// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/api-arguments-inl.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/heap/heap-inl.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/objects/api-callbacks.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/mips/code-stubs-mips.h" // Cannot be the first include.
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Isolate* isolate = masm->isolate();
{
NoRootArrayScope no_root_array(masm);
// Registers:
// a0: entry address
// a1: function
// a2: receiver
// a3: argc
//
// Stack:
// 4 args slots
// args
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Save callee saved registers on the stack.
__ MultiPush(kCalleeSaved | ra.bit());
// Save callee-saved FPU registers.
__ MultiPushFPU(kCalleeSavedFPU);
// Set up the reserved register for 0.0.
__ Move(kDoubleRegZero, 0.0);
__ InitializeRootRegister();
}
// Load argv in s0 register.
int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
__ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
// We build an EntryFrame.
__ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used.
StackFrame::Type marker = type();
__ li(t2, Operand(StackFrame::TypeToMarker(marker)));
__ li(t1, Operand(StackFrame::TypeToMarker(marker)));
__ li(t0,
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate));
__ lw(t0, MemOperand(t0));
__ Push(t3, t2, t1, t0);
// Set up frame pointer for the frame to be pushed.
__ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
// Registers:
// a0: entry_address
// a1: function
// a2: receiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// caller fp |
// function slot | entry frame
// context slot |
// bad fp (0xFF...F) |
// callee saved registers + ra
// 4 args slots
// args
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp =
ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, isolate);
__ li(t1, js_entry_sp);
__ lw(t2, MemOperand(t1));
__ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
__ sw(fp, MemOperand(t1));
__ li(t0, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont);
__ nop(); // Branch delay slot nop.
__ bind(&non_outermost_js);
__ li(t0, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ push(t0);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ li(t0, ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, isolate));
__ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0.
__ LoadRoot(v0, Heap::kExceptionRootIndex);
__ b(&exit); // b exposes branch delay slot.
__ nop(); // Branch delay slot nop.
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bal(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Registers:
// a0: entry_address
// a1: function
// a2: receiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// handler frame
// entry frame
// callee saved registers + ra
// 4 args slots
// args
__ Call(EntryTrampoline(), RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // v0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(t1);
__ Branch(&non_outermost_js_2, ne, t1,
Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ li(t1, ExternalReference(js_entry_sp));
__ sw(zero_reg, MemOperand(t1));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(t1);
__ li(t0,
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate));
__ sw(t1, MemOperand(t0));
// Reset the stack to the callee saved registers.
__ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
// Restore callee-saved fpu registers.
__ MultiPopFPU(kCalleeSavedFPU);
// Restore callee saved registers from the stack.
__ MultiPop(kCalleeSaved | ra.bit());
// Return.
__ Jump(ra);
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// Make place for arguments to fit C calling convention. Most of the callers
// of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
// so they handle stack restoring and we don't have to do that here.
// Any caller of DirectCEntryStub::GenerateCall must take care of dropping
// kCArgsSlotsSize stack space after the call.
__ Subu(sp, sp, Operand(kCArgsSlotsSize));
// Place the return address on the stack, making the call
// GC safe. The RegExp backend also relies on this.
__ sw(ra, MemOperand(sp, kCArgsSlotsSize));
__ Call(t9); // Call the C++ function.
__ lw(t9, MemOperand(sp, kCArgsSlotsSize));
if (FLAG_debug_code && FLAG_enable_slow_asserts) {
// In case of an error the return address may point to a memory area
// filled with kZapValue by the GC.
// Dereference the address and check for this.
__ lw(t0, MemOperand(t9));
__ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, t0,
Operand(reinterpret_cast<uint32_t>(kZapValue)));
}
__ Jump(t9);
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
if (FLAG_embedded_builtins) {
if (masm->root_array_available() &&
isolate()->ShouldLoadConstantsFromRootList()) {
// This is basically an inlined version of Call(Handle<Code>) that loads
// the code object into kScratchReg instead of t9.
__ Move(t9, target);
__ IndirectLoadConstant(kScratchReg, GetCode());
__ Call(kScratchReg, Code::kHeaderSize - kHeapObjectTag);
return;
}
}
intptr_t loc =
reinterpret_cast<intptr_t>(GetCode().location());
__ Move(t9, target);
__ li(kScratchReg, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
__ Call(kScratchReg);
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != nullptr) {
tasm->push(ra);
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
tasm->pop(ra);
}
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != nullptr) {
ProfileEntryHookStub stub(masm->isolate());
__ push(ra);
__ CallStub(&stub);
__ pop(ra);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push ra" instruction, followed by a call.
// Note: on MIPS "push" is 2 instruction
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + (2 * kInstrSize);
// This should contain all kJSCallerSaved registers.
const RegList kSavedRegs =
kJSCallerSaved | // Caller saved registers.
s5.bit(); // Saved stack pointer.
// We also save ra, so the count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
// Save all caller-save registers as this may be called from anywhere.
__ MultiPush(kSavedRegs | ra.bit());
// Compute the function's address for the first argument.
__ Subu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is above the saved temporaries.
// Grab that for the second argument to the hook.
