// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ic/stub-cache.h"
#include "src/ast/ast.h"
#include "src/base/bits.h"
#include "src/counters.h"
#include "src/heap/heap.h"
#include "src/ic/ic-inl.h"
namespace v8 {
namespace internal {
StubCache::StubCache(Isolate* isolate) : isolate_(isolate) {
// Ensure the nullptr (aka Smi::kZero) which StubCache::Get() returns
// when the entry is not found is not considered as a handler.
DCHECK(!IC::IsHandler(nullptr));
}
void StubCache::Initialize() {
DCHECK(base::bits::IsPowerOfTwo(kPrimaryTableSize));
DCHECK(base::bits::IsPowerOfTwo(kSecondaryTableSize));
Clear();
}
// Hash algorithm for the primary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kCacheIndexShift.
int StubCache::PrimaryOffset(Name* name, Map* map) {
STATIC_ASSERT(kCacheIndexShift == Name::kHashShift);
// Compute the hash of the name (use entire hash field).
DCHECK(name->HasHashCode());
uint32_t field = name->hash_field();
// Using only the low bits in 64-bit mode is unlikely to increase the
// risk of collision even if the heap is spread over an area larger than
// 4Gb (and not at all if it isn't).
uint32_t map_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
// Base the offset on a simple combination of name and map.
uint32_t key = map_low32bits + field;
return key & ((kPrimaryTableSize - 1) << kCacheIndexShift);
}
// Hash algorithm for the secondary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kCacheIndexShift.
int StubCache::SecondaryOffset(Name* name, int seed) {
// Use the seed from the primary cache in the secondary cache.
uint32_t name_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
uint32_t key = (seed - name_low32bits) + kSecondaryMagic;
return key & ((kSecondaryTableSize - 1) << kCacheIndexShift);
}
#ifdef DEBUG
namespace {
bool CommonStubCacheChecks(StubCache* stub_cache, Name* name, Map* map,
MaybeObject* handler) {
// Validate that the name and handler do not move on scavenge, and that we
// can use identity checks instead of structural equality checks.
DCHECK(!Heap::InNewSpace(name));
DCHECK(!Heap::InNewSpace(handler));
DCHECK(name->IsUniqueName());
DCHECK(name->HasHashCode());
if (handler) DCHECK(IC::IsHandler(handler));
return true;
}
} // namespace
#endif
MaybeObject* StubCache::Set(Name* name, Map* map, MaybeObject* handler) {
DCHECK(CommonStubCacheChecks(this, name, map, handler));
// Compute the primary entry.
int primary_offset = PrimaryOffset(name, map);
Entry* primary = entry(primary_, primary_offset);
MaybeObject* old_handler = primary->value;
// If the primary entry has useful data in it, we retire it to the
// secondary cache before overwriting it.
if (old_handler != MaybeObject::FromObject(
isolate_->builtins()->builtin(Builtins::kIllegal))) {
Map* old_map = primary->map;
int seed = PrimaryOffset(primary->key, old_map);
int secondary_offset = SecondaryOffset(primary->key, seed);
Entry* secondary = entry(secondary_, secondary_offset);
*secondary = *primary;
}
// Update primary cache.
primary->key = name;
primary->value = handler;
primary->map = map;
isolate()->counters()->megamorphic_stub_cache_updates()->Increment();
return handler;
}
MaybeObject* StubCache::Get(Name* name, Map* map) {
DCHECK(CommonStubCacheChecks(this, name, map, nullptr));
int primary_offset = PrimaryOffset(name, map);
Entry* primary = entry(primary_, primary_offset);
if (primary->key == name && primary->map == map) {
return primary->value;
}
int secondary_offset = SecondaryOffset(name, primary_offset);
Entry* secondary = entry(secondary_, secondary_offset);
if (secondary->key == name && secondary->map == map) {
return secondary->value;
}
return nullptr;
}
void StubCache::Clear() {
MaybeObject* empty = MaybeObject::FromObject(
isolate_->builtins()->builtin(Builtins::kIllegal));
Name* empty_string = ReadOnlyRoots(isolate()).empty_string();
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = empty_string;
primary_[i].map = nullptr;
primary_[i].value = empty;
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = empty_string;
secondary_[j].map = nullptr;
secondary_[j].value = empty;
}
}
} // namespace internal
} // namespace v8