// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_BYTECODE_GRAPH_BUILDER_H_
#define V8_COMPILER_BYTECODE_GRAPH_BUILDER_H_
#include "src/compiler/bytecode-analysis.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/js-type-hint-lowering.h"
#include "src/compiler/state-values-utils.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/interpreter/bytecode-flags.h"
#include "src/interpreter/bytecodes.h"
#include "src/source-position-table.h"
namespace v8 {
namespace internal {
class VectorSlotPair;
namespace compiler {
class Reduction;
class SourcePositionTable;
// The BytecodeGraphBuilder produces a high-level IR graph based on
// interpreter bytecodes.
class BytecodeGraphBuilder {
public:
BytecodeGraphBuilder(
Zone* local_zone, Handle<SharedFunctionInfo> shared,
Handle<FeedbackVector> feedback_vector, BailoutId osr_offset,
JSGraph* jsgraph, CallFrequency& invocation_frequency,
SourcePositionTable* source_positions, Handle<Context> native_context,
int inlining_id = SourcePosition::kNotInlined,
JSTypeHintLowering::Flags flags = JSTypeHintLowering::kNoFlags,
bool stack_check = true, bool analyze_environment_liveness = true);
// Creates a graph by visiting bytecodes.
void CreateGraph();
private:
class Environment;
class OsrIteratorState;
struct SubEnvironment;
void RemoveMergeEnvironmentsBeforeOffset(int limit_offset);
void AdvanceToOsrEntryAndPeelLoops(
interpreter::BytecodeArrayIterator* iterator,
SourcePositionTableIterator* source_position_iterator);
void VisitSingleBytecode(
SourcePositionTableIterator* source_position_iterator);
void VisitBytecodes();
// Get or create the node that represents the outer function closure.
Node* GetFunctionClosure();
// Builder for loading the a native context field.
Node* BuildLoadNativeContextField(int index);
// Helper function for creating a pair containing type feedback vector and
// a feedback slot.
VectorSlotPair CreateVectorSlotPair(int slot_id);
void set_environment(Environment* env) { environment_ = env; }
const Environment* environment() const { return environment_; }
Environment* environment() { return environment_; }
// Node creation helpers
Node* NewNode(const Operator* op, bool incomplete = false) {
return MakeNode(op, 0, static_cast<Node**>(nullptr), incomplete);
}
Node* NewNode(const Operator* op, Node* n1) {
Node* buffer[] = {n1};
return MakeNode(op, arraysize(buffer), buffer, false);
}
Node* NewNode(const Operator* op, Node* n1, Node* n2) {
Node* buffer[] = {n1, n2};
return MakeNode(op, arraysize(buffer), buffer, false);
}
Node* NewNode(const Operator* op, Node* n1, Node* n2, Node* n3) {
Node* buffer[] = {n1, n2, n3};
return MakeNode(op, arraysize(buffer), buffer, false);
}
Node* NewNode(const Operator* op, Node* n1, Node* n2, Node* n3, Node* n4) {
Node* buffer[] = {n1, n2, n3, n4};
return MakeNode(op, arraysize(buffer), buffer, false);
}
Node* NewNode(const Operator* op, Node* n1, Node* n2, Node* n3, Node* n4,
Node* n5, Node* n6) {
Node* buffer[] = {n1, n2, n3, n4, n5, n6};
return MakeNode(op, arraysize(buffer), buffer, false);
}
// Helpers to create new control nodes.
Node* NewIfTrue() { return NewNode(common()->IfTrue()); }
Node* NewIfFalse() { return NewNode(common()->IfFalse()); }
Node* NewIfValue(int32_t value) { return NewNode(common()->IfValue(value)); }
Node* NewIfDefault() { return NewNode(common()->IfDefault()); }
Node* NewMerge() { return NewNode(common()->Merge(1), true); }
Node* NewLoop() { return NewNode(common()->Loop(1), true); }
Node* NewBranch(Node* condition, BranchHint hint = BranchHint::kNone,
IsSafetyCheck is_safety_check = IsSafetyCheck::kSafetyCheck) {
return NewNode(common()->Branch(hint, is_safety_check), condition);
}
Node* NewSwitch(Node* condition, int control_output_count) {
return NewNode(common()->Switch(control_output_count), condition);
}
// Creates a new Phi node having {count} input values.
