// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-assembler.h"
#include <ostream>
#include "src/code-factory.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/raw-machine-assembler.h"
#include "src/compiler/schedule.h"
#include "src/frames.h"
#include "src/interface-descriptors.h"
#include "src/interpreter/bytecodes.h"
#include "src/lsan.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/utils.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
constexpr MachineType MachineTypeOf<Smi>::value;
constexpr MachineType MachineTypeOf<Object>::value;
namespace compiler {
static_assert(std::is_convertible<TNode<Number>, TNode<Object>>::value,
"test subtyping");
static_assert(std::is_convertible<TNode<UnionT<Smi, HeapNumber>>,
TNode<UnionT<Smi, HeapObject>>>::value,
"test subtyping");
static_assert(
!std::is_convertible<TNode<UnionT<Smi, HeapObject>>, TNode<Number>>::value,
"test subtyping");
CodeAssemblerState::CodeAssemblerState(
Isolate* isolate, Zone* zone, const CallInterfaceDescriptor& descriptor,
Code::Kind kind, const char* name, PoisoningMitigationLevel poisoning_level,
uint32_t stub_key, int32_t builtin_index)
// TODO(rmcilroy): Should we use Linkage::GetBytecodeDispatchDescriptor for
// bytecode handlers?
: CodeAssemblerState(
isolate, zone,
Linkage::GetStubCallDescriptor(
zone, descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties),
kind, name, poisoning_level, stub_key, builtin_index) {}
CodeAssemblerState::CodeAssemblerState(Isolate* isolate, Zone* zone,
int parameter_count, Code::Kind kind,
const char* name,
PoisoningMitigationLevel poisoning_level,
int32_t builtin_index)
: CodeAssemblerState(
isolate, zone,
Linkage::GetJSCallDescriptor(zone, false, parameter_count,
kind == Code::BUILTIN
? CallDescriptor::kPushArgumentCount
: CallDescriptor::kNoFlags),
kind, name, poisoning_level, 0, builtin_index) {}
CodeAssemblerState::CodeAssemblerState(Isolate* isolate, Zone* zone,
CallDescriptor* call_descriptor,
Code::Kind kind, const char* name,
PoisoningMitigationLevel poisoning_level,
uint32_t stub_key, int32_t builtin_index)
: raw_assembler_(new RawMachineAssembler(
isolate, new (zone) Graph(zone), call_descriptor,
MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags(),
InstructionSelector::AlignmentRequirements(), poisoning_level)),
kind_(kind),
name_(name),
stub_key_(stub_key),
builtin_index_(builtin_index),
code_generated_(false),
variables_(zone) {}
CodeAssemblerState::~CodeAssemblerState() {}
int CodeAssemblerState::parameter_count() const {
return static_cast<int>(raw_assembler_->call_descriptor()->ParameterCount());
}
CodeAssembler::~CodeAssembler() {}
#if DEBUG
void CodeAssemblerState::PrintCurrentBlock(std::ostream& os) {
raw_assembler_->PrintCurrentBlock(os);
}
bool CodeAssemblerState::InsideBlock() { return raw_assembler_->InsideBlock(); }
#endif
void CodeAssemblerState::SetInitialDebugInformation(const char* msg,
const char* file,
int line) {
#if DEBUG
AssemblerDebugInfo debug_info = {msg, file, line};
raw_assembler_->SetInitialDebugInformation(debug_info);
#endif // DEBUG
}
class BreakOnNodeDecorator final : public GraphDecorator {
public:
explicit BreakOnNodeDecorator(NodeId node_id) : node_id_(node_id) {}
void Decorate(Node* node) final {
if (node->id() == node_id_) {
base::OS::DebugBreak();
}
}
private:
NodeId node_id_;
};
void CodeAssembler::BreakOnNode(int node_id) {
Graph* graph = raw_assembler()->graph();
Zone* zone = graph->zone();
GraphDecorator* decorator =
new (zone) BreakOnNodeDecorator(static_cast<NodeId>(node_id));
graph->AddDecorator(decorator);
}
void CodeAssembler::RegisterCallGenerationCallbacks(
const CodeAssemblerCallback& call_prologue,
const CodeAssemblerCallback& call_epilogue) {
// The callback can be registered only once.
DCHECK(!state_->call_prologue_);
DCHECK(!state_->call_epilogue_);
state_->call_prologue_ = call_prologue;
state_->call_epilogue_ = call_epilogue;
}
void CodeAssembler::UnregisterCallGenerationCallbacks() {
state_->call_prologue_ = nullptr;
state_->call_epilogue_ = nullptr;
}
void CodeAssembler::CallPrologue() {
if (state_->call_prologue_) {
state_->call_prologue_();
}
}
void CodeAssembler::CallEpilogue() {
if (state_->call_epilogue_) {
state_->call_epilogue_();
}
}
bool CodeAssembler::Word32ShiftIsSafe() const {
return raw_assembler()->machine()->Word32ShiftIsSafe();
}
PoisoningMitigationLevel CodeAssembler::poisoning_level() const {
return raw_assembler()->poisoning_level();
}
// static
Handle<Code> CodeAssembler::GenerateCode(CodeAssemblerState* state,
const AssemblerOptions& options) {
DCHECK(!state->code_generated_);
RawMachineAssembler* rasm = state->raw_assembler_.get();
Schedule* schedule = rasm->Export();
JumpOptimizationInfo jump_opt;
bool should_optimize_jumps =
rasm->isolate()->serializer_enabled() && FLAG_turbo_rewrite_far_jumps;
Handle<Code> code =
Pipeline::GenerateCodeForCodeStub(
rasm->isolate(), rasm->call_descriptor(), rasm->graph(), schedule,
state->kind_, state->name_, state->stub_key_, state->builtin_index_,
should_optimize_jumps ? &jump_opt : nullptr, rasm->poisoning_level(),
options)
.ToHandleChecked();
if (jump_opt.is_optimizable()) {
jump_opt.set_optimizing();
// Regenerate machine code
code =
Pipeline::GenerateCodeForCodeStub(
rasm->isolate(), rasm->call_descriptor(), rasm->graph(), schedule,
state->kind_, state->name_, state->stub_key_, state->builtin_index_,
&jump_opt, rasm->poisoning_level(), options)
.ToHandleChecked();
}
state->code_generated_ = true;
return code;
}
bool CodeAssembler::Is64() const { return raw_assembler()->machine()->Is64(); }
bool CodeAssembler::IsFloat64RoundUpSupported() const {
return raw_assembler()->machine()->Float64RoundUp().IsSupported();
}
bool CodeAssembler::IsFloat64RoundDownSupported() const {
return raw_assembler()->machine()->Float64RoundDown().IsSupported();
}
bool CodeAssembler::IsFloat64RoundTiesEvenSupported() const {
return raw_assembler()->machine()->Float64RoundTiesEven().IsSupported();
}
bool CodeAssembler::IsFloat64RoundTruncateSupported() const {
return raw_assembler()->machine()->Float64RoundTruncate().IsSupported();
}
bool CodeAssembler::IsInt32AbsWithOverflowSupported() const {
return raw_assembler()->machine()->Int32AbsWithOverflow().IsSupported();
}
bool CodeAssembler::IsInt64AbsWithOverflowSupported() const {
return raw_assembler()->machine()->Int64AbsWithOverflow().IsSupported();
}
bool CodeAssembler::IsIntPtrAbsWithOverflowSupported() const {
return Is64() ? IsInt64AbsWithOverflowSupported()
: IsInt32AbsWithOverflowSupported();
}
#ifdef DEBUG
void CodeAssembler::GenerateCheckMaybeObjectIsObject(Node* node,
const char* location) {
Label ok(this);
GotoIf(WordNotEqual(WordAnd(BitcastMaybeObjectToWord(node),
IntPtrConstant(kHeapObjectTagMask)),
IntPtrConstant(kWeakHeapObjectTag)),
&ok);
Node* message_node = StringConstant(location);
DebugAbort(message_node);
Unreachable();
Bind(&ok);
}
#endif
TNode<Int32T> CodeAssembler::Int32Constant(int32_t value) {
return UncheckedCast<Int32T>(raw_assembler()->Int32Constant(value));
}
TNode<Int64T> CodeAssembler::Int64Constant(int64_t value) {
return UncheckedCast<Int64T>(raw_assembler()->Int64Constant(value));
}
TNode<IntPtrT> CodeAssembler::IntPtrConstant(intptr_t value) {
return UncheckedCast<IntPtrT>(raw_assembler()->IntPtrConstant(value));
}
TNode<Number> CodeAssembler::NumberConstant(double value) {
int smi_value;
if (DoubleToSmiInteger(value, &smi_value)) {
return UncheckedCast<Number>(SmiConstant(smi_value));
} else {
// We allocate the heap number constant eagerly at this point instead of
// deferring allocation to code generation
// (see AllocateAndInstallRequestedHeapObjects) since that makes it easier
// to generate constant lookups for embedded builtins.
return UncheckedCast<Number>(
HeapConstant(isolate()->factory()->NewHeapNumber(value, TENURED)));
}
}
TNode<Smi> CodeAssembler::SmiConstant(Smi* value) {
return UncheckedCast<Smi>(
BitcastWordToTaggedSigned(IntPtrConstant(bit_cast<intptr_t>(value))));
}
TNode<Smi> CodeAssembler::SmiConstant(int value) {
return SmiConstant(Smi::FromInt(value));
}
TNode<HeapObject> CodeAssembler::UntypedHeapConstant(
Handle<HeapObject> object) {
return UncheckedCast<HeapObject>(raw_assembler()->HeapConstant(object));
}
TNode<String> CodeAssembler::StringConstant(const char* str) {
Handle<String> internalized_string =
factory()->InternalizeOneByteString(OneByteVector(str));
return UncheckedCast<String>(HeapConstant(internalized_string));
}
TNode<Oddball> CodeAssembler::BooleanConstant(bool value) {
return UncheckedCast<Oddball>(raw_assembler()->BooleanConstant(value));
}
TNode<ExternalReference> CodeAssembler::ExternalConstant(
ExternalReference address) {
return UncheckedCast<ExternalReference>(
raw_assembler()->ExternalConstant(address));
}
TNode<Float64T> CodeAssembler::Float64Constant(double value) {
return UncheckedCast<Float64T>(raw_assembler()->Float64Constant(value));
}
TNode<HeapNumber> CodeAssembler::NaNConstant() {
return UncheckedCast<HeapNumber>(LoadRoot(Heap::kNanValueRootIndex));
}
bool CodeAssembler::ToInt32Constant(Node* node, int32_t& out_value) {
{
Int64Matcher m(node);
if (m.HasValue() && m.IsInRange(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::max())) {
out_value = static_cast<int32_t>(m.Value());
return true;
}
}
{
Int32Matcher m(node);
if (m.HasValue()) {
out_value = m.Value();
return true;
}
}
return false;
}
bool CodeAssembler::ToInt64Constant(Node* node, int64_t& out_value) {
Int64Matcher m(node);
if (m.HasValue()) out_value = m.Value();
return m.HasValue();
}
bool CodeAssembler::ToSmiConstant(Node* node, Smi*& out_value) {
if (node->opcode() == IrOpcode::kBitcastWordToTaggedSigned) {
node = node->InputAt(0);
}
IntPtrMatcher m(node);
if (m.HasValue()) {
intptr_t value = m.Value();
// Make sure that the value is actually a smi
CHECK_EQ(0, value & ((static_cast<intptr_t>(1) << kSmiShiftSize) - 1));
out_value = Smi::cast(bit_cast<Object*>(value));
return true;
}
return false;
}
bool CodeAssembler::ToIntPtrConstant(Node* node, intptr_t& out_value) {
if (node->opcode() == IrOpcode::kBitcastWordToTaggedSigned ||
node->opcode() == IrOpcode::kBitcastWordToTagged) {
node = node->InputAt(0);
}
IntPtrMatcher m(node);
if (m.HasValue()) out_value = m.Value();
return m.HasValue();
}
bool CodeAssembler::IsUndefinedConstant(TNode<Object> node) {
compiler::HeapObjectMatcher m(node);
return m.Is(isolate()->factory()->undefined_value());
}
bool CodeAssembler::IsNullConstant(TNode<Object> node) {
compiler::HeapObjectMatcher m(node);
return m.Is(isolate()->factory()->null_value());
}
Node* CodeAssembler::Parameter(int index) {
if (index == kTargetParameterIndex) return raw_assembler()->TargetParameter();
return raw_assembler()->Parameter(index);
}
bool CodeAssembler::IsJSFunctionCall() const {
auto call_descriptor = raw_assembler()->call_descriptor();
return call_descriptor->IsJSFunctionCall();
}
TNode<Context> CodeAssembler::GetJSContextParameter() {
auto call_descriptor = raw_assembler()->call_descriptor();
DCHECK(call_descriptor->IsJSFunctionCall());
return CAST(Parameter(Linkage::GetJSCallContextParamIndex(
static_cast<int>(call_descriptor->JSParameterCount()))));
}
void CodeAssembler::Return(SloppyTNode<Object> value) {
return raw_assembler()->Return(value);
}
void CodeAssembler::Return(SloppyTNode<Object> value1,
SloppyTNode<Object> value2) {
return raw_assembler()->Return(value1, value2);
}
void CodeAssembler::Return(SloppyTNode<Object> value1,
SloppyTNode<Object> value2,
SloppyTNode<Object> value3) {
return raw_assembler()->Return(value1, value2, value3);
}
void CodeAssembler::PopAndReturn(Node* pop, Node* value) {
return raw_assembler()->PopAndReturn(pop, value);
}
void CodeAssembler::ReturnIf(Node* condition, Node* value) {
Label if_return(this), if_continue(this);
Branch(condition, &if_return, &if_continue);
Bind(&if_return);
Return(value);
Bind(&if_continue);
}
void CodeAssembler::ReturnRaw(Node* value) {
return raw_assembler()->Return(value);
}
void CodeAssembler::DebugAbort(Node* message) {
raw_assembler()->DebugAbort(message);
}
void CodeAssembler::DebugBreak() { raw_assembler()->DebugBreak(); }
void CodeAssembler::Unreachable() {
DebugBreak();
raw_assembler()->Unreachable();
}
void CodeAssembler::Comment(const char* format, ...) {
if (!FLAG_code_comments) return;
char buffer[4 * KB];
StringBuilder builder(buffer, arraysize(buffer));
va_list arguments;
va_start(arguments, format);
builder.AddFormattedList(format, arguments);
va_end(arguments);
// Copy the string before recording it in the assembler to avoid
// issues when the stack allocated buffer goes out of scope.
const int prefix_len = 2;
int length = builder.position() + 1;
char* copy = reinterpret_cast<char*>(malloc(length + prefix_len));
LSAN_IGNORE_OBJECT(copy);
MemCopy(copy + prefix_len, builder.Finalize(), length);
copy[0] = ';';
copy[1] = ' ';
raw_assembler()->Comment(copy);
}
void CodeAssembler::Bind(Label* label) { return label->Bind(); }
#if DEBUG
void CodeAssembler::Bind(Label* label, AssemblerDebugInfo debug_info) {
return label->Bind(debug_info);
}
#endif // DEBUG
Node* CodeAssembler::LoadFramePointer() {
return raw_assembler()->LoadFramePointer();
}
Node* CodeAssembler::LoadParentFramePointer() {
return raw_assembler()->LoadParentFramePointer();
}
Node* CodeAssembler::LoadStackPointer() {
return raw_assembler()->LoadStackPointer();
}
TNode<Object> CodeAssembler::TaggedPoisonOnSpeculation(
SloppyTNode<Object> value) {
return UncheckedCast<Object>(
raw_assembler()->TaggedPoisonOnSpeculation(value));
}
TNode<WordT> CodeAssembler::WordPoisonOnSpeculation(SloppyTNode<WordT> value) {
return UncheckedCast<WordT>(raw_assembler()->WordPoisonOnSpeculation(value));
}
#define DEFINE_CODE_ASSEMBLER_BINARY_OP(name, ResType, Arg1Type, Arg2Type) \
TNode<ResType> CodeAssembler::name(SloppyTNode<Arg1Type> a, \
SloppyTNode<Arg2Type> b) { \
return UncheckedCast<ResType>(raw_assembler()->name(a, b)); \
}
CODE_ASSEMBLER_BINARY_OP_LIST(DEFINE_CODE_ASSEMBLER_BINARY_OP)
#undef DEFINE_CODE_ASSEMBLER_BINARY_OP
TNode<WordT> CodeAssembler::IntPtrAdd(SloppyTNode<WordT> left,
SloppyTNode<WordT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant + right_constant);
}
if (left_constant == 0) {
return right;
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<WordT>(raw_assembler()->IntPtrAdd(left, right));
}
TNode<WordT> CodeAssembler::IntPtrSub(SloppyTNode<WordT> left,
SloppyTNode<WordT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant - right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<IntPtrT>(raw_assembler()->IntPtrSub(left, right));
}
TNode<WordT> CodeAssembler::IntPtrMul(SloppyTNode<WordT> left,
SloppyTNode<WordT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant * right_constant);
}
if (base::bits::IsPowerOfTwo(left_constant)) {
return WordShl(right, WhichPowerOf2(left_constant));
}
} else if (is_right_constant) {
if (base::bits::IsPowerOfTwo(right_constant)) {
return WordShl(left, WhichPowerOf2(right_constant));
}
}
return UncheckedCast<IntPtrT>(raw_assembler()->IntPtrMul(left, right));
}
TNode<WordT> CodeAssembler::WordShl(SloppyTNode<WordT> value, int shift) {
return (shift != 0) ? WordShl(value, IntPtrConstant(shift)) : value;
}
TNode<WordT> CodeAssembler::WordShr(SloppyTNode<WordT> value, int shift) {
return (shift != 0) ? WordShr(value, IntPtrConstant(shift)) : value;
}
TNode<WordT> CodeAssembler::WordSar(SloppyTNode<WordT> value, int shift) {
return (shift != 0) ? WordSar(value, IntPtrConstant(shift)) : value;
}
TNode<Word32T> CodeAssembler::Word32Shr(SloppyTNode<Word32T> value, int shift) {
return (shift != 0) ? Word32Shr(value, Int32Constant(shift)) : value;
}
TNode<WordT> CodeAssembler::WordOr(SloppyTNode<WordT> left,
SloppyTNode<WordT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant | right_constant);
}
if (left_constant == 0) {
return right;
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<WordT>(raw_assembler()->WordOr(left, right));
}
TNode<WordT> CodeAssembler::WordAnd(SloppyTNode<WordT> left,
SloppyTNode<WordT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant & right_constant);
}
}
return UncheckedCast<WordT>(raw_assembler()->WordAnd(left, right));
}
TNode<WordT> CodeAssembler::WordXor(SloppyTNode<WordT> left,
SloppyTNode<WordT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant ^ right_constant);
}
}
return UncheckedCast<WordT>(raw_assembler()->WordXor(left, right));
}
TNode<WordT> CodeAssembler::WordShl(SloppyTNode<WordT> left,
SloppyTNode<IntegralT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant << right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<WordT>(raw_assembler()->WordShl(left, right));
}
TNode<WordT> CodeAssembler::WordShr(SloppyTNode<WordT> left,
SloppyTNode<IntegralT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(static_cast<uintptr_t>(left_constant) >>
right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<WordT>(raw_assembler()->WordShr(left, right));
}
TNode<WordT> CodeAssembler::WordSar(SloppyTNode<WordT> left,
SloppyTNode<IntegralT> right) {
intptr_t left_constant;
bool is_left_constant = ToIntPtrConstant(left, left_constant);
intptr_t right_constant;
bool is_right_constant = ToIntPtrConstant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return IntPtrConstant(left_constant >> right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<WordT>(raw_assembler()->WordSar(left, right));
}
TNode<Word32T> CodeAssembler::Word32Or(SloppyTNode<Word32T> left,
SloppyTNode<Word32T> right) {
int32_t left_constant;
bool is_left_constant = ToInt32Constant(left, left_constant);
int32_t right_constant;
bool is_right_constant = ToInt32Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int32Constant(left_constant | right_constant);
}
if (left_constant == 0) {
return right;
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word32T>(raw_assembler()->Word32Or(left, right));
}
TNode<Word32T> CodeAssembler::Word32And(SloppyTNode<Word32T> left,
SloppyTNode<Word32T> right) {
int32_t left_constant;
bool is_left_constant = ToInt32Constant(left, left_constant);
int32_t right_constant;
bool is_right_constant = ToInt32Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int32Constant(left_constant & right_constant);
}
}
return UncheckedCast<Word32T>(raw_assembler()->Word32And(left, right));
}
TNode<Word32T> CodeAssembler::Word32Xor(SloppyTNode<Word32T> left,
SloppyTNode<Word32T> right) {
int32_t left_constant;
bool is_left_constant = ToInt32Constant(left, left_constant);
int32_t right_constant;
bool is_right_constant = ToInt32Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int32Constant(left_constant ^ right_constant);
}
}
return UncheckedCast<Word32T>(raw_assembler()->Word32Xor(left, right));
}
TNode<Word32T> CodeAssembler::Word32Shl(SloppyTNode<Word32T> left,
SloppyTNode<Word32T> right) {
int32_t left_constant;
bool is_left_constant = ToInt32Constant(left, left_constant);
int32_t right_constant;
bool is_right_constant = ToInt32Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int32Constant(left_constant << right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word32T>(raw_assembler()->Word32Shl(left, right));
}
TNode<Word32T> CodeAssembler::Word32Shr(SloppyTNode<Word32T> left,
SloppyTNode<Word32T> right) {
int32_t left_constant;
bool is_left_constant = ToInt32Constant(left, left_constant);
int32_t right_constant;
bool is_right_constant = ToInt32Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int32Constant(static_cast<uint32_t>(left_constant) >>
right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word32T>(raw_assembler()->Word32Shr(left, right));
}
TNode<Word32T> CodeAssembler::Word32Sar(SloppyTNode<Word32T> left,
SloppyTNode<Word32T> right) {
int32_t left_constant;
bool is_left_constant = ToInt32Constant(left, left_constant);
int32_t right_constant;
bool is_right_constant = ToInt32Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int32Constant(left_constant >> right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word32T>(raw_assembler()->Word32Sar(left, right));
}
TNode<Word64T> CodeAssembler::Word64Or(SloppyTNode<Word64T> left,
SloppyTNode<Word64T> right) {
int64_t left_constant;
bool is_left_constant = ToInt64Constant(left, left_constant);
int64_t right_constant;
bool is_right_constant = ToInt64Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int64Constant(left_constant | right_constant);
}
if (left_constant == 0) {
return right;
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word64T>(raw_assembler()->Word64Or(left, right));
}
TNode<Word64T> CodeAssembler::Word64And(SloppyTNode<Word64T> left,
SloppyTNode<Word64T> right) {
int64_t left_constant;
bool is_left_constant = ToInt64Constant(left, left_constant);
int64_t right_constant;
bool is_right_constant = ToInt64Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int64Constant(left_constant & right_constant);
}
}
return UncheckedCast<Word64T>(raw_assembler()->Word64And(left, right));
}
TNode<Word64T> CodeAssembler::Word64Xor(SloppyTNode<Word64T> left,
SloppyTNode<Word64T> right) {
int64_t left_constant;
bool is_left_constant = ToInt64Constant(left, left_constant);
int64_t right_constant;
bool is_right_constant = ToInt64Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int64Constant(left_constant ^ right_constant);
}
}
return UncheckedCast<Word64T>(raw_assembler()->Word64Xor(left, right));
}
TNode<Word64T> CodeAssembler::Word64Shl(SloppyTNode<Word64T> left,
SloppyTNode<Word64T> right) {
int64_t left_constant;
bool is_left_constant = ToInt64Constant(left, left_constant);
int64_t right_constant;
bool is_right_constant = ToInt64Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int64Constant(left_constant << right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word64T>(raw_assembler()->Word64Shl(left, right));
}
TNode<Word64T> CodeAssembler::Word64Shr(SloppyTNode<Word64T> left,
SloppyTNode<Word64T> right) {
int64_t left_constant;
bool is_left_constant = ToInt64Constant(left, left_constant);
int64_t right_constant;
bool is_right_constant = ToInt64Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int64Constant(static_cast<uint64_t>(left_constant) >>
right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word64T>(raw_assembler()->Word64Shr(left, right));
}
TNode<Word64T> CodeAssembler::Word64Sar(SloppyTNode<Word64T> left,
SloppyTNode<Word64T> right) {
int64_t left_constant;
bool is_left_constant = ToInt64Constant(left, left_constant);
int64_t right_constant;
bool is_right_constant = ToInt64Constant(right, right_constant);
if (is_left_constant) {
if (is_right_constant) {
return Int64Constant(left_constant >> right_constant);
}
} else if (is_right_constant) {
if (right_constant == 0) {
return left;
}
}
return UncheckedCast<Word64T>(raw_assembler()->Word64Sar(left, right));
}
#define CODE_ASSEMBLER_COMPARE(Name, ArgT, VarT, ToConstant, op) \
TNode<BoolT> CodeAssembler::Name(SloppyTNode<ArgT> left, \
SloppyTNode<ArgT> right) { \
VarT lhs, rhs; \
if (ToConstant(left, lhs) && ToConstant(right, rhs)) { \
return BoolConstant(lhs op rhs); \
} \
return UncheckedCast<BoolT>(raw_assembler()->Name(left, right)); \
}
CODE_ASSEMBLER_COMPARE(IntPtrEqual, WordT, intptr_t, ToIntPtrConstant, ==)
CODE_ASSEMBLER_COMPARE(WordEqual, WordT, intptr_t, ToIntPtrConstant, ==)
CODE_ASSEMBLER_COMPARE(WordNotEqual, WordT, intptr_t, ToIntPtrConstant, !=)
CODE_ASSEMBLER_COMPARE(Word32Equal, Word32T, int32_t, ToInt32Constant, ==)
CODE_ASSEMBLER_COMPARE(Word32NotEqual, Word32T, int32_t, ToInt32Constant, !=)
CODE_ASSEMBLER_COMPARE(Word64Equal, Word64T, int64_t, ToInt64Constant, ==)
CODE_ASSEMBLER_COMPARE(Word64NotEqual, Word64T, int64_t, ToInt64Constant, !=)
#undef CODE_ASSEMBLER_COMPARE
TNode<UintPtrT> CodeAssembler::ChangeUint32ToWord(SloppyTNode<Word32T> value) {
if (raw_assembler()->machine()->Is64()) {
return UncheckedCast<UintPtrT>(
raw_assembler()->ChangeUint32ToUint64(value));
}
return ReinterpretCast<UintPtrT>(value);
}
TNode<IntPtrT> CodeAssembler::ChangeInt32ToIntPtr(SloppyTNode<Word32T> value) {
if (raw_assembler()->machine()->Is64()) {
return ReinterpretCast<IntPtrT>(raw_assembler()->ChangeInt32ToInt64(value));
}
return ReinterpretCast<IntPtrT>(value);
}
TNode<UintPtrT> CodeAssembler::ChangeFloat64ToUintPtr(
SloppyTNode<Float64T> value) {
if (raw_assembler()->machine()->Is64()) {
return ReinterpretCast<UintPtrT>(
raw_assembler()->ChangeFloat64ToUint64(value));
}
return ReinterpretCast<UintPtrT>(
raw_assembler()->ChangeFloat64ToUint32(value));
}
Node* CodeAssembler::RoundIntPtrToFloat64(Node* value) {
if (raw_assembler()->machine()->Is64()) {
return raw_assembler()->RoundInt64ToFloat64(value);
}
return raw_assembler()->ChangeInt32ToFloat64(value);
}
#define DEFINE_CODE_ASSEMBLER_UNARY_OP(name, ResType, ArgType) \
TNode<ResType> CodeAssembler::name(SloppyTNode<ArgType> a) { \
return UncheckedCast<ResType>(raw_assembler()->name(a)); \
}
CODE_ASSEMBLER_UNARY_OP_LIST(DEFINE_CODE_ASSEMBLER_UNARY_OP)
#undef DEFINE_CODE_ASSEMBLER_UNARY_OP
Node* CodeAssembler::Load(MachineType rep, Node* base,
LoadSensitivity needs_poisoning) {
return raw_assembler()->Load(rep, base, needs_poisoning);
}
Node* CodeAssembler::Load(MachineType rep, Node* base, Node* offset,
LoadSensitivity needs_poisoning) {
return raw_assembler()->Load(rep, base, offset, needs_poisoning);
}
Node* CodeAssembler::AtomicLoad(MachineType rep, Node* base, Node* offset) {
return raw_assembler()->AtomicLoad(rep, base, offset);
}
TNode<Object> CodeAssembler::LoadRoot(Heap::RootListIndex root_index) {
if (isolate()->heap()->RootCanBeTreatedAsConstant(root_index)) {
Handle<Object> root = isolate()->heap()->root_handle(root_index);
if (root->IsSmi()) {
return SmiConstant(Smi::cast(*root));
} else {
return HeapConstant(Handle<HeapObject>::cast(root));
}
}
// TODO(jgruber): In theory we could generate better code for this by
// letting the macro assembler decide how to load from the roots list. In most
// cases, it would boil down to loading from a fixed kRootRegister offset.
Node* roots_array_start =
ExternalConstant(ExternalReference::roots_array_start(isolate()));
return UncheckedCast<Object>(Load(MachineType::AnyTagged(), roots_array_start,
IntPtrConstant(root_index * kPointerSize)));
}
Node* CodeAssembler::Store(Node* base, Node* value) {
return raw_assembler()->Store(MachineRepresentation::kTagged, base, value,
kFullWriteBarrier);
}
Node* CodeAssembler::Store(Node* base, Node* offset, Node* value) {
return raw_assembler()->Store(MachineRepresentation::kTagged, base, offset,
value, kFullWriteBarrier);
}
Node* CodeAssembler::StoreWithMapWriteBarrier(Node* base, Node* offset,
Node* value) {
return raw_assembler()->Store(MachineRepresentation::kTagged, base, offset,
value, kMapWriteBarrier);
}
Node* CodeAssembler::StoreNoWriteBarrier(MachineRepresentation rep, Node* base,
Node* value) {
return raw_assembler()->Store(rep, base, value, kNoWriteBarrier);
}
Node* CodeAssembler::StoreNoWriteBarrier(MachineRepresentation rep, Node* base,
Node* offset, Node* value) {
return raw_assembler()->Store(rep, base, offset, value, kNoWriteBarrier);
}
Node* CodeAssembler::AtomicStore(MachineRepresentation rep, Node* base,
Node* offset, Node* value) {
return raw_assembler()->AtomicStore(rep, base, offset, value);
}
#define ATOMIC_FUNCTION(name) \
Node* CodeAssembler::Atomic##name(MachineType type, Node* base, \
Node* offset, Node* value) { \
return raw_assembler()->Atomic##name(type, base, offset, value); \
}
ATOMIC_FUNCTION(Exchange);
ATOMIC_FUNCTION(Add);
ATOMIC_FUNCTION(Sub);
ATOMIC_FUNCTION(And);
ATOMIC_FUNCTION(Or);
ATOMIC_FUNCTION(Xor);
#undef ATOMIC_FUNCTION
Node* CodeAssembler::AtomicCompareExchange(MachineType type, Node* base,
Node* offset, Node* old_value,
Node* new_value) {
return raw_assembler()->AtomicCompareExchange(type, base, offset, old_value,
new_value);
}
Node* CodeAssembler::StoreRoot(Heap::RootListIndex root_index, Node* value) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(root_index));
Node* roots_array_start =
ExternalConstant(ExternalReference::roots_array_start(isolate()));
return StoreNoWriteBarrier(MachineRepresentation::kTagged, roots_array_start,
IntPtrConstant(root_index * kPointerSize), value);
}
Node* CodeAssembler::Retain(Node* value) {
return raw_assembler()->Retain(value);
}
Node* CodeAssembler::Projection(int index, Node* value) {
return raw_assembler()->Projection(index, value);
}
void CodeAssembler::GotoIfException(Node* node, Label* if_exception,
Variable* exception_var) {
if (if_exception == nullptr) {
// If no handler is supplied, don't add continuations
return;
}
DCHECK(!node->op()->HasProperty(Operator::kNoThrow));
Label success(this), exception(this, Label::kDeferred);
success.MergeVariables();
exception.MergeVariables();
raw_assembler()->Continuations(node, success.label_, exception.label_);
Bind(&exception);
const Operator* op = raw_assembler()->common()->IfException();
Node* exception_value = raw_assembler()->AddNode(op, node, node);
if (exception_var != nullptr) {
exception_var->Bind(exception_value);
}
Goto(if_exception);
Bind(&success);
}
namespace {
template <size_t kMaxSize>
class NodeArray {
public:
void Add(Node* node) {
DCHECK_GT(kMaxSize, size());
*ptr_++ = node;
}
Node* const* data() const { return arr_; }
int size() const { return static_cast<int>(ptr_ - arr_); }
private:
Node* arr_[kMaxSize];
Node** ptr_ = arr_;
};
} // namespace
TNode<Object> CodeAssembler::CallRuntimeImpl(
Runtime::FunctionId function, TNode<Object> context,
std::initializer_list<TNode<Object>> args) {
int result_size = Runtime::FunctionForId(function)->result_size;
TNode<Code> centry =
HeapConstant(CodeFactory::RuntimeCEntry(isolate(), result_size));
return CallRuntimeWithCEntryImpl(function, centry, context, args);
}
TNode<Object> CodeAssembler::CallRuntimeWithCEntryImpl(
Runtime::FunctionId function, TNode<Code> centry, TNode<Object> context,
std::initializer_list<TNode<Object>> args) {
constexpr size_t kMaxNumArgs = 6;
DCHECK_GE(kMaxNumArgs, args.size());
int argc = static_cast<int>(args.size());
auto call_descriptor = Linkage::GetRuntimeCallDescriptor(
zone(), function, argc, Operator::kNoProperties,
CallDescriptor::kNoFlags);
Node* ref = ExternalConstant(ExternalReference::Create(function));
Node* arity = Int32Constant(argc);
NodeArray<kMaxNumArgs + 4> inputs;
inputs.Add(centry);
for (auto arg : args) inputs.Add(arg);
inputs.Add(ref);
inputs.Add(arity);
inputs.Add(context);
CallPrologue();
Node* return_value =
raw_assembler()->CallN(call_descriptor, inputs.size(), inputs.data());
CallEpilogue();
return UncheckedCast<Object>(return_value);
}
void CodeAssembler::TailCallRuntimeImpl(
Runtime::FunctionId function, TNode<Int32T> arity, TNode<Object> context,
std::initializer_list<TNode<Object>> args) {
int result_size = Runtime::FunctionForId(function)->result_size;
TNode<Code> centry =
HeapConstant(CodeFactory::RuntimeCEntry(isolate(), result_size));
return TailCallRuntimeWithCEntryImpl(function, arity, centry, context, args);
}
void CodeAssembler::TailCallRuntimeWithCEntryImpl(
Runtime::FunctionId function, TNode<Int32T> arity, TNode<Code> centry,
TNode<Object> context, std::initializer_list<TNode<Object>> args) {
constexpr size_t kMaxNumArgs = 6;
DCHECK_GE(kMaxNumArgs, args.size());
int argc = static_cast<int>(args.size());
auto call_descriptor = Linkage::GetRuntimeCallDescriptor(
zone(), function, argc, Operator::kNoProperties,
CallDescriptor::kNoFlags);
Node* ref = ExternalConstant(ExternalReference::Create(function));
NodeArray<kMaxNumArgs + 4> inputs;
inputs.Add(centry);
for (auto arg : args) inputs.Add(arg);
inputs.Add(ref);
inputs.Add(arity);
inputs.Add(context);
raw_assembler()->TailCallN(call_descriptor, inputs.size(), inputs.data());
}
Node* CodeAssembler::CallStubN(const CallInterfaceDescriptor& descriptor,
size_t result_size, int input_count,
Node* const* inputs) {
// implicit nodes are target and optionally context.
int implicit_nodes = descriptor.HasContextParameter() ? 2 : 1;
DCHECK_LE(implicit_nodes, input_count);
int argc = input_count - implicit_nodes;
DCHECK_LE(descriptor.GetParameterCount(), argc);
// Extra arguments not mentioned in the descriptor are passed on the stack.
int stack_parameter_count = argc - descriptor.GetRegisterParameterCount();
DCHECK_LE(descriptor.GetStackParameterCount(), stack_parameter_count);
DCHECK_EQ(result_size, descriptor.GetReturnCount());
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), descriptor, stack_parameter_count, CallDescriptor::kNoFlags,
Operator::kNoProperties);
CallPrologue();
Node* return_value =
raw_assembler()->CallN(call_descriptor, input_count, inputs);
CallEpilogue();
return return_value;
}
void CodeAssembler::TailCallStubImpl(const CallInterfaceDescriptor& descriptor,
TNode<Code> target, TNode<Object> context,
std::initializer_list<Node*> args) {
constexpr size_t kMaxNumArgs = 11;
DCHECK_GE(kMaxNumArgs, args.size());
DCHECK_EQ(descriptor.GetParameterCount(), args.size());
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties);
NodeArray<kMaxNumArgs + 2> inputs;
inputs.Add(target);
for (auto arg : args) inputs.Add(arg);
if (descriptor.HasContextParameter()) {
inputs.Add(context);
}
raw_assembler()->TailCallN(call_descriptor, inputs.size(), inputs.data());
}
Node* CodeAssembler::CallStubRImpl(const CallInterfaceDescriptor& descriptor,
size_t result_size, SloppyTNode<Code> target,
SloppyTNode<Object> context,
std::initializer_list<Node*> args) {
constexpr size_t kMaxNumArgs = 10;
DCHECK_GE(kMaxNumArgs, args.size());
NodeArray<kMaxNumArgs + 2> inputs;
inputs.Add(target);
for (auto arg : args) inputs.Add(arg);
if (descriptor.HasContextParameter()) {
inputs.Add(context);
}
return CallStubN(descriptor, result_size, inputs.size(), inputs.data());
}
Node* CodeAssembler::TailCallStubThenBytecodeDispatchImpl(
const CallInterfaceDescriptor& descriptor, Node* target, Node* context,
std::initializer_list<Node*> args) {
constexpr size_t kMaxNumArgs = 6;
DCHECK_GE(kMaxNumArgs, args.size());
DCHECK_LE(descriptor.GetParameterCount(), args.size());
int argc = static_cast<int>(args.size());
// Extra arguments not mentioned in the descriptor are passed on the stack.
int stack_parameter_count = argc - descriptor.GetRegisterParameterCount();
DCHECK_LE(descriptor.GetStackParameterCount(), stack_parameter_count);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), descriptor, stack_parameter_count, CallDescriptor::kNoFlags,
Operator::kNoProperties);
NodeArray<kMaxNumArgs + 2> inputs;
inputs.Add(target);
for (auto arg : args) inputs.Add(arg);
inputs.Add(context);
return raw_assembler()->TailCallN(call_descriptor, inputs.size(),
inputs.data());
}
template <class... TArgs>
Node* CodeAssembler::TailCallBytecodeDispatch(
const CallInterfaceDescriptor& descriptor, Node* target, TArgs... args) {
DCHECK_EQ(descriptor.GetParameterCount(), sizeof...(args));
auto call_descriptor = Linkage::GetBytecodeDispatchCallDescriptor(
zone(), descriptor, descriptor.GetStackParameterCount());
Node* nodes[] = {target, args...};
CHECK_EQ(descriptor.GetParameterCount() + 1, arraysize(nodes));
return raw_assembler()->TailCallN(call_descriptor, arraysize(nodes), nodes);
}
// Instantiate TailCallBytecodeDispatch() for argument counts used by
// CSA-generated code
template V8_EXPORT_PRIVATE Node* CodeAssembler::TailCallBytecodeDispatch(
const CallInterfaceDescriptor& descriptor, Node* target, Node*, Node*,
Node*, Node*);
TNode<Object> CodeAssembler::TailCallJSCode(TNode<Code> code,
TNode<Context> context,
TNode<JSFunction> function,
TNode<Object> new_target,
TNode<Int32T> arg_count) {
JSTrampolineDescriptor descriptor;
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kFixedTargetRegister, Operator::kNoProperties);
Node* nodes[] = {code, function, new_target, arg_count, context};
CHECK_EQ(descriptor.GetParameterCount() + 2, arraysize(nodes));
return UncheckedCast<Object>(
raw_assembler()->TailCallN(call_descriptor, arraysize(nodes), nodes));
}
Node* CodeAssembler::CallCFunctionN(Signature<MachineType>* signature,
int input_count, Node* const* inputs) {
auto call_descriptor = Linkage::GetSimplifiedCDescriptor(zone(), signature);
return raw_assembler()->CallN(call_descriptor, input_count, inputs);
}
Node* CodeAssembler::CallCFunction1(MachineType return_type,
MachineType arg0_type, Node* function,
Node* arg0) {
return raw_assembler()->CallCFunction1(return_type, arg0_type, function,
arg0);
}
Node* CodeAssembler::CallCFunction1WithCallerSavedRegisters(
MachineType return_type, MachineType arg0_type, Node* function, Node* arg0,
SaveFPRegsMode mode) {
DCHECK(return_type.LessThanOrEqualPointerSize());
return raw_assembler()->CallCFunction1WithCallerSavedRegisters(
return_type, arg0_type, function, arg0, mode);
}
Node* CodeAssembler::CallCFunction2(MachineType return_type,
MachineType arg0_type,
MachineType arg1_type, Node* function,
Node* arg0, Node* arg1) {
return raw_assembler()->CallCFunction2(return_type, arg0_type, arg1_type,
function, arg0, arg1);
}
Node* CodeAssembler::CallCFunction3(MachineType return_type,
MachineType arg0_type,
MachineType arg1_type,
MachineType arg2_type, Node* function,
Node* arg0, Node* arg1, Node* arg2) {
return raw_assembler()->CallCFunction3(return_type, arg0_type, arg1_type,
arg2_type, function, arg0, arg1, arg2);
}
Node* CodeAssembler::CallCFunction3WithCallerSavedRegisters(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, Node* function, Node* arg0, Node* arg1, Node* arg2,
SaveFPRegsMode mode) {
DCHECK(return_type.LessThanOrEqualPointerSize());
return raw_assembler()->CallCFunction3WithCallerSavedRegisters(
return_type, arg0_type, arg1_type, arg2_type, function, arg0, arg1, arg2,
mode);
}
Node* CodeAssembler::CallCFunction4(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, MachineType arg3_type, Node* function, Node* arg0,
Node* arg1, Node* arg2, Node* arg3) {
return raw_assembler()->CallCFunction4(return_type, arg0_type, arg1_type,
arg2_type, arg3_type, function, arg0,
arg1, arg2, arg3);
}
Node* CodeAssembler::CallCFunction5(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, MachineType arg3_type, MachineType arg4_type,
Node* function, Node* arg0, Node* arg1, Node* arg2, Node* arg3,
Node* arg4) {
return raw_assembler()->CallCFunction5(
return_type, arg0_type, arg1_type, arg2_type, arg3_type, arg4_type,
function, arg0, arg1, arg2, arg3, arg4);
}
Node* CodeAssembler::CallCFunction6(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, MachineType arg3_type, MachineType arg4_type,
MachineType arg5_type, Node* function, Node* arg0, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* arg5) {
return raw_assembler()->CallCFunction6(
return_type, arg0_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, function, arg0, arg1, arg2, arg3, arg4, arg5);
}
Node* CodeAssembler::CallCFunction9(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, MachineType arg3_type, MachineType arg4_type,
MachineType arg5_type, MachineType arg6_type, MachineType arg7_type,
MachineType arg8_type, Node* function, Node* arg0, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* arg5, Node* arg6, Node* arg7, Node* arg8) {
return raw_assembler()->CallCFunction9(
return_type, arg0_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, function, arg0, arg1, arg2,
arg3, arg4, arg5, arg6, arg7, arg8);
}
void CodeAssembler::Goto(Label* label) {
label->MergeVariables();
raw_assembler()->Goto(label->label_);
}
void CodeAssembler::GotoIf(SloppyTNode<IntegralT> condition,
Label* true_label) {
Label false_label(this);
Branch(condition, true_label, &false_label);
Bind(&false_label);
}
void CodeAssembler::GotoIfNot(SloppyTNode<IntegralT> condition,
Label* false_label) {
Label true_label(this);
Branch(condition, &true_label, false_label);
Bind(&true_label);
}
void CodeAssembler::Branch(SloppyTNode<IntegralT> condition, Label* true_label,
Label* false_label) {
int32_t constant;
if (ToInt32Constant(condition, constant)) {
if ((true_label->is_used() || true_label->is_bound()) &&
(false_label->is_used() || false_label->is_bound())) {
return Goto(constant ? true_label : false_label);
}
}
true_label->MergeVariables();
false_label->MergeVariables();
return raw_assembler()->Branch(condition, true_label->label_,
false_label->label_);
}
void CodeAssembler::Branch(TNode<BoolT> condition,
std::function<void()> true_body,
std::function<void()> false_body) {
int32_t constant;
if (ToInt32Constant(condition, constant)) {
return constant ? true_body() : false_body();
}
Label vtrue(this), vfalse(this);
Branch(condition, &vtrue, &vfalse);
Bind(&vtrue);
true_body();
Bind(&vfalse);
false_body();
}
void CodeAssembler::Branch(TNode<BoolT> condition, Label* true_label,
std::function<void()> false_body) {
int32_t constant;
if (ToInt32Constant(condition, constant)) {
return constant ? Goto(true_label) : false_body();
}
Label vfalse(this);
Branch(condition, true_label, &vfalse);
Bind(&vfalse);
false_body();
}
void CodeAssembler::Branch(TNode<BoolT> condition,
std::function<void()> true_body,
Label* false_label) {
int32_t constant;
if (ToInt32Constant(condition, constant)) {
return constant ? true_body() : Goto(false_label);
}
Label vtrue(this);
Branch(condition, &vtrue, false_label);
Bind(&vtrue);
true_body();
}
void CodeAssembler::Switch(Node* index, Label* default_label,
const int32_t* case_values, Label** case_labels,
size_t case_count) {
RawMachineLabel** labels =
new (zone()->New(sizeof(RawMachineLabel*) * case_count))
RawMachineLabel*[case_count];
for (size_t i = 0; i < case_count; ++i) {
labels[i] = case_labels[i]->label_;
case_labels[i]->MergeVariables();
}
default_label->MergeVariables();
return raw_assembler()->Switch(index, default_label->label_, case_values,
labels, case_count);
}
bool CodeAssembler::UnalignedLoadSupported(MachineRepresentation rep) const {
return raw_assembler()->machine()->UnalignedLoadSupported(rep);
}
bool CodeAssembler::UnalignedStoreSupported(MachineRepresentation rep) const {
return raw_assembler()->machine()->UnalignedStoreSupported(rep);
}
// RawMachineAssembler delegate helpers:
Isolate* CodeAssembler::isolate() const { return raw_assembler()->isolate(); }
Factory* CodeAssembler::factory() const { return isolate()->factory(); }
Zone* CodeAssembler::zone() const { return raw_assembler()->zone(); }
RawMachineAssembler* CodeAssembler::raw_assembler() const {
return state_->raw_assembler_.get();
}
// The core implementation of Variable is stored through an indirection so
// that it can outlive the often block-scoped Variable declarations. This is
// needed to ensure that variable binding and merging through phis can
// properly be verified.
class CodeAssemblerVariable::Impl : public ZoneObject {
public:
explicit Impl(MachineRepresentation rep)
:
#if DEBUG
debug_info_(AssemblerDebugInfo(nullptr, nullptr, -1)),
#endif
value_(nullptr),
rep_(rep) {
}
#if DEBUG
AssemblerDebugInfo debug_info() const { return debug_info_; }
void set_debug_info(AssemblerDebugInfo debug_info) {
debug_info_ = debug_info;
}
AssemblerDebugInfo debug_info_;
#endif // DEBUG
Node* value_;
MachineRepresentation rep_;
};
CodeAssemblerVariable::CodeAssemblerVariable(CodeAssembler* assembler,
MachineRepresentation rep)
: impl_(new (assembler->zone()) Impl(rep)), state_(assembler->state()) {
state_->variables_.insert(impl_);
}
CodeAssemblerVariable::CodeAssemblerVariable(CodeAssembler* assembler,
MachineRepresentation rep,
Node* initial_value)
: CodeAssemblerVariable(assembler, rep) {
Bind(initial_value);
}
#if DEBUG
CodeAssemblerVariable::CodeAssemblerVariable(CodeAssembler* assembler,
AssemblerDebugInfo debug_info,
MachineRepresentation rep)
: impl_(new (assembler->zone()) Impl(rep)), state_(assembler->state()) {
impl_->set_debug_info(debug_info);
state_->variables_.insert(impl_);
}
CodeAssemblerVariable::CodeAssemblerVariable(CodeAssembler* assembler,
AssemblerDebugInfo debug_info,
MachineRepresentation rep,
Node* initial_value)
: CodeAssemblerVariable(assembler, debug_info, rep) {
impl_->set_debug_info(debug_info);
Bind(initial_value);
}
#endif // DEBUG
CodeAssemblerVariable::~CodeAssemblerVariable() {
state_->variables_.erase(impl_);
}
void CodeAssemblerVariable::Bind(Node* value) { impl_->value_ = value; }
Node* CodeAssemblerVariable::value() const {
#if DEBUG
if (!IsBound()) {
std::stringstream str;
str << "#Use of unbound variable:"
<< "#\n Variable: " << *this << "#\n Current Block: ";
state_->PrintCurrentBlock(str);
FATAL("%s", str.str().c_str());
}
if (!state_->InsideBlock()) {
std::stringstream str;
str << "#Accessing variable value outside a block:"
<< "#\n Variable: " << *this;
FATAL("%s", str.str().c_str());
}
#endif // DEBUG
return impl_->value_;
}
MachineRepresentation CodeAssemblerVariable::rep() const { return impl_->rep_; }
bool CodeAssemblerVariable::IsBound() const { return impl_->value_ != nullptr; }
std::ostream& operator<<(std::ostream& os,
const CodeAssemblerVariable::Impl& impl) {
#if DEBUG
AssemblerDebugInfo info = impl.debug_info();
if (info.name) os << "V" << info;
#endif // DEBUG
return os;
}
std::ostream& operator<<(std::ostream& os,
const CodeAssemblerVariable& variable) {
os << *variable.impl_;
return os;
}
CodeAssemblerLabel::CodeAssemblerLabel(CodeAssembler* assembler,
size_t vars_count,
CodeAssemblerVariable* const* vars,
CodeAssemblerLabel::Type type)
: bound_(false),
merge_count_(0),
state_(assembler->state()),
label_(nullptr) {
void* buffer = assembler->zone()->New(sizeof(RawMachineLabel));
label_ = new (buffer)
RawMachineLabel(type == kDeferred ? RawMachineLabel::kDeferred
: RawMachineLabel::kNonDeferred);
for (size_t i = 0; i < vars_count; ++i) {
variable_phis_[vars[i]->impl_] = nullptr;
}
}
CodeAssemblerLabel::~CodeAssemblerLabel() { label_->~RawMachineLabel(); }
void CodeAssemblerLabel::MergeVariables() {
++merge_count_;
for (CodeAssemblerVariable::Impl* var : state_->variables_) {
size_t count = 0;
Node* node = var->value_;
if (node != nullptr) {
auto i = variable_merges_.find(var);
if (i != variable_merges_.end()) {
i->second.push_back(node);
count = i->second.size();
} else {
count = 1;
variable_merges_[var] = std::vector<Node*>(1, node);
}
}
// If the following asserts, then you've jumped to a label without a bound
// variable along that path that expects to merge its value into a phi.
DCHECK(variable_phis_.find(var) == variable_phis_.end() ||
count == merge_count_);
USE(count);
// If the label is already bound, we already know the set of variables to
// merge and phi nodes have already been created.
if (bound_) {
auto phi = variable_phis_.find(var);
if (phi != variable_phis_.end()) {
DCHECK_NOT_NULL(phi->second);
state_->raw_assembler_->AppendPhiInput(phi->second, node);
} else {
auto i = variable_merges_.find(var);
if (i != variable_merges_.end()) {
// If the following assert fires, then you've declared a variable that
// has the same bound value along all paths up until the point you
// bound this label, but then later merged a path with a new value for
// the variable after the label bind (it's not possible to add phis to
// the bound label after the fact, just make sure to list the variable
// in the label's constructor's list of merged variables).
#if DEBUG
if (find_if(i->second.begin(), i->second.end(),
[node](Node* e) -> bool { return node != e; }) !=
i->second.end()) {
std::stringstream str;
str << "Unmerged variable found when jumping to block. \n"
<< "# Variable: " << *var;
if (bound_) {
str << "\n# Target block: " << *label_->block();
}
str << "\n# Current Block: ";
state_->PrintCurrentBlock(str);
FATAL("%s", str.str().c_str());
}
#endif // DEBUG
}
}
}
}
}
#if DEBUG
void CodeAssemblerLabel::Bind(AssemblerDebugInfo debug_info) {
if (bound_) {
std::stringstream str;
str << "Cannot bind the same label twice:"
<< "\n# current: " << debug_info
<< "\n# previous: " << *label_->block();
FATAL("%s", str.str().c_str());
}
state_->raw_assembler_->Bind(label_, debug_info);
UpdateVariablesAfterBind();
}
#endif // DEBUG
void CodeAssemblerLabel::Bind() {
DCHECK(!bound_);
state_->raw_assembler_->Bind(label_);
UpdateVariablesAfterBind();
}
void CodeAssemblerLabel::UpdateVariablesAfterBind() {
// Make sure that all variables that have changed along any path up to this
// point are marked as merge variables.
for (auto var : state_->variables_) {
Node* shared_value = nullptr;
auto i = variable_merges_.find(var);
if (i != variable_merges_.end()) {
for (auto value : i->second) {
DCHECK_NOT_NULL(value);
if (value != shared_value) {
if (shared_value == nullptr) {
shared_value = value;
} else {
variable_phis_[var] = nullptr;
}
}
}
}
}
for (auto var : variable_phis_) {
CodeAssemblerVariable::Impl* var_impl = var.first;
auto i = variable_merges_.find(var_impl);
#if DEBUG
bool not_found = i == variable_merges_.end();
if (not_found || i->second.size() != merge_count_) {
std::stringstream str;
str << "A variable that has been marked as beeing merged at the label"
<< "\n# doesn't have a bound value along all of the paths that "
<< "\n# have been merged into the label up to this point."
<< "\n#"
<< "\n# This can happen in the following cases:"
<< "\n# - By explicitly marking it so in the label constructor"
<< "\n# - By having seen different bound values at branches"
<< "\n#"
<< "\n# Merge count: expected=" << merge_count_
<< " vs. found=" << (not_found ? 0 : i->second.size())
<< "\n# Variable: " << *var_impl
<< "\n# Current Block: " << *label_->block();
FATAL("%s", str.str().c_str());
}
#endif // DEBUG
Node* phi = state_->raw_assembler_->Phi(
var.first->rep_, static_cast<int>(merge_count_), &(i->second[0]));
variable_phis_[var_impl] = phi;
}
// Bind all variables to a merge phi, the common value along all paths or
// null.
for (auto var : state_->variables_) {
auto i = variable_phis_.find(var);
if (i != variable_phis_.end()) {
var->value_ = i->second;
} else {
auto j = variable_merges_.find(var);
if (j != variable_merges_.end() && j->second.size() == merge_count_) {
var->value_ = j->second.back();
} else {
var->value_ = nullptr;
}
}
}
bound_ = true;
}
} // namespace compiler
Smi* CheckObjectType(Object* value, Smi* type, String* location) {
#ifdef DEBUG
const char* expected;
switch (static_cast<ObjectType>(type->value())) {
#define TYPE_CASE(Name) \
case ObjectType::k##Name: \
if (value->Is##Name()) return Smi::FromInt(0); \
expected = #Name; \
break;
#define TYPE_STRUCT_CASE(NAME, Name, name) \
case ObjectType::k##Name: \
if (value->Is##Name()) return Smi::FromInt(0); \
expected = #Name; \
break;
TYPE_CASE(Object)
OBJECT_TYPE_LIST(TYPE_CASE)
HEAP_OBJECT_TYPE_LIST(TYPE_CASE)
STRUCT_LIST(TYPE_STRUCT_CASE)
#undef TYPE_CASE
#undef TYPE_STRUCT_CASE
}
std::stringstream value_description;
value->Print(value_description);
V8_Fatal(__FILE__, __LINE__,
"Type cast failed in %s\n"
" Expected %s but found %s",
location->ToAsciiArray(), expected, value_description.str().c_str());
#else
UNREACHABLE();
#endif
}
} // namespace internal
} // namespace v8