// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
#define V8_IA32_MACRO_ASSEMBLER_IA32_H_
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/globals.h"
#include "src/ia32/assembler-ia32.h"
#include "src/turbo-assembler.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = eax;
constexpr Register kReturnRegister1 = edx;
constexpr Register kReturnRegister2 = edi;
constexpr Register kJSFunctionRegister = edi;
constexpr Register kContextRegister = esi;
constexpr Register kAllocateSizeRegister = edx;
constexpr Register kSpeculationPoisonRegister = ebx;
constexpr Register kInterpreterAccumulatorRegister = eax;
constexpr Register kInterpreterBytecodeOffsetRegister = edx;
constexpr Register kInterpreterBytecodeArrayRegister = edi;
constexpr Register kInterpreterDispatchTableRegister = esi;
constexpr Register kJavaScriptCallArgCountRegister = eax;
constexpr Register kJavaScriptCallCodeStartRegister = ecx;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = edx;
// The ExtraArg1Register not part of the real JS calling convention and is
// mostly there to simplify consistent interface descriptor definitions across
// platforms. Note that on ia32 it aliases kJavaScriptCallCodeStartRegister.
constexpr Register kJavaScriptCallExtraArg1Register = ecx;
// The off-heap trampoline does not need a register on ia32 (it uses a
// pc-relative call instead).
constexpr Register kOffHeapTrampolineRegister = no_reg;
constexpr Register kRuntimeCallFunctionRegister = edx;
constexpr Register kRuntimeCallArgCountRegister = eax;
constexpr Register kRuntimeCallArgvRegister = ecx;
constexpr Register kWasmInstanceRegister = esi;
// TODO(v8:6666): Implement full support.
constexpr Register kRootRegister = ebx;
// Convenience for platform-independent signatures. We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
public:
TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
void* buffer, int buffer_size,
CodeObjectRequired create_code_object)
: TurboAssemblerBase(isolate, options, buffer, buffer_size,
create_code_object) {}
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on ia32.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
// Allocate a stack frame of given size (i.e. decrement {esp} by the value
// stored in the given register).
#ifdef V8_OS_WIN
// On win32, take special care if the number of bytes is greater than 4096:
// Ensure that each page within the new stack frame is touched once in
// decreasing order. See
// https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx.
// Use {bytes_scratch} as scratch register for this procedure.
void AllocateStackFrame(Register bytes_scratch);
#else
void AllocateStackFrame(Register bytes) { sub(esp, bytes); }
#endif
// Print a message to stdout and abort execution.
void Abort(AbortReason reason);
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, AbortReason reason);
// Like Assert(), but without condition.
// Use --debug_code to enable.
void AssertUnreachable(AbortReason reason);
// Like Assert(), but always enabled.
void Check(Condition cc, AbortReason reason);
// Check that the stack is aligned.
void CheckStackAlignment();
void InitializeRootRegister() {
// For now, only check sentinel value for root register.
// TODO(jgruber,v8:6666): Implement root register.
if (FLAG_ia32_verify_root_register && FLAG_embedded_builtins) {
mov(kRootRegister, kRootRegisterSentinel);
}
}
void VerifyRootRegister() {
if (FLAG_ia32_verify_root_register && FLAG_embedded_builtins) {
Label root_register_ok;
cmp(kRootRegister, kRootRegisterSentinel);
j(equal, &root_register_ok);
int3();
bind(&root_register_ok);
}
}
// Move a constant into a destination using the most efficient encoding.
void Move(Register dst, const Immediate& src);
void Move(Register dst, Smi* src) { Move(dst, Immediate(src)); }
void Move(Register dst, Handle<HeapObject> src);
void Move(Register dst, Register src);
void Move(Operand dst, const Immediate& src);
// Move an immediate into an XMM register.
void Move(XMMRegister dst, uint32_t src);
void Move(XMMRegister dst, uint64_t src);
void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
void Call(Register reg) { call(reg); }
void Call(Label* target) { call(target); }
void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
void RetpolineCall(Register reg);
void RetpolineCall(Address destination, RelocInfo::Mode rmode);
void RetpolineJump(Register reg);
void CallForDeoptimization(Address target, int deopt_id,
RelocInfo::Mode rmode) {
USE(deopt_id);
call(target, rmode);
}
inline bool AllowThisStubCall(CodeStub* stub);
void CallStubDelayed(CodeStub* stub);
// Call a runtime routine. This expects {centry} to contain a fitting CEntry
// builtin for the target runtime function and uses an indirect call.
void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(zero, smi_label, distance);
}
// Jump if the operand is a smi.
inline void JumpIfSmi(Operand value, Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(zero, smi_label, distance);
}
void JumpIfEqual(Register a, int32_t b, Label* dest) {
cmp(a, Immediate(b));
j(equal, dest);
}
void JumpIfLessThan(Register a, int32_t b, Label* dest) {
cmp(a, Immediate(b));
j(less, dest);
}
void SmiUntag(Register reg) { sar(reg, kSmiTagSize); }
// Removes current frame and its arguments from the stack preserving the
// arguments and a return address pushed to the stack for the next call. Both
// |callee_args_count| and |caller_args_count_reg| do not include receiver.