Node* NewPhi(int count, Node* input, Node* control);
Node* NewEffectPhi(int count, Node* input, Node* control);
// Helpers for merging control, effect or value dependencies.
Node* MergeControl(Node* control, Node* other);
Node* MergeEffect(Node* effect, Node* other_effect, Node* control);
Node* MergeValue(Node* value, Node* other_value, Node* control);
// The main node creation chokepoint. Adds context, frame state, effect,
// and control dependencies depending on the operator.
Node* MakeNode(const Operator* op, int value_input_count,
Node* const* value_inputs, bool incomplete);
Node** EnsureInputBufferSize(int size);
Node* const* GetCallArgumentsFromRegisters(Node* callee, Node* receiver,
interpreter::Register first_arg,
int arg_count);
Node* const* ProcessCallVarArgs(ConvertReceiverMode receiver_mode,
Node* callee, interpreter::Register first_reg,
int arg_count);
Node* ProcessCallArguments(const Operator* call_op, Node* const* args,
int arg_count);
Node* ProcessCallArguments(const Operator* call_op, Node* callee,
interpreter::Register receiver, size_t reg_count);
Node* const* GetConstructArgumentsFromRegister(
Node* target, Node* new_target, interpreter::Register first_arg,
int arg_count);
Node* ProcessConstructArguments(const Operator* op, Node* const* args,
int arg_count);
Node* ProcessCallRuntimeArguments(const Operator* call_runtime_op,
interpreter::Register receiver,
size_t reg_count);
// Prepare information for eager deoptimization. This information is carried
// by dedicated {Checkpoint} nodes that are wired into the effect chain.
// Conceptually this frame state is "before" a given operation.
void PrepareEagerCheckpoint();
// Prepare information for lazy deoptimization. This information is attached
// to the given node and the output value produced by the node is combined.
// Conceptually this frame state is "after" a given operation.
void PrepareFrameState(Node* node, OutputFrameStateCombine combine);
void BuildCreateArguments(CreateArgumentsType type);
Node* BuildLoadGlobal(Handle<Name> name, uint32_t feedback_slot_index,
TypeofMode typeof_mode);
enum class StoreMode {
// Check the prototype chain before storing.
kNormal,
// Store value to the receiver without checking the prototype chain.
kOwn,
};
void BuildNamedStore(StoreMode store_mode);
void BuildLdaLookupSlot(TypeofMode typeof_mode);
void BuildLdaLookupContextSlot(TypeofMode typeof_mode);
void BuildLdaLookupGlobalSlot(TypeofMode typeof_mode);
void BuildCallVarArgs(ConvertReceiverMode receiver_mode);
void BuildCall(ConvertReceiverMode receiver_mode, Node* const* args,
size_t arg_count, int slot_id);
void BuildCall(ConvertReceiverMode receiver_mode,
std::initializer_list<Node*> args, int slot_id) {
BuildCall(receiver_mode, args.begin(), args.size(), slot_id);
}
void BuildUnaryOp(const Operator* op);
void BuildBinaryOp(const Operator* op);
void BuildBinaryOpWithImmediate(const Operator* op);
void BuildCompareOp(const Operator* op);
void BuildDelete(LanguageMode language_mode);
void BuildCastOperator(const Operator* op);
void BuildHoleCheckAndThrow(Node* condition, Runtime::FunctionId runtime_id,
Node* name = nullptr);
// Optional early lowering to the simplified operator level. Note that
// the result has already been wired into the environment just like
// any other invocation of {NewNode} would do.
JSTypeHintLowering::LoweringResult TryBuildSimplifiedUnaryOp(
const Operator* op, Node* operand, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedBinaryOp(
const Operator* op, Node* left, Node* right, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedForInNext(
Node* receiver, Node* cache_array, Node* cache_type, Node* index,
FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedForInPrepare(
Node* receiver, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedToNumber(
Node* input, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedCall(const Operator* op,
Node* const* args,
int arg_count,
FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedConstruct(
const Operator* op, Node* const* args, int arg_count, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedLoadNamed(
const Operator* op, Node* receiver, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedLoadKeyed(
const Operator* op, Node* receiver, Node* key, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedStoreNamed(
const Operator* op, Node* receiver, Node* value, FeedbackSlot slot);
JSTypeHintLowering::LoweringResult TryBuildSimplifiedStoreKeyed(
const Operator* op, Node* receiver, Node* key, Node* value,
FeedbackSlot slot);
// Applies the given early reduction onto the current environment.
void ApplyEarlyReduction(JSTypeHintLowering::LoweringResult reduction);
// Check the context chain for extensions, for lookup fast paths.
Environment* CheckContextExtensions(uint32_t depth);
// Helper function to create binary operation hint from the recorded
// type feedback.
BinaryOperationHint GetBinaryOperationHint(int operand_index);
// Helper function to create compare operation hint from the recorded
// type feedback.
CompareOperationHint GetCompareOperationHint();
// Helper function to create for-in mode from the recorded type feedback.
ForInMode GetForInMode(int operand_index);
// Helper function to compute call frequency from the recorded type
// feedback.
CallFrequency ComputeCallFrequency(int slot_id) const;
// Helper function to extract the speculation mode from the recorded type
// feedback.
SpeculationMode GetSpeculationMode(int slot_id) const;
// Control flow plumbing.
void BuildJump();
void BuildJumpIf(Node* condition);
void BuildJumpIfNot(Node* condition);
void BuildJumpIfEqual(Node* comperand);
void BuildJumpIfNotEqual(Node* comperand);
void BuildJumpIfTrue();
void BuildJumpIfFalse();
void BuildJumpIfToBooleanTrue();
void BuildJumpIfToBooleanFalse();
void BuildJumpIfNotHole();
void BuildJumpIfJSReceiver();
void BuildSwitchOnSmi(Node* condition);
void BuildSwitchOnGeneratorState(
const ZoneVector<ResumeJumpTarget>& resume_jump_targets,
bool allow_fallthrough_on_executing);
// Simulates control flow by forward-propagating environments.
void MergeIntoSuccessorEnvironment(int target_offset);
void BuildLoopHeaderEnvironment(int current_offset);
void SwitchToMergeEnvironment(int current_offset);
// Simulates control flow that exits the function body.
void MergeControlToLeaveFunction(Node* exit);
// Builds loop exit nodes for every exited loop between the current bytecode
// offset and {target_offset}.
void BuildLoopExitsForBranch(int target_offset);
void BuildLoopExitsForFunctionExit(const BytecodeLivenessState* liveness);
void BuildLoopExitsUntilLoop(int loop_offset,
const BytecodeLivenessState* liveness);
// Helper for building a return (from an actual return or a suspend).
void BuildReturn(const BytecodeLivenessState* liveness);
// Simulates entry and exit of exception handlers.
void ExitThenEnterExceptionHandlers(int current_offset);
// Update the current position of the {SourcePositionTable} to that of the
// bytecode at {offset}, if any.
void UpdateSourcePosition(SourcePositionTableIterator* it, int offset);
// Growth increment for the temporary buffer used to construct input lists to
// new nodes.
static const int kInputBufferSizeIncrement = 64;
// An abstract representation for an exception handler that is being
// entered and exited while the graph builder is iterating over the
// underlying bytecode. The exception handlers within the bytecode are
// well scoped, hence will form a stack during iteration.
struct ExceptionHandler {
int start_offset_; // Start offset of the handled area in the bytecode.
int end_offset_; // End offset of the handled area in the bytecode.
int handler_offset_; // Handler entry offset within the bytecode.
int context_register_; // Index of register holding handler context.
};
// Field accessors
Graph* graph() const { return jsgraph_->graph(); }
CommonOperatorBuilder* common() const { return jsgraph_->common(); }
Zone* graph_zone() const { return graph()->zone(); }
JSGraph* jsgraph() const { return jsgraph_; }
Isolate* isolate() const { return jsgraph_->isolate(); }
JSOperatorBuilder* javascript() const { return jsgraph_->javascript(); }
SimplifiedOperatorBuilder* simplified() const {
return jsgraph_->simplified();
}
Zone* local_zone() const { return local_zone_; }
const Handle<BytecodeArray>& bytecode_array() const {
return bytecode_array_;
}
const Handle<FeedbackVector>& feedback_vector() const {
return feedback_vector_;
}
const JSTypeHintLowering& type_hint_lowering() const {
return type_hint_lowering_;
}
const FrameStateFunctionInfo* frame_state_function_info() const {
return frame_state_function_info_;
}
const interpreter::BytecodeArrayIterator& bytecode_iterator() const {
return *bytecode_iterator_;
}
void set_bytecode_iterator(
interpreter::BytecodeArrayIterator* bytecode_iterator) {
bytecode_iterator_ = bytecode_iterator;
}
const BytecodeAnalysis* bytecode_analysis() const {
return bytecode_analysis_;
}
void set_bytecode_analysis(const BytecodeAnalysis* bytecode_analysis) {
bytecode_analysis_ = bytecode_analysis;
}
int currently_peeled_loop_offset() const {
return currently_peeled_loop_offset_;
}
void set_currently_peeled_loop_offset(int offset) {
currently_peeled_loop_offset_ = offset;
}
bool stack_check() const { return stack_check_; }
void set_stack_check(bool stack_check) { stack_check_ = stack_check; }
bool analyze_environment_liveness() const {
return analyze_environment_liveness_;
}
int current_exception_handler() { return current_exception_handler_; }
void set_current_exception_handler(int index) {
current_exception_handler_ = index;
}
bool needs_eager_checkpoint() const { return needs_eager_checkpoint_; }
void mark_as_needing_eager_checkpoint(bool value) {
needs_eager_checkpoint_ = value;
}
Handle<Context> native_context() const { return native_context_; }
#define DECLARE_VISIT_BYTECODE(name, ...) void Visit##name();
BYTECODE_LIST(DECLARE_VISIT_BYTECODE)
#undef DECLARE_VISIT_BYTECODE
Zone* local_zone_;
JSGraph* jsgraph_;
CallFrequency const invocation_frequency_;
Handle<BytecodeArray> bytecode_array_;
Handle<FeedbackVector> feedback_vector_;
const JSTypeHintLowering type_hint_lowering_;
const FrameStateFunctionInfo* frame_state_function_info_;
const interpreter::BytecodeArrayIterator* bytecode_iterator_;
const BytecodeAnalysis* bytecode_analysis_;
Environment* environment_;
BailoutId osr_offset_;
int currently_peeled_loop_offset_;
bool stack_check_;
bool analyze_environment_liveness_;
// Merge environments are snapshots of the environment at points where the
// control flow merges. This models a forward data flow propagation of all
// values from all predecessors of the merge in question. They are indexed by
// the bytecode offset
ZoneMap<int, Environment*> merge_environments_;
// Generator merge environments are snapshots of the current resume
// environment, tracing back through loop headers to the resume switch of a
// generator. They allow us to model a single resume jump as several switch
// statements across loop headers, keeping those loop headers reducible,
// without having to merge the "executing" environments of the generator into
// the "resuming" ones. They are indexed by the suspend id of the resume.
ZoneMap<int, Environment*> generator_merge_environments_;
// Exception handlers currently entered by the iteration.
ZoneStack<ExceptionHandler> exception_handlers_;
int current_exception_handler_;
// Temporary storage for building node input lists.
int input_buffer_size_;
Node** input_buffer_;
// Optimization to only create checkpoints when the current position in the
// control-flow is not effect-dominated by another checkpoint already. All
// operations that do not have observable side-effects can be re-evaluated.
bool needs_eager_checkpoint_;
// Nodes representing values in the activation record.
SetOncePointer<Node> function_closure_;
// Control nodes that exit the function body.
ZoneVector<Node*> exit_controls_;
StateValuesCache state_values_cache_;
// The source position table, to be populated.
SourcePositionTable* source_positions_;
SourcePosition const start_position_;
// The native context for which we optimize.
Handle<Context> const native_context_;
static int const kBinaryOperationHintIndex = 1;
static int const kCountOperationHintIndex = 0;
static int const kBinaryOperationSmiHintIndex = 1;
static int const kUnaryOperationHintIndex = 0;
DISALLOW_COPY_AND_ASSIGN(BytecodeGraphBuilder);
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_BYTECODE_GRAPH_BUILDER_H_