); it != path.rend(); ++it) {
if (*it == nullptr) continue;
last_entry = *it;
node = node->FindOrAddChild(*it, v8::CpuProfileNode::kNoLineNumberInfo);
}
if (last_entry && last_entry->has_deopt_info()) {
node->CollectDeoptInfo(last_entry);
}
if (update_stats) {
node->IncrementSelfTicks();
if (src_line != v8::CpuProfileNode::kNoLineNumberInfo) {
node->IncrementLineTicks(src_line);
}
}
return node;
}
ProfileNode* ProfileTree::AddPathFromEnd(const ProfileStackTrace& path,
int src_line, bool update_stats,
ProfilingMode mode) {
ProfileNode* node = root_;
CodeEntry* last_entry = nullptr;
int parent_line_number = v8::CpuProfileNode::kNoLineNumberInfo;
for (auto it = path.rbegin(); it != path.rend(); ++it) {
if ((*it).code_entry == nullptr) continue;
last_entry = (*it).code_entry;
node = node->FindOrAddChild((*it).code_entry, parent_line_number);
parent_line_number = mode == ProfilingMode::kCallerLineNumbers
? (*it).line_number
: v8::CpuProfileNode::kNoLineNumberInfo;
}
if (last_entry && last_entry->has_deopt_info()) {
node->CollectDeoptInfo(last_entry);
}
if (update_stats) {
node->IncrementSelfTicks();
if (src_line != v8::CpuProfileNode::kNoLineNumberInfo) {
node->IncrementLineTicks(src_line);
}
}
return node;
}
class Position {
public:
explicit Position(ProfileNode* node)
: node(node), child_idx_(0) { }
V8_INLINE ProfileNode* current_child() {
return node->children()->at(child_idx_);
}
V8_INLINE bool has_current_child() {
return child_idx_ < static_cast<int>(node->children()->size());
}
V8_INLINE void next_child() { ++child_idx_; }
ProfileNode* node;
private:
int child_idx_;
};
// Non-recursive implementation of a depth-first post-order tree traversal.
template <typename Callback>
void ProfileTree::TraverseDepthFirst(Callback* callback) {
std::vector<Position> stack;
stack.emplace_back(root_);
while (stack.size() > 0) {
Position& current = stack.back();
if (current.has_current_child()) {
callback->BeforeTraversingChild(current.node, current.current_child());
stack.emplace_back(current.current_child());
} else {
callback->AfterAllChildrenTraversed(current.node);
if (stack.size() > 1) {
Position& parent = stack[stack.size() - 2];
callback->AfterChildTraversed(parent.node, current.node);
parent.next_child();
}
// Remove child from the stack.
stack.pop_back();
}
}
}
using v8::tracing::TracedValue;
std::atomic<uint32_t> CpuProfile::last_id_;
CpuProfile::CpuProfile(CpuProfiler* profiler, const char* title,
bool record_samples, ProfilingMode mode)
: title_(title),
record_samples_(record_samples),
mode_(mode),
start_time_(base::TimeTicks::HighResolutionNow()),
top_down_(profiler->isolate()),
profiler_(profiler),
streaming_next_sample_(0),
id_(++last_id_) {
auto value = TracedValue::Create();
value->SetDouble("startTime",
(start_time_ - base::TimeTicks()).InMicroseconds());
TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"),
"Profile", id_, "data", std::move(value));
}
void CpuProfile::AddPath(base::TimeTicks timestamp,
const ProfileStackTrace& path, int src_line,
bool update_stats) {
ProfileNode* top_frame_node =
top_down_.AddPathFromEnd(path, src_line, update_stats, mode_);
if (record_samples_ && !timestamp.IsNull()) {
timestamps_.push_back(timestamp);
samples_.push_back(top_frame_node);
}
const int kSamplesFlushCount = 100;
const int kNodesFlushCount = 10;
if (samples_.size() - streaming_next_sample_ >= kSamplesFlushCount ||
top_down_.pending_nodes_count() >= kNodesFlushCount) {
StreamPendingTraceEvents();
}
}
namespace {
void BuildNodeValue(const ProfileNode* node, TracedValue* value) {
const CodeEntry* entry = node->entry();
value->BeginDictionary("callFrame");
value->SetString("functionName", entry->name());
if (*entry->resource_name()) {
value->SetString("url", entry->resource_name());
}
value->SetInteger("scriptId", entry->script_id());
if (entry->line_number()) {
value->SetInteger("lineNumber", entry->line_number() - 1);
}