// |callee_args_count| is not modified, |caller_args_count_reg| is trashed.
// |number_of_temp_values_after_return_address| specifies the number of words
// pushed to the stack after the return address. This is to allow "allocation"
// of scratch registers that this function requires by saving their values on
// the stack.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1,
int number_of_temp_values_after_return_address);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in esp[0], esp[4],
// etc., not pushed. The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_arguments, Register scratch);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void ShlPair(Register high, Register low, uint8_t imm8);
void ShlPair_cl(Register high, Register low);
void ShrPair(Register high, Register low, uint8_t imm8);
void ShrPair_cl(Register high, Register low);
void SarPair(Register high, Register low, uint8_t imm8);
void SarPair_cl(Register high, Register low);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
void Lzcnt(Register dst, Operand src);
void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
void Tzcnt(Register dst, Operand src);
void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
void Popcnt(Register dst, Operand src);
void Ret();
void LoadRoot(Register destination, Heap::RootListIndex index) override;
// Indirect root-relative loads.
void LoadFromConstantsTable(Register destination,
int constant_index) override;
void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
void LoadRootRelative(Register destination, int32_t offset) override;
void LoadAddress(Register destination, ExternalReference source);
// Wrapper functions to ensure external reference operands produce
// isolate-independent code if needed.
Operand StaticVariable(const ExternalReference& ext);
Operand StaticArray(Register index, ScaleFactor scale,
const ExternalReference& ext);
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
void Pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
Pshufhw(dst, Operand(src), shuffle);
}
void Pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
void Pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
Pshuflw(dst, Operand(src), shuffle);
}
void Pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
void Pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
Pshufd(dst, Operand(src), shuffle);
}
void Pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
void Psraw(XMMRegister dst, int8_t shift);
void Psrlw(XMMRegister dst, int8_t shift);
// SSE/SSE2 instructions with AVX version.
#define AVX_OP2_WITH_TYPE(macro_name, name, dst_type, src_type) \
void macro_name(dst_type dst, src_type src) { \
if (CpuFeatures::IsSupported(AVX)) { \
CpuFeatureScope scope(this, AVX); \
v##name(dst, src); \
} else { \
name(dst, src); \
} \
}
AVX_OP2_WITH_TYPE(Rcpps, rcpps, XMMRegister, const Operand&)
AVX_OP2_WITH_TYPE(Rsqrtps, rsqrtps, XMMRegister, const Operand&)
AVX_OP2_WITH_TYPE(Movdqu, movdqu, XMMRegister, Operand)
AVX_OP2_WITH_TYPE(Movdqu, movdqu, Operand, XMMRegister)
AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Register)
AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Operand)
AVX_OP2_WITH_TYPE(Movd, movd, Register, XMMRegister)
AVX_OP2_WITH_TYPE(Movd, movd, Operand, XMMRegister)
AVX_OP2_WITH_TYPE(Cvtdq2ps, cvtdq2ps, XMMRegister, Operand)
#undef AVX_OP2_WITH_TYPE
// Only use these macros when non-destructive source of AVX version is not
// needed.
#define AVX_OP3_WITH_TYPE(macro_name, name, dst_type, src_type) \
void macro_name(dst_type dst, src_type src) { \
if (CpuFeatures::IsSupported(AVX)) { \
CpuFeatureScope scope(this, AVX); \
v##name(dst, dst, src); \
} else { \
name(dst, src); \
} \
}
#define AVX_OP3_XO(macro_name, name) \
AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, XMMRegister) \
AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, Operand)
AVX_OP3_XO(Packsswb, packsswb)
AVX_OP3_XO(Packuswb, packuswb)
AVX_OP3_XO(Pcmpeqb, pcmpeqb)
AVX_OP3_XO(Pcmpeqw, pcmpeqw)
AVX_OP3_XO(Pcmpeqd, pcmpeqd)
AVX_OP3_XO(Psubb, psubb)
AVX_OP3_XO(Psubw, psubw)
AVX_OP3_XO(Psubd, psubd)
AVX_OP3_XO(Punpcklbw, punpcklbw)
AVX_OP3_XO(Punpckhbw, punpckhbw)
AVX_OP3_XO(Pxor, pxor)
AVX_OP3_XO(Andps, andps)
AVX_OP3_XO(Andpd, andpd)
AVX_OP3_XO(Xorps, xorps)
AVX_OP3_XO(Xorpd, xorpd)
AVX_OP3_XO(Sqrtss, sqrtss)
AVX_OP3_XO(Sqrtsd, sqrtsd)
#undef AVX_OP3_XO
#undef AVX_OP3_WITH_TYPE
// Non-SSE2 instructions.
