// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/loop-variable-optimizer.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/node-marker.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/zone/zone-containers.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
namespace compiler {
// Macro for outputting trace information from representation inference.
#define TRACE(...) \
do { \
if (FLAG_trace_turbo_loop) PrintF(__VA_ARGS__); \
} while (false)
LoopVariableOptimizer::LoopVariableOptimizer(Graph* graph,
CommonOperatorBuilder* common,
Zone* zone)
: graph_(graph),
common_(common),
zone_(zone),
limits_(graph->NodeCount(), zone),
reduced_(graph->NodeCount(), zone),
induction_vars_(zone) {}
void LoopVariableOptimizer::Run() {
ZoneQueue<Node*> queue(zone());
queue.push(graph()->start());
NodeMarker<bool> queued(graph(), 2);
while (!queue.empty()) {
Node* node = queue.front();
queue.pop();
queued.Set(node, false);
DCHECK(!reduced_.Get(node));
bool all_inputs_visited = true;
int inputs_end = (node->opcode() == IrOpcode::kLoop)
? kFirstBackedge
: node->op()->ControlInputCount();
for (int i = 0; i < inputs_end; i++) {
if (!reduced_.Get(NodeProperties::GetControlInput(node, i))) {
all_inputs_visited = false;
break;
}
}
if (!all_inputs_visited) continue;
VisitNode(node);
reduced_.Set(node, true);
// Queue control outputs.
for (Edge edge : node->use_edges()) {
if (NodeProperties::IsControlEdge(edge) &&
edge.from()->op()->ControlOutputCount() > 0) {
Node* use = edge.from();
if (use->opcode() == IrOpcode::kLoop &&
edge.index() != kAssumedLoopEntryIndex) {
VisitBackedge(node, use);
} else if (!queued.Get(use)) {
queue.push(use);
queued.Set(use, true);
}
}
}
}
}
void InductionVariable::AddUpperBound(Node* bound,
InductionVariable::ConstraintKind kind) {
if (FLAG_trace_turbo_loop) {
StdoutStream{} << "New upper bound for " << phi()->id() << " (loop "
<< NodeProperties::GetControlInput(phi())->id()
<< "): " << *bound << std::endl;
}
upper_bounds_.push_back(Bound(bound, kind));
}
void InductionVariable::AddLowerBound(Node* bound,
InductionVariable::ConstraintKind kind) {
if (FLAG_trace_turbo_loop) {
StdoutStream{} << "New lower bound for " << phi()->id() << " (loop "
<< NodeProperties::GetControlInput(phi())->id()
<< "): " << *bound;
}
lower_bounds_.push_back(Bound(bound, kind));
}
void LoopVariableOptimizer::VisitBackedge(Node* from, Node* loop) {
if (loop->op()->ControlInputCount() != 2) return;
// Go through the constraints, and update the induction variables in
// this loop if they are involved in the constraint.
for (Constraint constraint : limits_.Get(from)) {
if (constraint.left->opcode() == IrOpcode::kPhi &&
NodeProperties::GetControlInput(constraint.left) == loop) {
auto var = induction_vars_.find(constraint.left->id());
if (var != induction_vars_.end()) {
var->second->AddUpperBound(constraint.right, constraint.kind);
}
}
if (constraint.right->opcode() == IrOpcode::kPhi &&
NodeProperties::GetControlInput(constraint.right) == loop) {
auto var = induction_vars_.find(constraint.right->id());
if (var != induction_vars_.end()) {
var->second->AddLowerBound(constraint.left, constraint.kind);
}
}
}
}
void LoopVariableOptimizer::VisitNode(Node* node) {
switch (node->opcode()) {
case IrOpcode::kMerge:
return VisitMerge(node);
case IrOpcode::kLoop:
return VisitLoop(node);
case IrOpcode::kIfFalse:
return VisitIf(node, false);
case IrOpcode::kIfTrue:
return VisitIf(node, true);
case IrOpcode::kStart:
return VisitStart(node);
case IrOpcode::kLoopExit:
return VisitLoopExit(node);
default:
return VisitOtherControl(node);
}
}
void LoopVariableOptimizer::VisitMerge(Node* node) {
// Merge the limits of all incoming edges.