if (entry->column_number()) {
value->SetInteger("columnNumber", entry->column_number() - 1);
}
value->EndDictionary();
value->SetInteger("id", node->id());
if (node->parent()) {
value->SetInteger("parent", node->parent()->id());
}
const char* deopt_reason = entry->bailout_reason();
if (deopt_reason && deopt_reason[0] && strcmp(deopt_reason, "no reason")) {
value->SetString("deoptReason", deopt_reason);
}
}
} // namespace
void CpuProfile::StreamPendingTraceEvents() {
std::vector<const ProfileNode*> pending_nodes = top_down_.TakePendingNodes();
if (pending_nodes.empty() && samples_.empty()) return;
auto value = TracedValue::Create();
if (!pending_nodes.empty() || streaming_next_sample_ != samples_.size()) {
value->BeginDictionary("cpuProfile");
if (!pending_nodes.empty()) {
value->BeginArray("nodes");
for (auto node : pending_nodes) {
value->BeginDictionary();
BuildNodeValue(node, value.get());
value->EndDictionary();
}
value->EndArray();
}
if (streaming_next_sample_ != samples_.size()) {
value->BeginArray("samples");
for (size_t i = streaming_next_sample_; i < samples_.size(); ++i) {
value->AppendInteger(samples_[i]->id());
}
value->EndArray();
}
value->EndDictionary();
}
if (streaming_next_sample_ != samples_.size()) {
value->BeginArray("timeDeltas");
base::TimeTicks lastTimestamp =
streaming_next_sample_ ? timestamps_[streaming_next_sample_ - 1]
: start_time();
for (size_t i = streaming_next_sample_; i < timestamps_.size(); ++i) {
value->AppendInteger(
static_cast<int>((timestamps_[i] - lastTimestamp).InMicroseconds()));
lastTimestamp = timestamps_[i];
}
value->EndArray();
DCHECK_EQ(samples_.size(), timestamps_.size());
streaming_next_sample_ = samples_.size();
}
TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"),
"ProfileChunk", id_, "data", std::move(value));
}
void CpuProfile::FinishProfile() {
end_time_ = base::TimeTicks::HighResolutionNow();
StreamPendingTraceEvents();
auto value = TracedValue::Create();
value->SetDouble("endTime", (end_time_ - base::TimeTicks()).InMicroseconds());
TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"),
"ProfileChunk", id_, "data", std::move(value));
}
void CpuProfile::Print() {
base::OS::Print("[Top down]:\n");
top_down_.Print();
}
CodeMap::CodeMap() = default;
CodeMap::~CodeMap() {
// First clean the free list as it's otherwise impossible to tell
// the slot type.
unsigned free_slot = free_list_head_;
while (free_slot != kNoFreeSlot) {
unsigned next_slot = code_entries_[free_slot].next_free_slot;
code_entries_[free_slot].entry = nullptr;
free_slot = next_slot;
}
for (auto slot : code_entries_) delete slot.entry;
}
void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) {
ClearCodesInRange(addr, addr + size);
unsigned index = AddCodeEntry(addr, entry);
code_map_.emplace(addr, CodeEntryMapInfo{index, size});
DCHECK(entry->instruction_start() == kNullAddress ||
addr == entry->instruction_start());
}
void CodeMap::ClearCodesInRange(Address start, Address end) {
auto left = code_map_.upper_bound(start);
if (left != code_map_.begin()) {
--left;
if (left->first + left->second.size <= start) ++left;
}
auto right = left;
for (; right != code_map_.end() && right->first < end; ++right) {
if (!entry(right->second.index)->used()) {
DeleteCodeEntry(right->second.index);
}
}
code_map_.erase(left, right);
}
CodeEntry* CodeMap::FindEntry(Address addr) {
auto it = code_map_.upper_bound(addr);
if (it == code_map_.begin()) return nullptr;
--it;
Address start_address = it->first;
Address end_address = start_address + it->second.size;
CodeEntry* ret = addr < end_address ? entry(it->second.index) : nullptr;
if (ret && ret->instruction_start() != kNullAddress) {
DCHECK_EQ(start_address, ret->instruction_start());
DCHECK(addr >= start_address && addr < end_address);
}
return ret;
}
void CodeMap::MoveCode(Address from, Address to) {
if (from == to) return;
auto it = code_map_.find(from);
if (it == code_map_.end()) return;