#define AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, dst_type, src_type, \
sse_scope) \
void macro_name(dst_type dst, src_type src) { \
if (CpuFeatures::IsSupported(AVX)) { \
CpuFeatureScope scope(this, AVX); \
v##name(dst, src); \
return; \
} \
if (CpuFeatures::IsSupported(sse_scope)) { \
CpuFeatureScope scope(this, sse_scope); \
name(dst, src); \
return; \
} \
UNREACHABLE(); \
}
#define AVX_OP2_XO_SSE4(macro_name, name) \
AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, XMMRegister, XMMRegister, SSE4_1) \
AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, XMMRegister, Operand, SSE4_1)
AVX_OP2_XO_SSE4(Ptest, ptest)
AVX_OP2_XO_SSE4(Pmovsxbw, pmovsxbw)
AVX_OP2_XO_SSE4(Pmovsxwd, pmovsxwd)
AVX_OP2_XO_SSE4(Pmovzxbw, pmovzxbw)
AVX_OP2_XO_SSE4(Pmovzxwd, pmovzxwd)
#undef AVX_OP2_WITH_TYPE_SCOPE
#undef AVX_OP2_XO_SSE4
void Pshufb(XMMRegister dst, XMMRegister src) { Pshufb(dst, Operand(src)); }
void Pshufb(XMMRegister dst, Operand src);
void Pblendw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
Pblendw(dst, Operand(src), imm8);
}
void Pblendw(XMMRegister dst, Operand src, uint8_t imm8);
void Psignb(XMMRegister dst, XMMRegister src) { Psignb(dst, Operand(src)); }
void Psignb(XMMRegister dst, Operand src);
void Psignw(XMMRegister dst, XMMRegister src) { Psignw(dst, Operand(src)); }
void Psignw(XMMRegister dst, Operand src);
void Psignd(XMMRegister dst, XMMRegister src) { Psignd(dst, Operand(src)); }
void Psignd(XMMRegister dst, Operand src);
void Palignr(XMMRegister dst, XMMRegister src, uint8_t imm8) {
Palignr(dst, Operand(src), imm8);
}
void Palignr(XMMRegister dst, Operand src, uint8_t imm8);
void Pextrb(Register dst, XMMRegister src, int8_t imm8);
void Pextrw(Register dst, XMMRegister src, int8_t imm8);
void Pextrd(Register dst, XMMRegister src, int8_t imm8);
void Pinsrd(XMMRegister dst, Register src, int8_t imm8,
bool is_64_bits = false) {
Pinsrd(dst, Operand(src), imm8, is_64_bits);
}
void Pinsrd(XMMRegister dst, Operand src, int8_t imm8,
bool is_64_bits = false);
// Expression support
// cvtsi2sd instruction only writes to the low 64-bit of dst register, which
// hinders register renaming and makes dependence chains longer. So we use
// xorps to clear the dst register before cvtsi2sd to solve this issue.
void Cvtsi2ss(XMMRegister dst, Register src) { Cvtsi2ss(dst, Operand(src)); }
void Cvtsi2ss(XMMRegister dst, Operand src);
void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
void Cvtsi2sd(XMMRegister dst, Operand src);
void Cvtui2ss(XMMRegister dst, Register src, Register tmp) {
Cvtui2ss(dst, Operand(src), tmp);
}
void Cvtui2ss(XMMRegister dst, Operand src, Register tmp);
void Cvttss2ui(Register dst, XMMRegister src, XMMRegister tmp) {
Cvttss2ui(dst, Operand(src), tmp);
}
void Cvttss2ui(Register dst, Operand src, XMMRegister tmp);
void Cvtui2sd(XMMRegister dst, Register src) { Cvtui2sd(dst, Operand(src)); }
void Cvtui2sd(XMMRegister dst, Operand src);
void Cvttsd2ui(Register dst, XMMRegister src, XMMRegister tmp) {
Cvttsd2ui(dst, Operand(src), tmp);
}
void Cvttsd2ui(Register dst, Operand src, XMMRegister tmp);
void Push(Register src) { push(src); }
void Push(Operand src) { push(src); }
void Push(Immediate value) { push(value); }
void Push(Handle<HeapObject> handle) { push(Immediate(handle)); }
void Push(Smi* smi) { Push(Immediate(smi)); }
void SaveRegisters(RegList registers);
void RestoreRegisters(RegList registers);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// PushCallerSaved and PopCallerSaved do not arrange the registers in any
// particular order so they are not useful for calls that can cause a GC.
