// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction.h"
#include <iomanip>
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/schedule.h"
#include "src/compiler/state-values-utils.h"
#include "src/source-position.h"
namespace v8 {
namespace internal {
namespace compiler {
const RegisterConfiguration* (*GetRegConfig)() = RegisterConfiguration::Default;
FlagsCondition CommuteFlagsCondition(FlagsCondition condition) {
switch (condition) {
case kSignedLessThan:
return kSignedGreaterThan;
case kSignedGreaterThanOrEqual:
return kSignedLessThanOrEqual;
case kSignedLessThanOrEqual:
return kSignedGreaterThanOrEqual;
case kSignedGreaterThan:
return kSignedLessThan;
case kUnsignedLessThan:
return kUnsignedGreaterThan;
case kUnsignedGreaterThanOrEqual:
return kUnsignedLessThanOrEqual;
case kUnsignedLessThanOrEqual:
return kUnsignedGreaterThanOrEqual;
case kUnsignedGreaterThan:
return kUnsignedLessThan;
case kFloatLessThanOrUnordered:
return kFloatGreaterThanOrUnordered;
case kFloatGreaterThanOrEqual:
return kFloatLessThanOrEqual;
case kFloatLessThanOrEqual:
return kFloatGreaterThanOrEqual;
case kFloatGreaterThanOrUnordered:
return kFloatLessThanOrUnordered;
case kFloatLessThan:
return kFloatGreaterThan;
case kFloatGreaterThanOrEqualOrUnordered:
return kFloatLessThanOrEqualOrUnordered;
case kFloatLessThanOrEqualOrUnordered:
return kFloatGreaterThanOrEqualOrUnordered;
case kFloatGreaterThan:
return kFloatLessThan;
case kPositiveOrZero:
case kNegative:
UNREACHABLE();
break;
case kEqual:
case kNotEqual:
case kOverflow:
case kNotOverflow:
case kUnorderedEqual:
case kUnorderedNotEqual:
return condition;
}
UNREACHABLE();
}
bool InstructionOperand::InterferesWith(const InstructionOperand& other) const {
if (kSimpleFPAliasing || !this->IsFPLocationOperand() ||
!other.IsFPLocationOperand())
return EqualsCanonicalized(other);
// Aliasing is complex and both operands are fp locations.
const LocationOperand& loc = *LocationOperand::cast(this);
const LocationOperand& other_loc = LocationOperand::cast(other);
LocationOperand::LocationKind kind = loc.location_kind();
LocationOperand::LocationKind other_kind = other_loc.location_kind();
if (kind != other_kind) return false;
MachineRepresentation rep = loc.representation();
MachineRepresentation other_rep = other_loc.representation();
if (rep == other_rep) return EqualsCanonicalized(other);
if (kind == LocationOperand::REGISTER) {
// FP register-register interference.
return GetRegConfig()->AreAliases(rep, loc.register_code(), other_rep,
other_loc.register_code());
} else {
// FP slot-slot interference. Slots of different FP reps can alias because
// the gap resolver may break a move into 2 or 4 equivalent smaller moves.
DCHECK_EQ(LocationOperand::STACK_SLOT, kind);
int index_hi = loc.index();
int index_lo = index_hi - (1 << ElementSizeLog2Of(rep)) / kPointerSize + 1;
int other_index_hi = other_loc.index();
int other_index_lo =
other_index_hi - (1 << ElementSizeLog2Of(other_rep)) / kPointerSize + 1;
return other_index_hi >= index_lo && index_hi >= other_index_lo;
}
return false;
}
bool LocationOperand::IsCompatible(LocationOperand* op) {
if (IsRegister() || IsStackSlot()) {
return op->IsRegister() || op->IsStackSlot();
} else if (kSimpleFPAliasing) {
// A backend may choose to generate the same instruction sequence regardless
// of the FP representation. As a result, we can relax the compatibility and
// allow a Double to be moved in a Float for example. However, this is only
// allowed if registers do not overlap.