CodeEntryMapInfo info = it->second;
code_map_.erase(it);
DCHECK(from + info.size <= to || to + info.size <= from);
ClearCodesInRange(to, to + info.size);
code_map_.emplace(to, info);
CodeEntry* entry = code_entries_[info.index].entry;
entry->set_instruction_start(to);
}
unsigned CodeMap::AddCodeEntry(Address start, CodeEntry* entry) {
if (free_list_head_ == kNoFreeSlot) {
code_entries_.push_back(CodeEntrySlotInfo{entry});
return static_cast<unsigned>(code_entries_.size()) - 1;
}
unsigned index = free_list_head_;
free_list_head_ = code_entries_[index].next_free_slot;
code_entries_[index].entry = entry;
return index;
}
void CodeMap::DeleteCodeEntry(unsigned index) {
delete code_entries_[index].entry;
code_entries_[index].next_free_slot = free_list_head_;
free_list_head_ = index;
}
void CodeMap::Print() {
for (const auto& pair : code_map_) {
base::OS::Print("%p %5d %s\n", reinterpret_cast<void*>(pair.first),
pair.second.size, entry(pair.second.index)->name());
}
}
CpuProfilesCollection::CpuProfilesCollection(Isolate* isolate)
: profiler_(nullptr), current_profiles_semaphore_(1) {}
bool CpuProfilesCollection::StartProfiling(const char* title,
bool record_samples,
ProfilingMode mode) {
current_profiles_semaphore_.Wait();
if (static_cast<int>(current_profiles_.size()) >= kMaxSimultaneousProfiles) {
current_profiles_semaphore_.Signal();
return false;
}
for (const std::unique_ptr<CpuProfile>& profile : current_profiles_) {
if (strcmp(profile->title(), title) == 0) {
// Ignore attempts to start profile with the same title...
current_profiles_semaphore_.Signal();
// ... though return true to force it collect a sample.
return true;
}
}
current_profiles_.emplace_back(
new CpuProfile(profiler_, title, record_samples, mode));
current_profiles_semaphore_.Signal();
return true;
}
CpuProfile* CpuProfilesCollection::StopProfiling(const char* title) {
const int title_len = StrLength(title);
CpuProfile* profile = nullptr;
current_profiles_semaphore_.Wait();
auto it =
std::find_if(current_profiles_.rbegin(), current_profiles_.rend(),
[&](const std::unique_ptr<CpuProfile>& p) {
return title_len == 0 || strcmp(p->title(), title) == 0;
});
if (it != current_profiles_.rend()) {
(*it)->FinishProfile();
profile = it->get();
finished_profiles_.push_back(std::move(*it));
// Convert reverse iterator to matching forward iterator.
current_profiles_.erase(--(it.base()));
}
current_profiles_semaphore_.Signal();
return profile;
}
bool CpuProfilesCollection::IsLastProfile(const char* title) {
// Called from VM thread, and only it can mutate the list,
// so no locking is needed here.
if (current_profiles_.size() != 1) return false;
return StrLength(title) == 0
|| strcmp(current_profiles_[0]->title(), title) == 0;
}
void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) {
// Called from VM thread for a completed profile.
auto pos =
std::find_if(finished_profiles_.begin(), finished_profiles_.end(),
[&](const std::unique_ptr<CpuProfile>& finished_profile) {
return finished_profile.get() == profile;
});
DCHECK(pos != finished_profiles_.end());
finished_profiles_.erase(pos);
}
void CpuProfilesCollection::AddPathToCurrentProfiles(
base::TimeTicks timestamp, const ProfileStackTrace& path, int src_line,
bool update_stats) {
// As starting / stopping profiles is rare relatively to this
// method, we don't bother minimizing the duration of lock holding,
// e.g. copying contents of the list to a local vector.
current_profiles_semaphore_.Wait();
for (const std::unique_ptr<CpuProfile>& profile : current_profiles_) {
profile->AddPath(timestamp, path, src_line, update_stats);
}
current_profiles_semaphore_.Signal();
}
ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles)
: profiles_(profiles) {}
void ProfileGenerator::RecordTickSample(const TickSample& sample) {
ProfileStackTrace stack_trace;
// Conservatively reserve space for stack frames + pc + function + vm-state.
// There could in fact be more of them because of inlined entries.
stack_trace.reserve(sample.frames_count + 3);
// The ProfileNode knows nothing about all versions of generated code for
// the same JS function. The line number information associated with
// the latest version of generated code is used to find a source line number
// for a JS function. Then, the detected source line is passed to
// ProfileNode to increase the tick count for this source line.
const int no_line_info = v8::CpuProfileNode::kNoLineNumberInfo;
int src_line = no_line_info;
bool src_line_not_found = true;
if (sample.pc != nullptr) {
if (sample.has_external_callback && sample.state == EXTERNAL) {
// Don't use PC when in external callback code, as it can point
// inside a callback's code, and we will erroneously report
// that a callback calls itself.
stack_trace.push_back(
{FindEntry(reinterpret_cast<Address>(sample.external_callback_entry)),
no_line_info});
} else {
Address attributed_pc = reinterpret_cast<Address>(sample.pc);
CodeEntry* pc_entry = FindEntry(attributed_pc);
// If there is no pc_entry, we're likely in native code. Find out if the
// top of the stack (the return address) was pointing inside a JS
// function, meaning that we have encountered a frameless invocation.
if (!pc_entry && !sample.has_external_callback) {
attributed_pc = reinterpret_cast<Address>(sample.tos);
pc_entry = FindEntry(attributed_pc);
}
// If pc is in the function code before it set up stack frame or after the
// frame was destroyed, SafeStackFrameIterator incorrectly thinks that
// ebp contains the return address of the current function and skips the
// caller's frame. Check for this case and just skip such samples.
if (pc_entry) {
int pc_offset =
static_cast<int>(attributed_pc - pc_entry->instruction_start());
// TODO(petermarshall): pc_offset can still be negative in some cases.
src_line = pc_entry->GetSourceLine(pc_offset);
if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) {
src_line = pc_entry->line_number();
}
src_line_not_found = false;
stack_trace.push_back({pc_entry, src_line});
if (pc_entry->builtin_id() == Builtins::kFunctionPrototypeApply ||
pc_entry->builtin_id() == Builtins::kFunctionPrototypeCall) {
// When current function is either the Function.prototype.apply or the
// Function.prototype.call builtin the top frame is either frame of
// the calling JS function or internal frame.
// In the latter case we know the caller for sure but in the
// former case we don't so we simply replace the frame with
// 'unresolved' entry.
if (!sample.has_external_callback) {
stack_trace.push_back(
{CodeEntry::unresolved_entry(), no_line_info});
}
}
}
}
for (unsigned i = 0; i < sample.frames_count; ++i) {
Address stack_pos = reinterpret_cast<Address>(sample.stack[i]);
CodeEntry* entry = FindEntry(stack_pos);
int line_number = no_line_info;
if (entry) {
// Find out if the entry has an inlining stack associated.
int pc_offset =
static_cast<int>(stack_pos - entry->instruction_start());
// TODO(petermarshall): pc_offset can still be negative in some cases.
const std::vector<std::unique_ptr<CodeEntry>>* inline_stack =
entry->GetInlineStack(pc_offset);
if (inline_stack) {
std::transform(
inline_stack->rbegin(), inline_stack->rend(),
std::back_inserter(stack_trace),
[=](const std::unique_ptr<CodeEntry>& ptr) {
return CodeEntryAndLineNumber{ptr.get(), no_line_info};
});
}
// Skip unresolved frames (e.g. internal frame) and get source line of
// the first JS caller.
if (src_line_not_found) {
src_line = entry->GetSourceLine(pc_offset);
if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) {
src_line = entry->line_number();
}
src_line_not_found = false;
}
line_number = entry->GetSourceLine(pc_offset);
}
stack_trace.push_back({entry, line_number});
}
}
if (FLAG_prof_browser_mode) {
bool no_symbolized_entries = true;
for (auto e : stack_trace) {
if (e.code_entry != nullptr) {
no_symbolized_entries = false;
break;
}
}
// If no frames were symbolized, put the VM state entry in.
if (no_symbolized_entries) {
stack_trace.push_back({EntryForVMState(sample.state), no_line_info});
}
}
profiles_->AddPathToCurrentProfiles(sample.timestamp, stack_trace, src_line,
sample.update_stats);
}
CodeEntry* ProfileGenerator::EntryForVMState(StateTag tag) {
switch (tag) {
case GC:
return CodeEntry::gc_entry();
case JS:
case PARSER:
case COMPILER:
case BYTECODE_COMPILER:
// DOM events handlers are reported as OTHER / EXTERNAL entries.
// To avoid confusing people, let's put all these entries into
// one bucket.
case OTHER:
case EXTERNAL:
return CodeEntry::program_entry();
case IDLE:
return CodeEntry::idle_entry();
}
UNREACHABLE();
}
} // namespace internal
} // namespace v8