// The caller can exclude up to 3 registers that do not need to be saved and
// restored.
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Compute the start of the generated instruction stream from the current PC.
// This is an alternative to embedding the {CodeObject} handle as a reference.
void ComputeCodeStartAddress(Register dst);
void ResetSpeculationPoisonRegister();
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler : public TurboAssembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object)
: MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
size, create_code_object) {}
MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
void* buffer, int size, CodeObjectRequired create_code_object);
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int32_t x) {
if (x == 0) {
xor_(dst, dst);
} else {
mov(dst, Immediate(x));
}
}
void Set(Operand dst, int32_t x) { mov(dst, Immediate(x)); }
// Operations on roots in the root-array.
void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
// These methods can only be used with constant roots (i.e. non-writable
// and not in new space).
void CompareRoot(Register with, Heap::RootListIndex index);
void CompareRoot(Operand with, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
void JumpIfRoot(Operand with, Heap::RootListIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
void JumpIfNotRoot(Operand with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. The address and value registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update the
// write barrier if the value is a smi.
void RecordWrite(
Register object, Register address, Register value, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// Frame restart support
void MaybeDropFrames();
// Enter specific kind of exit frame. Expects the number of
// arguments in register eax and sets up the number of arguments in
// register edi and the pointer to the first argument in register
// esi.
void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);
void EnterApiExitFrame(int argc);
// Leave the current exit frame. Expects the return value in
// register eax:edx (untouched) and the pointer to the first
// argument in register esi (if pop_arguments == true).
void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
// Leave the current exit frame. Expects the return value in
// register eax (untouched).
void LeaveApiExitFrame();
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst);
// Load the global function with the given index.
void LoadGlobalFunction(int index, Register function);
// Push and pop the registers that can hold pointers.
void PushSafepointRegisters() { pushad(); }
void PopSafepointRegisters() { popad(); }
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// On function call, call into the debugger if necessary.
// This may clobber ecx.
void CheckDebugHook(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Register function, const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// Compare object type for heap object.
// Incoming register is heap_object and outgoing register is map.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
void CmpInstanceType(Register map, InstanceType type);
void DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch, Label* lost_precision, Label* is_nan,
Label::Distance dst = Label::kFar);
// Smi tagging support.
void SmiTag(Register reg) {
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
add(reg, reg);
}
// Modifies the register even if it does not contain a Smi!
void UntagSmi(Register reg, Label* is_smi) {
STATIC_ASSERT(kSmiTagSize == 1);
sar(reg, kSmiTagSize);
STATIC_ASSERT(kSmiTag == 0);
j(not_carry, is_smi);
}
// Jump if register contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(not_zero, not_smi_label, distance);
}
// Jump if the operand is not a smi.
inline void JumpIfNotSmi(Operand value, Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(not_zero, smi_label, distance);
}
template<typename Field>
void DecodeField(Register reg) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> Field::kShift;
if (shift != 0) {
sar(reg, shift);
}
and_(reg, Immediate(mask));
}
// Abort execution if argument is not a smi, enabled via --debug-code.
void AssertSmi(Register object);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link it into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub. Generate the code if necessary.
void CallStub(CodeStub* stub);
// Tail call a code stub (jump). Generate the code if necessary.
void TailCallStub(CodeStub* stub);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame = false);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToInstructionStream(Address entry);
// ---------------------------------------------------------------------------
// Utilities
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the esp register.
void Drop(int element_count);
void Pop(Register dst) { pop(dst); }
void Pop(Operand dst) { pop(dst); }
void PushReturnAddressFrom(Register src) { push(src); }
void PopReturnAddressTo(Register dst) { pop(dst); }
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register in_out, Label* target_if_cleared);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
void EnterBuiltinFrame(Register context, Register target, Register argc);
void LeaveBuiltinFrame(Register context, Register target, Register argc);
private:
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches, InvokeFlag flag,
Label::Distance done_distance);
void EnterExitFramePrologue(StackFrame::Type frame_type);
void EnterExitFrameEpilogue(int argc, bool save_doubles);
void LeaveExitFrameEpilogue();
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object, Register scratch, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
int additional_offset = 0) {
int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
}
inline Operand ContextOperand(Register context, int index) {
return Operand(context, Context::SlotOffset(index));
}
inline Operand ContextOperand(Register context, Register index) {
return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
}
inline Operand NativeContextOperand() {
return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_