VariableLimits merged = limits_.Get(node->InputAt(0));
for (int i = 1; i < node->InputCount(); i++) {
merged.ResetToCommonAncestor(limits_.Get(node->InputAt(i)));
}
limits_.Set(node, merged);
}
void LoopVariableOptimizer::VisitLoop(Node* node) {
DetectInductionVariables(node);
// Conservatively take the limits from the loop entry here.
return TakeConditionsFromFirstControl(node);
}
void LoopVariableOptimizer::VisitIf(Node* node, bool polarity) {
Node* branch = node->InputAt(0);
Node* cond = branch->InputAt(0);
VariableLimits limits = limits_.Get(branch);
// Normalize to less than comparison.
switch (cond->opcode()) {
case IrOpcode::kJSLessThan:
case IrOpcode::kSpeculativeNumberLessThan:
AddCmpToLimits(&limits, cond, InductionVariable::kStrict, polarity);
break;
case IrOpcode::kJSGreaterThan:
AddCmpToLimits(&limits, cond, InductionVariable::kNonStrict, !polarity);
break;
case IrOpcode::kJSLessThanOrEqual:
case IrOpcode::kSpeculativeNumberLessThanOrEqual:
AddCmpToLimits(&limits, cond, InductionVariable::kNonStrict, polarity);
break;
case IrOpcode::kJSGreaterThanOrEqual:
AddCmpToLimits(&limits, cond, InductionVariable::kStrict, !polarity);
break;
default:
break;
}
limits_.Set(node, limits);
}
void LoopVariableOptimizer::AddCmpToLimits(
VariableLimits* limits, Node* node, InductionVariable::ConstraintKind kind,
bool polarity) {
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (FindInductionVariable(left) || FindInductionVariable(right)) {
if (polarity) {
limits->PushFront(Constraint{left, kind, right}, zone());
} else {
kind = (kind == InductionVariable::kStrict)
? InductionVariable::kNonStrict
: InductionVariable::kStrict;
limits->PushFront(Constraint{right, kind, left}, zone());
}
}
}
void LoopVariableOptimizer::VisitStart(Node* node) { limits_.Set(node, {}); }
void LoopVariableOptimizer::VisitLoopExit(Node* node) {
return TakeConditionsFromFirstControl(node);
}
void LoopVariableOptimizer::VisitOtherControl(Node* node) {
DCHECK_EQ(1, node->op()->ControlInputCount());
return TakeConditionsFromFirstControl(node);
}
void LoopVariableOptimizer::TakeConditionsFromFirstControl(Node* node) {
limits_.Set(node, limits_.Get(NodeProperties::GetControlInput(node, 0)));
}
const InductionVariable* LoopVariableOptimizer::FindInductionVariable(
Node* node) {
auto var = induction_vars_.find(node->id());
if (var != induction_vars_.end()) {
return var->second;
}
return nullptr;
}
InductionVariable* LoopVariableOptimizer::TryGetInductionVariable(Node* phi) {
DCHECK_EQ(2, phi->op()->ValueInputCount());
Node* loop = NodeProperties::GetControlInput(phi);
DCHECK_EQ(IrOpcode::kLoop, loop->opcode());
Node* initial = phi->InputAt(0);
Node* arith = phi->InputAt(1);
InductionVariable::ArithmeticType arithmeticType;
if (arith->opcode() == IrOpcode::kJSAdd ||
arith->opcode() == IrOpcode::kSpeculativeNumberAdd ||
arith->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd) {
arithmeticType = InductionVariable::ArithmeticType::kAddition;
} else if (arith->opcode() == IrOpcode::kJSSubtract ||
arith->opcode() == IrOpcode::kSpeculativeNumberSubtract ||
arith->opcode() == IrOpcode::kSpeculativeSafeIntegerSubtract) {
arithmeticType = InductionVariable::ArithmeticType::kSubtraction;
} else {
return nullptr;
}
// TODO(jarin) Support both sides.
Node* input = arith->InputAt(0);
if (input->opcode() == IrOpcode::kSpeculativeToNumber ||
input->opcode() == IrOpcode::kJSToNumber ||
input->opcode() == IrOpcode::kJSToNumberConvertBigInt) {
input = input->InputAt(0);
}
if (input != phi) return nullptr;
Node* effect_phi = nullptr;
for (Node* use : loop->uses()) {
if (use->opcode() == IrOpcode::kEffectPhi) {
DCHECK_NULL(effect_phi);
effect_phi = use;
}
}
if (!effect_phi) return nullptr;
Node* incr = arith->InputAt(1);
return new (zone()) InductionVariable(phi, effect_phi, arith, incr, initial,
zone(), arithmeticType);
}
void LoopVariableOptimizer::DetectInductionVariables(Node* loop) {
if (loop->op()->ControlInputCount() != 2) return;
TRACE("Loop variables for loop %i:", loop->id());
for (Edge edge : loop->use_edges()) {
if (NodeProperties::IsControlEdge(edge) &&
edge.from()->opcode() == IrOpcode::kPhi) {
Node* phi = edge.from();
InductionVariable* induction_var = TryGetInductionVariable(phi);
if (induction_var) {
induction_vars_[phi->id()] = induction_var;
TRACE(" %i", induction_var->phi()->id());
}
}
}
TRACE("\n");
}
void LoopVariableOptimizer::ChangeToInductionVariablePhis() {
for (auto entry : induction_vars_) {
// It only make sense to analyze the induction variables if
// there is a bound.
InductionVariable* induction_var = entry.second;
DCHECK_EQ(MachineRepresentation::kTagged,
PhiRepresentationOf(induction_var->phi()->op()));
if (induction_var->upper_bounds().size() == 0 &&
induction_var->lower_bounds().size() == 0) {
continue;
}
// Insert the increment value to the value inputs.
induction_var->phi()->InsertInput(graph()->zone(),
induction_var->phi()->InputCount() - 1,
induction_var->increment());
// Insert the bound inputs to the value inputs.
for (auto bound : induction_var->lower_bounds()) {
induction_var->phi()->InsertInput(
graph()->zone(), induction_var->phi()->InputCount() - 1, bound.bound);
}
for (auto bound : induction_var->upper_bounds()) {
induction_var->phi()->InsertInput(
graph()->zone(), induction_var->phi()->InputCount() - 1, bound.bound);
}
NodeProperties::ChangeOp(
induction_var->phi(),
common()->InductionVariablePhi(induction_var->phi()->InputCount() - 1));
}
}
void LoopVariableOptimizer::ChangeToPhisAndInsertGuards() {
for (auto entry : induction_vars_) {
InductionVariable* induction_var = entry.second;
if (induction_var->phi()->opcode() == IrOpcode::kInductionVariablePhi) {
// Turn the induction variable phi back to normal phi.
int value_count = 2;
Node* control = NodeProperties::GetControlInput(induction_var->phi());
DCHECK_EQ(value_count, control->op()->ControlInputCount());
induction_var->phi()->TrimInputCount(value_count + 1);
induction_var->phi()->ReplaceInput(value_count, control);
NodeProperties::ChangeOp(
induction_var->phi(),
common()->Phi(MachineRepresentation::kTagged, value_count));
// If the backedge is not a subtype of the phi's type, we insert a sigma
// to get the typing right.
Node* backedge_value = induction_var->phi()->InputAt(1);
Type backedge_type = NodeProperties::GetType(backedge_value);
Type phi_type = NodeProperties::GetType(induction_var->phi());
if (!backedge_type.Is(phi_type)) {
Node* loop = NodeProperties::GetControlInput(induction_var->phi());
Node* backedge_control = loop->InputAt(1);
Node* backedge_effect =
NodeProperties::GetEffectInput(induction_var->effect_phi(), 1);
Node* rename =
graph()->NewNode(common()->TypeGuard(phi_type), backedge_value,
backedge_effect, backedge_control);
induction_var->effect_phi()->ReplaceInput(1, rename);
induction_var->phi()->ReplaceInput(1, rename);
}
}
}
}
#undef TRACE
} // namespace compiler
} // namespace internal
} // namespace v8