return (IsFPRegister() || IsFPStackSlot()) &&
(op->IsFPRegister() || op->IsFPStackSlot());
} else if (IsFloatRegister() || IsFloatStackSlot()) {
return op->IsFloatRegister() || op->IsFloatStackSlot();
} else if (IsDoubleRegister() || IsDoubleStackSlot()) {
return op->IsDoubleRegister() || op->IsDoubleStackSlot();
} else {
return (IsSimd128Register() || IsSimd128StackSlot()) &&
(op->IsSimd128Register() || op->IsSimd128StackSlot());
}
}
void InstructionOperand::Print(const RegisterConfiguration* config) const {
PrintableInstructionOperand wrapper;
wrapper.register_configuration_ = config;
wrapper.op_ = *this;
StdoutStream{} << wrapper << std::endl;
}
void InstructionOperand::Print() const { Print(GetRegConfig()); }
std::ostream& operator<<(std::ostream& os,
const PrintableInstructionOperand& printable) {
const InstructionOperand& op = printable.op_;
const RegisterConfiguration* conf = printable.register_configuration_;
switch (op.kind()) {
case InstructionOperand::UNALLOCATED: {
const UnallocatedOperand* unalloc = UnallocatedOperand::cast(&op);
os << "v" << unalloc->virtual_register();
if (unalloc->basic_policy() == UnallocatedOperand::FIXED_SLOT) {
return os << "(=" << unalloc->fixed_slot_index() << "S)";
}
switch (unalloc->extended_policy()) {
case UnallocatedOperand::NONE:
return os;
case UnallocatedOperand::FIXED_REGISTER:
return os << "(="
<< conf->GetGeneralRegisterName(
unalloc->fixed_register_index())
<< ")";
case UnallocatedOperand::FIXED_FP_REGISTER:
return os << "(="
<< conf->GetDoubleRegisterName(
unalloc->fixed_register_index())
<< ")";
case UnallocatedOperand::MUST_HAVE_REGISTER:
return os << "(R)";
case UnallocatedOperand::MUST_HAVE_SLOT:
return os << "(S)";
case UnallocatedOperand::SAME_AS_FIRST_INPUT:
return os << "(1)";
case UnallocatedOperand::REGISTER_OR_SLOT:
return os << "(-)";
case UnallocatedOperand::REGISTER_OR_SLOT_OR_CONSTANT:
return os << "(*)";
}
}
case InstructionOperand::CONSTANT:
return os << "[constant:" << ConstantOperand::cast(op).virtual_register()
<< "]";
case InstructionOperand::IMMEDIATE: {
ImmediateOperand imm = ImmediateOperand::cast(op);
switch (imm.type()) {
case ImmediateOperand::INLINE:
return os << "#" << imm.inline_value();
case ImmediateOperand::INDEXED:
return os << "[immediate:" << imm.indexed_value() << "]";
}
}
case InstructionOperand::EXPLICIT:
case InstructionOperand::ALLOCATED: {
LocationOperand allocated = LocationOperand::cast(op);
if (op.IsStackSlot()) {
os << "[stack:" << allocated.index();
} else if (op.IsFPStackSlot()) {
os << "[fp_stack:" << allocated.index();
} else if (op.IsRegister()) {
os << "["
<< GetRegConfig()->GetGeneralOrSpecialRegisterName(
allocated.register_code())
<< "|R";
} else if (op.IsDoubleRegister()) {
os << "["
<< GetRegConfig()->GetDoubleRegisterName(allocated.register_code())
<< "|R";
} else if (op.IsFloatRegister()) {
os << "["
<< GetRegConfig()->GetFloatRegisterName(allocated.register_code())
<< "|R";
} else {
DCHECK(op.IsSimd128Register());
os << "["
<< GetRegConfig()->GetSimd128RegisterName(allocated.register_code())
<< "|R";
}
if (allocated.IsExplicit()) {
os << "|E";
}
switch (allocated.representation()) {
case MachineRepresentation::kNone:
os << "|-";
break;
case MachineRepresentation::kBit:
os << "|b";
break;
case MachineRepresentation::kWord8:
os << "|w8";
break;
case MachineRepresentation::kWord16:
os << "|w16";
break;
case MachineRepresentation::kWord32:
os << "|w32";
break;
case MachineRepresentation::kWord64:
os << "|w64";
break;
case MachineRepresentation::kFloat32:
os << "|f32";
break;
case MachineRepresentation::kFloat64:
os << "|f64";
break;
case MachineRepresentation::kSimd128:
os << "|s128";
break;
case MachineRepresentation::kTaggedSigned:
os << "|ts";
break;
case MachineRepresentation::kTaggedPointer:
os << "|tp";
break;
case MachineRepresentation::kTagged:
os << "|t";
break;
}
return os << "]";
}
case InstructionOperand::INVALID:
return os << "(x)";
}
UNREACHABLE();
}
void MoveOperands::Print(const RegisterConfiguration* config) const {
StdoutStream os;
PrintableInstructionOperand wrapper;
wrapper.register_configuration_ = config;
wrapper.op_ = destination();
os << wrapper << " = ";
wrapper.op_ = source();
os << wrapper << std::endl;
}
void MoveOperands::Print() const { Print(GetRegConfig()); }
std::ostream& operator<<(std::ostream& os,
const PrintableMoveOperands& printable) {
const MoveOperands& mo = *printable.move_operands_;
PrintableInstructionOperand printable_op = {printable.register_configuration_,
mo.destination()};
os << printable_op;
if (!mo.source().Equals(mo.destination())) {
printable_op.op_ = mo.source();
os << " = " << printable_op;
}
return os << ";";
}
bool ParallelMove::IsRedundant() const {
for (MoveOperands* move : *this) {
if (!move->IsRedundant()) return false;
}
return true;
}
void ParallelMove::PrepareInsertAfter(
MoveOperands* move, ZoneVector<MoveOperands*>* to_eliminate) const {
bool no_aliasing =
kSimpleFPAliasing || !move->destination().IsFPLocationOperand();
MoveOperands* replacement = nullptr;
MoveOperands* eliminated = nullptr;
for (MoveOperands* curr : *this) {
if (curr->IsEliminated()) continue;
if (curr->destination().EqualsCanonicalized(move->source())) {
// We must replace move's source with curr's destination in order to
// insert it into this ParallelMove.
DCHECK(!replacement);
replacement = curr;
if (no_aliasing && eliminated != nullptr) break;
} else if (curr->destination().InterferesWith(move->destination())) {
// We can eliminate curr, since move overwrites at least a part of its
// destination, implying its value is no longer live.
eliminated = curr;
to_eliminate->push_back(curr);
if (no_aliasing && replacement != nullptr) break;
}
}
if (replacement != nullptr) move->set_source(replacement->source());
}
ExplicitOperand::ExplicitOperand(LocationKind kind, MachineRepresentation rep,
int index)
: LocationOperand(EXPLICIT, kind, rep, index) {
DCHECK_IMPLIES(kind == REGISTER && !IsFloatingPoint(rep),
GetRegConfig()->IsAllocatableGeneralCode(index));
DCHECK_IMPLIES(kind == REGISTER && rep == MachineRepresentation::kFloat32,
GetRegConfig()->IsAllocatableFloatCode(index));
DCHECK_IMPLIES(kind == REGISTER && (rep == MachineRepresentation::kFloat64),
GetRegConfig()->IsAllocatableDoubleCode(index));
}
Instruction::Instruction(InstructionCode opcode)
: opcode_(opcode),
bit_field_(OutputCountField::encode(0) | InputCountField::encode(0) |
TempCountField::encode(0) | IsCallField::encode(false)),
reference_map_(nullptr),
block_(nullptr) {
parallel_moves_[0] = nullptr;
parallel_moves_[1] = nullptr;
}
Instruction::Instruction(InstructionCode opcode, size_t output_count,
InstructionOperand* outputs, size_t input_count,
InstructionOperand* inputs, size_t temp_count,
InstructionOperand* temps)
: opcode_(opcode),
bit_field_(OutputCountField::encode(output_count) |
InputCountField::encode(input_count) |
TempCountField::encode(temp_count) |
IsCallField::encode(false)),
reference_map_(nullptr),
block_(nullptr) {
parallel_moves_[0] = nullptr;
parallel_moves_[1] = nullptr;
size_t offset = 0;
for (size_t i = 0; i < output_count; ++i) {
DCHECK(!outputs[i].IsInvalid());
operands_[offset++] = outputs[i];
}
for (size_t i = 0; i < input_count; ++i) {
DCHECK(!inputs[i].IsInvalid());
operands_[offset++] = inputs[i];
}
for (size_t i = 0; i < temp_count; ++i) {
DCHECK(!temps[i].IsInvalid());
operands_[offset++] = temps[i];
}
}
bool Instruction::AreMovesRedundant() const {
for (int i = Instruction::FIRST_GAP_POSITION;
i <= Instruction::LAST_GAP_POSITION; i++) {
if (parallel_moves_[i] != nullptr && !parallel_moves_[i]->IsRedundant()) {
return false;
}
}
return true;
}
void Instruction::Print(const RegisterConfiguration* config) const {
PrintableInstruction wrapper;
wrapper.instr_ = this;
wrapper.register_configuration_ = config;
StdoutStream{} << wrapper << std::endl;
}
void Instruction::Print() const { Print(GetRegConfig()); }
std::ostream& operator<<(std::ostream& os,
const PrintableParallelMove& printable) {
const ParallelMove& pm = *printable.parallel_move_;
bool first = true;
for (MoveOperands* move : pm) {
if (move->IsEliminated()) continue;
if (!first) os << " ";
first = false;
PrintableMoveOperands pmo = {printable.register_configuration_, move};
os << pmo;
}
return os;
}
void ReferenceMap::RecordReference(const AllocatedOperand& op) {
// Do not record arguments as pointers.
if (op.IsStackSlot() && LocationOperand::cast(op).index() < 0) return;
DCHECK(!op.IsFPRegister() && !op.IsFPStackSlot());
reference_operands_.push_back(op);
}
std::ostream& operator<<(std::ostream& os, const ReferenceMap& pm) {
os << "{";
bool first = true;
PrintableInstructionOperand poi = {GetRegConfig(), InstructionOperand()};
for (const InstructionOperand& op : pm.reference_operands_) {
if (!first) {
os << ";";
} else {
first = false;
}
poi.op_ = op;
os << poi;
}
return os << "}";
}
std::ostream& operator<<(std::ostream& os, const ArchOpcode& ao) {
switch (ao) {
#define CASE(Name) \
case k##Name: \
return os << #Name;
ARCH_OPCODE_LIST(CASE)
#undef CASE
}
UNREACHABLE();
}
std::ostream& operator<<(std::ostream& os, const AddressingMode& am) {
switch (am) {
case kMode_None:
return os;
#define CASE(Name) \
case kMode_##Name: \
return os << #Name;
TARGET_ADDRESSING_MODE_LIST(CASE)
#undef CASE
}
UNREACHABLE();
}
std::ostream& operator<<(std::ostream& os, const FlagsMode& fm) {
switch (fm) {
case kFlags_none:
return os;
case kFlags_branch:
return os << "branch";
case kFlags_branch_and_poison:
return os << "branch_and_poison";
case kFlags_deoptimize:
return os << "deoptimize";
case kFlags_deoptimize_and_poison:
return os << "deoptimize_and_poison";
case kFlags_set:
return os << "set";
case kFlags_trap:
return os << "trap";
}
UNREACHABLE();
}
std::ostream& operator<<(std::ostream& os, const FlagsCondition& fc) {
switch (fc) {
case kEqual:
return os << "equal";
case kNotEqual:
return os << "not equal";
case kSignedLessThan:
return os << "signed less than";
case kSignedGreaterThanOrEqual:
return os << "signed greater than or equal";
case kSignedLessThanOrEqual:
return os << "signed less than or equal";
case kSignedGreaterThan:
return os << "signed greater than";
case kUnsignedLessThan:
return os << "unsigned less than";
case kUnsignedGreaterThanOrEqual:
return os << "unsigned greater than or equal";
case kUnsignedLessThanOrEqual:
return os << "unsigned less than or equal";
case kUnsignedGreaterThan:
return os << "unsigned greater than";
case kFloatLessThanOrUnordered:
return os << "less than or unordered (FP)";
case kFloatGreaterThanOrEqual:
return os << "greater than or equal (FP)";
case kFloatLessThanOrEqual:
return os << "less than or equal (FP)";
case kFloatGreaterThanOrUnordered:
return os << "greater than or unordered (FP)";
case kFloatLessThan:
return os << "less than (FP)";
case kFloatGreaterThanOrEqualOrUnordered:
return os << "greater than, equal or unordered (FP)";
case kFloatLessThanOrEqualOrUnordered:
return os << "less than, equal or unordered (FP)";
case kFloatGreaterThan:
return os << "greater than (FP)";
case kUnorderedEqual:
return os << "unordered equal";
case kUnorderedNotEqual:
return os << "unordered not equal";
case kOverflow:
return os << "overflow";
case kNotOverflow:
return os << "not overflow";
case kPositiveOrZero:
return os << "positive or zero";
case kNegative:
return os << "negative";
}
UNREACHABLE();
}
std::ostream& operator<<(std::ostream& os,
const PrintableInstruction& printable) {
const Instruction& instr = *printable.instr_;
PrintableInstructionOperand printable_op = {printable.register_configuration_,
InstructionOperand()};
os << "gap ";
for (int i = Instruction::FIRST_GAP_POSITION;
i <= Instruction::LAST_GAP_POSITION; i++) {
os << "(";
if (instr.parallel_moves()[i] != nullptr) {
PrintableParallelMove ppm = {printable.register_configuration_,
instr.parallel_moves()[i]};
os << ppm;
}
os << ") ";
}
os << "\n ";
if (instr.OutputCount() > 1) os << "(";
for (size_t i = 0; i < instr.OutputCount(); i++) {
if (i > 0) os << ", ";
printable_op.op_ = *instr.OutputAt(i);
os << printable_op;
}
if (instr.OutputCount() > 1) os << ") = ";
if (instr.OutputCount() == 1) os << " = ";
os << ArchOpcodeField::decode(instr.opcode());
AddressingMode am = AddressingModeField::decode(instr.opcode());
if (am != kMode_None) {
os << " : " << AddressingModeField::decode(instr.opcode());
}
FlagsMode fm = FlagsModeField::decode(instr.opcode());
if (fm != kFlags_none) {
os << " && " << fm << " if " << FlagsConditionField::decode(instr.opcode());
}
if (instr.InputCount() > 0) {
for (size_t i = 0; i < instr.InputCount(); i++) {
printable_op.op_ = *instr.InputAt(i);
os << " " << printable_op;
}
}
return os;
}
Constant::Constant(int32_t v) : type_(kInt32), value_(v) {}
Constant::Constant(RelocatablePtrConstantInfo info) {
if (info.type() == RelocatablePtrConstantInfo::kInt32) {
type_ = kInt32;
} else if (info.type() == RelocatablePtrConstantInfo::kInt64) {
type_ = kInt64;
} else {
UNREACHABLE();
}
value_ = info.value();
rmode_ = info.rmode();
}
Handle<HeapObject> Constant::ToHeapObject() const {
DCHECK_EQ(kHeapObject, type());
Handle<HeapObject> value(
bit_cast<HeapObject**>(static_cast<intptr_t>(value_)));
return value;
}
Handle<Code> Constant::ToCode() const {
DCHECK_EQ(kHeapObject, type());
Handle<Code> value(bit_cast<Code**>(static_cast<intptr_t>(value_)));
return value;
}
std::ostream& operator<<(std::ostream& os, const Constant& constant) {
switch (constant.type()) {
case Constant::kInt32:
return os << constant.ToInt32();
case Constant::kInt64:
return os << constant.ToInt64() << "l";
case Constant::kFloat32:
return os << constant.ToFloat32() << "f";
case Constant::kFloat64:
return os << constant.ToFloat64().value();
case Constant::kExternalReference:
return os << constant.ToExternalReference().address();
case Constant::kHeapObject:
return os << Brief(*constant.ToHeapObject());
case Constant::kRpoNumber:
return os << "RPO" << constant.ToRpoNumber().ToInt();
}
UNREACHABLE();
}
PhiInstruction::PhiInstruction(Zone* zone, int virtual_register,
size_t input_count)
: virtual_register_(virtual_register),
output_(UnallocatedOperand(UnallocatedOperand::NONE, virtual_register)),
operands_(input_count, InstructionOperand::kInvalidVirtualRegister,
zone) {}
void PhiInstruction::SetInput(size_t offset, int virtual_register) {
DCHECK_EQ(InstructionOperand::kInvalidVirtualRegister, operands_[offset]);
operands_[offset] = virtual_register;
}
void PhiInstruction::RenameInput(size_t offset, int virtual_register) {
DCHECK_NE(InstructionOperand::kInvalidVirtualRegister, operands_[offset]);
operands_[offset] = virtual_register;
}
InstructionBlock::InstructionBlock(Zone* zone, RpoNumber rpo_number,
RpoNumber loop_header, RpoNumber loop_end,
bool deferred, bool handler)
: successors_(zone),
predecessors_(zone),
phis_(zone),
ao_number_(rpo_number),
rpo_number_(rpo_number),
loop_header_(loop_header),
loop_end_(loop_end),
code_start_(-1),
code_end_(-1),
deferred_(deferred),
handler_(handler),
needs_frame_(false),
must_construct_frame_(false),
must_deconstruct_frame_(false) {}
size_t InstructionBlock::PredecessorIndexOf(RpoNumber rpo_number) const {
size_t j = 0;
for (InstructionBlock::Predecessors::const_iterator i = predecessors_.begin();
i != predecessors_.end(); ++i, ++j) {
if (*i == rpo_number) break;
}
return j;
}
static RpoNumber GetRpo(const BasicBlock* block) {
if (block == nullptr) return RpoNumber::Invalid();
return RpoNumber::FromInt(block->rpo_number());
}
static RpoNumber GetLoopEndRpo(const BasicBlock* block) {
if (!block->IsLoopHeader()) return RpoNumber::Invalid();
return RpoNumber::FromInt(block->loop_end()->rpo_number());
}
static InstructionBlock* InstructionBlockFor(Zone* zone,
const BasicBlock* block) {
bool is_handler =
!block->empty() && block->front()->opcode() == IrOpcode::kIfException;
InstructionBlock* instr_block = new (zone)
InstructionBlock(zone, GetRpo(block), GetRpo(block->loop_header()),
GetLoopEndRpo(block), block->deferred(), is_handler);
// Map successors and precessors
instr_block->successors().reserve(block->SuccessorCount());
for (BasicBlock* successor : block->successors()) {
instr_block->successors().push_back(GetRpo(successor));
}
instr_block->predecessors().reserve(block->PredecessorCount());
for (BasicBlock* predecessor : block->predecessors()) {
instr_block->predecessors().push_back(GetRpo(predecessor));
}
return instr_block;
}
std::ostream& operator<<(std::ostream& os,
const PrintableInstructionBlock& printable_block) {
const InstructionBlock* block = printable_block.block_;
const RegisterConfiguration* config = printable_block.register_configuration_;
const InstructionSequence* code = printable_block.code_;
os << "B" << block->rpo_number();
os << ": AO#" << block->ao_number();
if (block->IsDeferred()) os << " (deferred)";
if (!block->needs_frame()) os << " (no frame)";
if (block->must_construct_frame()) os << " (construct frame)";
if (block->must_deconstruct_frame()) os << " (deconstruct frame)";
if (block->IsLoopHeader()) {
os << " loop blocks: [" << block->rpo_number() << ", " << block->loop_end()
<< ")";
}
os << " instructions: [" << block->code_start() << ", " << block->code_end()
<< ")" << std::endl
<< " predecessors:";
for (RpoNumber pred : block->predecessors()) {
os << " B" << pred.ToInt();
}
os << std::endl;
for (const PhiInstruction* phi : block->phis()) {
PrintableInstructionOperand printable_op = {config, phi->output()};
os << " phi: " << printable_op << " =";
for (int input : phi->operands()) {
os << " v" << input;
}
os << std::endl;
}
PrintableInstruction printable_instr;
printable_instr.register_configuration_ = config;
for (int j = block->first_instruction_index();
j <= block->last_instruction_index(); j++) {
printable_instr.instr_ = code->InstructionAt(j);
os << " " << std::setw(5) << j << ": " << printable_instr << std::endl;
}
os << " successors:";
for (RpoNumber succ : block->successors()) {
os << " B" << succ.ToInt();
}
os << std::endl;
return os;
}
InstructionBlocks* InstructionSequence::InstructionBlocksFor(
Zone* zone, const Schedule* schedule) {
InstructionBlocks* blocks = zone->NewArray<InstructionBlocks>(1);
new (blocks) InstructionBlocks(
static_cast<int>(schedule->rpo_order()->size()), nullptr, zone);
size_t rpo_number = 0;
for (BasicBlockVector::const_iterator it = schedule->rpo_order()->begin();
it != schedule->rpo_order()->end(); ++it, ++rpo_number) {
DCHECK(!(*blocks)[rpo_number]);
DCHECK(GetRpo(*it).ToSize() == rpo_number);
(*blocks)[rpo_number] = InstructionBlockFor(zone, *it);
}
ComputeAssemblyOrder(blocks);
return blocks;
}
void InstructionSequence::ValidateEdgeSplitForm() const {
// Validate blocks are in edge-split form: no block with multiple successors
// has an edge to a block (== a successor) with more than one predecessors.
for (const InstructionBlock* block : instruction_blocks()) {
if (block->SuccessorCount() > 1) {
for (const RpoNumber& successor_id : block->successors()) {
const InstructionBlock* successor = InstructionBlockAt(successor_id);
// Expect precisely one predecessor: "block".
CHECK(successor->PredecessorCount() == 1 &&
successor->predecessors()[0] == block->rpo_number());
}
}
}
}
void InstructionSequence::ValidateDeferredBlockExitPaths() const {
// A deferred block with more than one successor must have all its successors
// deferred.
for (const InstructionBlock* block : instruction_blocks()) {
if (!block->IsDeferred() || block->SuccessorCount() <= 1) continue;
for (RpoNumber successor_id : block->successors()) {
CHECK(InstructionBlockAt(successor_id)->IsDeferred());
}
}
}
void InstructionSequence::ValidateDeferredBlockEntryPaths() const {
// If a deferred block has multiple predecessors, they have to
// all be deferred. Otherwise, we can run into a situation where a range
// that spills only in deferred blocks inserts its spill in the block, but
// other ranges need moves inserted by ResolveControlFlow in the predecessors,
// which may clobber the register of this range.
for (const InstructionBlock* block : instruction_blocks()) {
if (!block->IsDeferred() || block->PredecessorCount() <= 1) continue;
for (RpoNumber predecessor_id : block->predecessors()) {
CHECK(InstructionBlockAt(predecessor_id)->IsDeferred());
}
}
}
void InstructionSequence::ValidateSSA() const {
// TODO(mtrofin): We could use a local zone here instead.
BitVector definitions(VirtualRegisterCount(), zone());
for (const Instruction* instruction : *this) {
for (size_t i = 0; i < instruction->OutputCount(); ++i) {
const InstructionOperand* output = instruction->OutputAt(i);
int vreg = (output->IsConstant())
? ConstantOperand::cast(output)->virtual_register()
: UnallocatedOperand::cast(output)->virtual_register();
CHECK(!definitions.Contains(vreg));
definitions.Add(vreg);
}
}
}
void InstructionSequence::ComputeAssemblyOrder(InstructionBlocks* blocks) {
int ao = 0;
for (InstructionBlock* const block : *blocks) {
if (!block->IsDeferred()) {
block->set_ao_number(RpoNumber::FromInt(ao++));
}
}
for (InstructionBlock* const block : *blocks) {
if (block->IsDeferred()) {
block->set_ao_number(RpoNumber::FromInt(ao++));
}
}
}
InstructionSequence::InstructionSequence(Isolate* isolate,
Zone* instruction_zone,
InstructionBlocks* instruction_blocks)
: isolate_(isolate),
zone_(instruction_zone),
instruction_blocks_(instruction_blocks),
source_positions_(zone()),
constants_(ConstantMap::key_compare(),
ConstantMap::allocator_type(zone())),
immediates_(zone()),
instructions_(zone()),
next_virtual_register_(0),
reference_maps_(zone()),
representations_(zone()),
representation_mask_(0),
deoptimization_entries_(zone()),
current_block_(nullptr) {}
int InstructionSequence::NextVirtualRegister() {
int virtual_register = next_virtual_register_++;
CHECK_NE(virtual_register, InstructionOperand::kInvalidVirtualRegister);
return virtual_register;
}
Instruction* InstructionSequence::GetBlockStart(RpoNumber rpo) const {
const InstructionBlock* block = InstructionBlockAt(rpo);
return InstructionAt(block->code_start());
}
void InstructionSequence::StartBlock(RpoNumber rpo) {
DCHECK_NULL(current_block_);
current_block_ = InstructionBlockAt(rpo);
int code_start = static_cast<int>(instructions_.size());
current_block_->set_code_start(code_start);
}
void InstructionSequence::EndBlock(RpoNumber rpo) {
int end = static_cast<int>(instructions_.size());
DCHECK_EQ(current_block_->rpo_number(), rpo);
CHECK(current_block_->code_start() >= 0 &&
current_block_->code_start() < end);
current_block_->set_code_end(end);
current_block_ = nullptr;
}
int InstructionSequence::AddInstruction(Instruction* instr) {
DCHECK_NOT_NULL(current_block_);
int index = static_cast<int>(instructions_.size());
instr->set_block(current_block_);
instructions_.push_back(instr);
if (instr->NeedsReferenceMap()) {
DCHECK_NULL(instr->reference_map());
ReferenceMap* reference_map = new (zone()) ReferenceMap(zone());
reference_map->set_instruction_position(index);
instr->set_reference_map(reference_map);
reference_maps_.push_back(reference_map);
}
return index;
}
InstructionBlock* InstructionSequence::GetInstructionBlock(
int instruction_index) const {
return instructions()[instruction_index]->block();
}
static MachineRepresentation FilterRepresentation(MachineRepresentation rep) {
switch (rep) {
case MachineRepresentation::kBit:
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
return InstructionSequence::DefaultRepresentation();
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTaggedPointer:
case MachineRepresentation::kTagged:
case MachineRepresentation::kFloat32:
case MachineRepresentation::kFloat64:
case MachineRepresentation::kSimd128:
return rep;
case MachineRepresentation::kNone:
break;
}
UNREACHABLE();
}
MachineRepresentation InstructionSequence::GetRepresentation(
int virtual_register) const {
DCHECK_LE(0, virtual_register);
DCHECK_LT(virtual_register, VirtualRegisterCount());
if (virtual_register >= static_cast<int>(representations_.size())) {
return DefaultRepresentation();
}
return representations_[virtual_register];
}
void InstructionSequence::MarkAsRepresentation(MachineRepresentation rep,
int virtual_register) {
DCHECK_LE(0, virtual_register);
DCHECK_LT(virtual_register, VirtualRegisterCount());
if (virtual_register >= static_cast<int>(representations_.size())) {
representations_.resize(VirtualRegisterCount(), DefaultRepresentation());
}
rep = FilterRepresentation(rep);
DCHECK_IMPLIES(representations_[virtual_register] != rep,
representations_[virtual_register] == DefaultRepresentation());
representations_[virtual_register] = rep;
representation_mask_ |= 1 << static_cast<int>(rep);
}
int InstructionSequence::AddDeoptimizationEntry(
FrameStateDescriptor* descriptor, DeoptimizeKind kind,
DeoptimizeReason reason, VectorSlotPair const& feedback) {
int deoptimization_id = static_cast<int>(deoptimization_entries_.size());
deoptimization_entries_.push_back(
DeoptimizationEntry(descriptor, kind, reason, feedback));
return deoptimization_id;
}
DeoptimizationEntry const& InstructionSequence::GetDeoptimizationEntry(
int state_id) {
return deoptimization_entries_[state_id];
}
RpoNumber InstructionSequence::InputRpo(Instruction* instr, size_t index) {
InstructionOperand* operand = instr->InputAt(index);
Constant constant =
operand->IsImmediate()
? GetImmediate(ImmediateOperand::cast(operand))
: GetConstant(ConstantOperand::cast(operand)->virtual_register());
return constant.ToRpoNumber();
}
bool InstructionSequence::GetSourcePosition(const Instruction* instr,
SourcePosition* result) const {
auto it = source_positions_.find(instr);
if (it == source_positions_.end()) return false;
*result = it->second;
return true;
}
void InstructionSequence::SetSourcePosition(const Instruction* instr,
SourcePosition value) {
source_positions_.insert(std::make_pair(instr, value));
}
void InstructionSequence::Print(const RegisterConfiguration* config) const {
PrintableInstructionSequence wrapper;
wrapper.register_configuration_ = config;
wrapper.sequence_ = this;
StdoutStream{} << wrapper << std::endl;
}
void InstructionSequence::Print() const { Print(GetRegConfig()); }
void InstructionSequence::PrintBlock(const RegisterConfiguration* config,
int block_id) const {
RpoNumber rpo = RpoNumber::FromInt(block_id);
const InstructionBlock* block = InstructionBlockAt(rpo);
CHECK(block->rpo_number() == rpo);
PrintableInstructionBlock printable_block = {config, block, this};
StdoutStream{} << printable_block << std::endl;
}
void InstructionSequence::PrintBlock(int block_id) const {
PrintBlock(GetRegConfig(), block_id);
}
const RegisterConfiguration*
InstructionSequence::registerConfigurationForTesting_ = nullptr;
const RegisterConfiguration*
InstructionSequence::RegisterConfigurationForTesting() {
DCHECK_NOT_NULL(registerConfigurationForTesting_);
return registerConfigurationForTesting_;
}
void InstructionSequence::SetRegisterConfigurationForTesting(
const RegisterConfiguration* regConfig) {
registerConfigurationForTesting_ = regConfig;
GetRegConfig = InstructionSequence::RegisterConfigurationForTesting;
}
FrameStateDescriptor::FrameStateDescriptor(
Zone* zone, FrameStateType type, BailoutId bailout_id,
OutputFrameStateCombine state_combine, size_t parameters_count,
size_t locals_count, size_t stack_count,
MaybeHandle<SharedFunctionInfo> shared_info,
FrameStateDescriptor* outer_state)
: type_(type),
bailout_id_(bailout_id),
frame_state_combine_(state_combine),
parameters_count_(parameters_count),
locals_count_(locals_count),
stack_count_(stack_count),
values_(zone),
shared_info_(shared_info),
outer_state_(outer_state) {}
size_t FrameStateDescriptor::GetSize() const {
return 1 + parameters_count() + locals_count() + stack_count() +
(HasContext() ? 1 : 0);
}
size_t FrameStateDescriptor::GetTotalSize() const {
size_t total_size = 0;
for (const FrameStateDescriptor* iter = this; iter != nullptr;
iter = iter->outer_state_) {
total_size += iter->GetSize();
}
return total_size;
}
size_t FrameStateDescriptor::GetFrameCount() const {
size_t count = 0;
for (const FrameStateDescriptor* iter = this; iter != nullptr;
iter = iter->outer_state_) {
++count;
}
return count;
}
size_t FrameStateDescriptor::GetJSFrameCount() const {
size_t count = 0;
for (const FrameStateDescriptor* iter = this; iter != nullptr;
iter = iter->outer_state_) {
if (FrameStateFunctionInfo::IsJSFunctionType(iter->type_)) {
++count;
}
}
return count;
}
std::ostream& operator<<(std::ostream& os, const RpoNumber& rpo) {
return os << rpo.ToSize();
}
std::ostream& operator<<(std::ostream& os,
const PrintableInstructionSequence& printable) {
const InstructionSequence& code = *printable.sequence_;
for (size_t i = 0; i < code.immediates_.size(); ++i) {
Constant constant = code.immediates_[i];
os << "IMM#" << i << ": " << constant << "\n";
}
int i = 0;
for (ConstantMap::const_iterator it = code.constants_.begin();
it != code.constants_.end(); ++i, ++it) {
os << "CST#" << i << ": v" << it->first << " = " << it->second << "\n";
}
PrintableInstructionBlock printable_block = {
printable.register_configuration_, nullptr, printable.sequence_};
for (int i = 0; i < code.InstructionBlockCount(); i++) {
printable_block.block_ = code.InstructionBlockAt(RpoNumber::FromInt(i));
os << printable_block;
}
return os;
}
} // namespace compiler
} // namespace internal
} // namespace v8