__ Addu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ mov(s5, sp);
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ And(sp, sp, Operand(-frame_alignment));
}
__ Subu(sp, sp, kCArgsSlotsSize);
#if defined(V8_HOST_ARCH_MIPS)
int32_t entry_hook =
reinterpret_cast<int32_t>(isolate()->function_entry_hook());
__ li(t9, Operand(entry_hook));
#else
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter.
__ li(a2, ExternalReference::isolate_address(isolate()));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ li(t9, ExternalReference::Create(&dispatcher,
ExternalReference::BUILTIN_CALL));
#endif
// Call C function through t9 to conform ABI for PIC.
__ Call(t9);
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ mov(sp, s5);
} else {
__ Addu(sp, sp, kCArgsSlotsSize);
}
// Also pop ra to get Ret(0).
__ MultiPop(kSavedRegs | ra.bit());
__ Ret();
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
int32_t stack_space_offset,
MemOperand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
DCHECK(function_address == a1 || function_address == a2);
Label profiler_disabled;
Label end_profiler_check;
__ li(t9, ExternalReference::is_profiling_address(isolate));
__ lb(t9, MemOperand(t9, 0));
__ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
// Additional parameter is the address of the actual callback.
__ li(t9, thunk_ref);
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
__ mov(t9, function_address);
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
__ li(s5, next_address);
__ lw(s0, MemOperand(s5, kNextOffset));
__ lw(s1, MemOperand(s5, kLimitOffset));
__ lw(s2, MemOperand(s5, kLevelOffset));
__ Addu(s2, s2, Operand(1));
__ sw(s2, MemOperand(s5, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, a0);
__ li(a0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_enter_external_function(), 1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, t9);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, a0);
__ li(a0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_leave_external_function(), 1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// Load value from ReturnValue.
__ lw(v0, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ sw(s0, MemOperand(s5, kNextOffset));
if (__ emit_debug_code()) {
__ lw(a1, MemOperand(s5, kLevelOffset));
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1,
Operand(s2));
}
__ Subu(s2, s2, Operand(1));
__ sw(s2, MemOperand(s5, kLevelOffset));
__ lw(kScratchReg, MemOperand(s5, kLimitOffset));
__ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg));
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_offset != kInvalidStackOffset) {
// ExitFrame contains four MIPS argument slots after DirectCEntryStub call
// so this must be accounted for.
__ lw(s0, MemOperand(sp, stack_space_offset + kCArgsSlotsSize));
} else {
__ li(s0, Operand(stack_space));
}
__ LeaveExitFrame(false, s0, NO_EMIT_RETURN,
stack_space_offset != kInvalidStackOffset);
// Check if the function scheduled an exception.
__ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
__ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate));
__ lw(t1, MemOperand(kScratchReg));
__ Branch(&promote_scheduled_exception, ne, t0, Operand(t1));
__ Ret();
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ sw(s1, MemOperand(s5, kLimitOffset));
__ mov(s0, v0);
__ mov(a0, v0);
__ PrepareCallCFunction(1, s1);
__ li(a0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
__ mov(v0, s0);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- t0 : call_data
// -- a2 : holder
// -- a1 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1)* 4] : first argument
// -- sp[argc * 4] : receiver
// -----------------------------------
Register call_data = t0;
Register holder = a2;
Register api_function_address = a1;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// call data.
__ Push(call_data);
Register scratch = call_data;
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
// Push return value and default return value.
__ Push(scratch, scratch);
__ li(scratch, ExternalReference::isolate_address(masm->isolate()));
// Push isolate and holder.
__ Push(scratch, holder);
// Prepare arguments.
__ mov(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(api_function_address != a0 && scratch != a0);
// a0 = FunctionCallbackInfo&
// Arguments is after the return address.
__ Addu(a0, sp, Operand(1 * kPointerSize));
// FunctionCallbackInfo::implicit_args_
__ sw(scratch, MemOperand(a0, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ Addu(kScratchReg, scratch,
Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ sw(kScratchReg, MemOperand(a0, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ li(kScratchReg, Operand(argc()));
__ sw(kScratchReg, MemOperand(a0, 2 * kPointerSize));
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
AllowExternalCallThatCantCauseGC scope(masm);
// Stores return the first js argument.
int return_value_offset = 2 + FCA::kReturnValueOffset;
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
const int stack_space = argc() + FCA::kArgsLength + 1;
// TODO(adamk): Why are we clobbering this immediately?
const int32_t stack_space_offset = kInvalidStackOffset;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_offset, return_value_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = t0;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = a2;
// Here and below +1 is for name() pushed after the args_ array.
typedef PropertyCallbackArguments PCA;
__ Subu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
__ sw(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
__ lw(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ sw(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ sw(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
__ sw(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
kPointerSize));
__ li(scratch, ExternalReference::isolate_address(isolate()));
__ sw(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
__ sw(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
// should_throw_on_error -> false
DCHECK_NULL(Smi::kZero);
__ sw(zero_reg,
MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
__ lw(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ sw(scratch, MemOperand(sp, 0 * kPointerSize));
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ mov(a0, sp); // a0 = Handle<Name>
__ Addu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_
const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ sw(a1, MemOperand(sp, 1 * kPointerSize));
__ Addu(a1, sp, Operand(1 * kPointerSize)); // a1 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
__ lw(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ lw(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, kInvalidStackOffset,
return_value_operand);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS