// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/base/adapters.h"
#include "src/code-factory.h"
#include "src/counters.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/objects-inl.h"
#include "src/objects/debug-objects.h"
#include "src/objects/js-generator.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
__ LoadAddress(kJavaScriptCallExtraArg1Register,
ExternalReference::Create(address));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ SmiTag(rax, rax);
__ Push(rax);
// Push a copy of the target function and the new target.
__ Push(rdi);
__ Push(rdx);
// Function is also the parameter to the runtime call.
__ Push(rdi);
__ CallRuntime(function_id, 1);
__ movp(rcx, rax);
// Restore target function and new target.
__ Pop(rdx);
__ Pop(rdi);
__ Pop(rax);
__ SmiUntag(rax, rax);
}
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -- rdx: new target
// -- rsi: context
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(rcx, rax);
__ Push(rsi);
__ Push(rcx);
// The receiver for the builtin/api call.
__ PushRoot(Heap::kTheHoleValueRootIndex);
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdi: constructor function
// -- rdx: new target
// -- rbx: pointer to last argument
// -- rcx: counter
// -- sp[0*kPointerSize]: the hole (receiver)
// -- sp[1*kPointerSize]: number of arguments (tagged)
// -- sp[2*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop, Label::kNear);
// Call the function.
// rax: number of arguments (untagged)
// rdi: constructor function
// rdx: new target
ParameterCount actual(rax);
__ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION);
// Restore context from the frame.
__ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
__ ret(0);
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdi: constructor function
// -- rdx: new target
// -- rsi: context
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(rcx, rax);
__ Push(rsi);
__ Push(rcx);
__ Push(rdi);
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ Push(rdx);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- rdi and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: argument count
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(rbx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
__ j(not_zero, ¬_create_implicit_receiver, Label::kNear);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ jmp(&post_instantiation_deopt_entry, Label::kNear);
// Else: use TheHoleValue as receiver for constructor call
__ bind(¬_create_implicit_receiver);
__ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- rax implicit receiver
// -- Slot 4 / sp[0*kPointerSize] new target
// -- Slot 3 / sp[1*kPointerSize] padding
// -- Slot 2 / sp[2*kPointerSize] constructor function
// -- Slot 1 / sp[3*kPointerSize] number of arguments (tagged)
// -- Slot 0 / sp[4*kPointerSize] context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(rdx);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(rax);
__ Push(rax);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize] implicit receiver
// -- sp[1*kPointerSize] implicit receiver
// -- sp[2*kPointerSize] padding
// -- sp[3*kPointerSize] constructor function
// -- sp[4*kPointerSize] number of arguments (tagged)
// -- sp[5*kPointerSize] context
// -----------------------------------
// Restore constructor function and argument count.
__ movp(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset));
__ SmiUntag(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdx: new target
// -- rbx: pointer to last argument
// -- rcx: counter (tagged)
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- rdi and sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop, Label::kNear);
// Call the function.
ParameterCount actual(rax);
__ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- rax constructor result
// -- sp[0*kPointerSize] implicit receiver
// -- sp[1*kPointerSize] padding
// -- sp[2*kPointerSize] constructor function
// -- sp[3*kPointerSize] number of arguments
// -- sp[4*kPointerSize] context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore context from the frame.
__ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &use_receiver,
Label::kNear);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(above_equal, &leave_frame, Label::kNear);
__ jmp(&use_receiver, Label::kNear);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movp(rax, Operand(rsp, 0 * kPointerSize));
__ JumpIfRoot(rax, Heap::kTheHoleValueRootIndex, &do_throw, Label::kNear);
__ bind(&leave_frame);
// Restore the arguments count.
__ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
__ ret(0);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
static void Generate_StackOverflowCheck(
MacroAssembler* masm, Register num_args, Register scratch,
Label* stack_overflow,
Label::Distance stack_overflow_distance = Label::kFar) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(scratch, rsp);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ subp(scratch, kScratchRegister);
__ sarp(scratch, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(scratch, num_args);
// Signed comparison.
__ j(less_equal, stack_overflow, stack_overflow_distance);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Expects five C++ function parameters.
// - Object* new_target
// - JSFunction* function
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Open a C++ scope for the FrameScope.
{
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer, rsi the context, and rdx the
// new.target.
#ifdef _WIN64
// MSVC parameters in:
// rcx : new_target
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and the receiver onto the stack.
__ Push(rdx);
__ Push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movp(kScratchRegister, Operand(rbp, 0));
__ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movp(rdi, rdx);
// Load the new.target into rdx.
__ movp(rdx, rcx);
#else // _WIN64
// GCC parameters in:
// rdi : new_target
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movp(r11, rdi);
__ movp(rdi, rsi);
// rdi : function
// r11 : new_target
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ movp(rsi, masm->ExternalOperand(context_address));
// Push the function and receiver onto the stack.
__ Push(rdi);
__ Push(rdx);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, rcx);
__ movp(rbx, r8);
// Load the new.target into rdx.
__ movp(rdx, r11);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ] : Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// rdx : new.target
// Check if we have enough stack space to push all arguments.
// Argument count in rax. Clobbers rcx.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, rax, rcx, &stack_overflow, Label::kNear);
__ jmp(&enough_stack_space, Label::kNear);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
__ bind(&enough_stack_space);
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ Push(Operand(kScratchRegister, 0)); // dereference handle
__ addp(rcx, Immediate(1));
__ bind(&entry);
__ cmpp(rcx, rax);
__ j(not_equal, &loop, Label::kNear);
// Invoke the builtin code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
}
__ ret(0);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
__ j(not_equal, &done, Label::kNear);
__ movp(sfi_data,
FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the value to pass to the generator
// -- rdx : the JSGeneratorObject to resume
// -- rsp[0] : return address
// -----------------------------------
__ AssertGeneratorObject(rdx);
// Store input value into generator object.
__ movp(FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
__ RecordWriteField(rdx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx,
kDontSaveFPRegs);
// Load suspended function and context.
__ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
Operand debug_hook_operand = masm->ExternalOperand(debug_hook);
__ cmpb(debug_hook_operand, Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
Operand debug_suspended_generator_operand =
masm->ExternalOperand(debug_suspended_generator);
__ cmpp(rdx, debug_suspended_generator_operand);
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareRoot(rsp, Heap::kRealStackLimitRootIndex);
__ j(below, &stack_overflow);
// Pop return address.
__ PopReturnAddressTo(rax);
// Push receiver.
__ Push(FieldOperand(rdx, JSGeneratorObject::kReceiverOffset));
// ----------- S t a t e -------------
// -- rax : return address
// -- rdx : the JSGeneratorObject to resume
// -- rdi : generator function
// -- rsi : generator context
// -- rsp[0] : generator receiver
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movzxwq(
rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset));
__ movp(rbx,
FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ Set(r9, 0);
__ bind(&loop);
__ cmpl(r9, rcx);
__ j(greater_equal, &done_loop, Label::kNear);
__ Push(FieldOperand(rbx, r9, times_pointer_size, FixedArray::kHeaderSize));
__ addl(r9, Immediate(1));
__ jmp(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, rcx, kScratchRegister);
__ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(rax);
__ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movzxwq(rax, FieldOperand(
rax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
__ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(rcx);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdx);
__ Push(rdi);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(rdx);
__ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(rdx);
__ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
// TODO(juliana): if we remove the code below then we don't need all
// the parameters.
static void ReplaceClosureCodeWithOptimizedCode(
MacroAssembler* masm, Register optimized_code, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
// Store the optimized code in the closure.
__ movp(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code);
__ movp(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register args_count = scratch1;
Register return_pc = scratch2;
// Get the arguments + receiver count.
__ movp(args_count,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movl(args_count,
FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ PopReturnAddressTo(return_pc);
__ addp(rsp, args_count);
__ PushReturnAddressFrom(return_pc);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ SmiCompare(smi_entry, Smi::FromEnum(marker));
__ j(not_equal, &no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee if needed, and caller)
// -- rdx : new target (preserved for callee if needed, and caller)
// -- rdi : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(!AreAliased(feedback_vector, rax, rdx, rdi, scratch1, scratch2,
scratch3));
Label optimized_code_slot_is_weak_ref, fallthrough;
Register closure = rdi;
Register optimized_code_entry = scratch1;
__ movp(optimized_code_entry,
FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret it as a weak reference to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ SmiCompare(optimized_code_entry,
Smi::FromEnum(OptimizationMarker::kNone));
__ j(equal, &fallthrough);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ SmiCompare(optimized_code_entry,
Smi::FromEnum(OptimizationMarker::kInOptimizationQueue));
__ Assert(equal, AbortReason::kExpectedOptimizationSentinel);
}
__ jmp(&fallthrough);
}
}
{
// Optimized code slot is a weak reference.
__ bind(&optimized_code_slot_is_weak_ref);
__ LoadWeakValue(optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ movp(scratch2,
FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ testl(
FieldOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset),
Immediate(1 << Code::kMarkedForDeoptimizationBit));
__ j(not_zero, &found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ Move(rcx, optimized_code_entry);
__ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(rcx);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Label* if_return) {
Register bytecode_size_table = scratch1;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ Move(bytecode_size_table,
ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ cmpb(bytecode, Immediate(0x3));
__ j(above, &process_bytecode, Label::kNear);
__ testb(bytecode, Immediate(0x1));
__ j(not_equal, &extra_wide, Label::kNear);
// Load the next bytecode and update table to the wide scaled table.
__ incl(bytecode_offset);
__ movzxbp(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ addp(bytecode_size_table,
Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode, Label::kNear);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ incl(bytecode_offset);
__ movzxbp(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ addp(bytecode_size_table,
Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ cmpb(bytecode, \
Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ j(equal, if_return, Label::kFar);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// Otherwise, load the size of the current bytecode and advance the offset.
__ addl(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0));
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called
// o rdx: the incoming new target or generator object
// o rsi: our context
// o rbp: the caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = rdi;
Register feedback_vector = rbx;
// Load the feedback vector from the closure.
__ movp(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS function.
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ movp(rax, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ movp(kInterpreterBytecodeArrayRegister,
FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister,
kScratchRegister);
// Increment invocation count for the function.
__ incl(
FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rax);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ movb(FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset),
Immediate(BytecodeArray::kNoAgeBytecodeAge));
// Load initial bytecode offset.
__ movp(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode offset.
__ Push(kInterpreterBytecodeArrayRegister);
__ SmiTag(rcx, kInterpreterBytecodeOffsetRegister);
__ Push(rcx);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ movp(rax, rsp);
__ subp(rax, rcx);
__ CompareRoot(rax, Heap::kRealStackLimitRootIndex);
__ j(above_equal, &ok, Label::kNear);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(always, &loop_check, Label::kNear);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ Push(rax);
// Continue loop if not done.
__ bind(&loop_check);
__ subp(rcx, Immediate(kPointerSize));
__ j(greater_equal, &loop_header, Label::kNear);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in rdx.
Label no_incoming_new_target_or_generator_register;
__ movsxlq(
rax,
FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ testl(rax, rax);
__ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear);
__ movp(Operand(rbp, rax, times_pointer_size, 0), rdx);
__ bind(&no_incoming_new_target_or_generator_register);
// Load accumulator with undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ movzxbp(r11, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(
kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, r11, times_pointer_size, 0));
__ call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ movp(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movp(kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, rbx, rcx,
&do_return);
__ jmp(&do_dispatch);
__ bind(&do_return);
// The return value is in rax.
LeaveInterpreterFrame(masm, rbx, rcx);
__ ret(0);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register start_address,
Register scratch) {
// Find the address of the last argument.
__ Move(scratch, num_args);
__ shlp(scratch, Immediate(kPointerSizeLog2));
__ negp(scratch);
__ addp(scratch, start_address);
// Push the arguments.
Label loop_header, loop_check;
__ j(always, &loop_check, Label::kNear);
__ bind(&loop_header);
__ Push(Operand(start_address, 0));
__ subp(start_address, Immediate(kPointerSize));
__ bind(&loop_check);
__ cmpp(start_address, scratch);
__ j(greater, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- rdi : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
// Number of values to be pushed.
__ leal(rcx, Operand(rax, 1)); // Add one for receiver.
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, rcx, rdx, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ decl(rcx); // Subtract one for receiver.
}
// rbx and rdx will be modified.
Generate_InterpreterPushArgs(masm, rcx, rbx, rdx);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(rbx); // Pass the spread in a register
__ decl(rax); // Subtract one for spread
}
// Call the target.
__ PushReturnAddressFrom(kScratchRegister); // Re-push return address.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(receiver_mode),
RelocInfo::CODE_TARGET);
}
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -- rbx : the allocation site feedback if available, undefined otherwise
// -- rcx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, rax, r8, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// Push slot for the receiver to be constructed.
__ Push(Immediate(0));
// rcx and r8 will be modified.
Generate_InterpreterPushArgs(masm, rax, rcx, r8);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(rbx); // Pass the spread in a register
__ decl(rax); // Subtract one for spread
// Push return address in preparation for the tail-call.
__ PushReturnAddressFrom(kScratchRegister);
} else {
__ PushReturnAddressFrom(kScratchRegister);
__ AssertUndefinedOrAllocationSite(rbx);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
// Tail call to the array construct stub (still in the caller
// context at this point).
__ AssertFunction(rdi);
// Jump to the constructor function (rax, rbx, rdx passed on).
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
__ Jump(code, RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
// If the SFI function_data is an InterpreterData, get the trampoline stored
// in it, otherwise get the trampoline from the builtins list.
__ movp(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset));
__ movp(rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset));
__ movp(rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset));
__ CmpObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister);
__ j(not_equal, &builtin_trampoline, Label::kNear);
__ movp(rbx,
FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset));
__ jmp(&trampoline_loaded, Label::kNear);
__ bind(&builtin_trampoline);
__ Move(rbx, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
__ bind(&trampoline_loaded);
__ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
__ Push(rbx);
// Initialize dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ movp(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rbx);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ movp(kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ movzxbp(r11, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movp(
kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, r11, times_pointer_size, 0));
__ jmp(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ movp(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movp(kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister,
kInterpreterBytecodeOffsetRegister);
// Load the current bytecode.
__ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, rbx, rcx,
&if_return);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(rbx, kInterpreterBytecodeOffsetRegister);
__ movp(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rbx);
Generate_InterpreterEnterBytecode(masm);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argument count (preserved for callee)
// -- rdx : new target (preserved for callee)
// -- rdi : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ movp(rcx, rax);
// Push the number of arguments to the callee.
__ SmiTag(rax, rax);
__ Push(rax);
// Push a copy of the target function and the new target.
__ Push(rdi);
__ Push(rdx);
// The function.
__ Push(rdi);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ cmpp(rcx, Immediate(j));
__ j(not_equal, &over, Label::kNear);
}
for (int i = j - 1; i >= 0; --i) {
__ Push(Operand(
rbp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done, Label::kNear);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(rax, &failed, Label::kNear);
__ Drop(2);
__ Pop(rcx);
__ SmiUntag(rcx, rcx);
scope.GenerateLeaveFrame();
__ PopReturnAddressTo(rbx);
__ incp(rcx);
__ leap(rsp, Operand(rsp, rcx, times_pointer_size, 0));
__ PushReturnAddressFrom(rbx);
__ ret(0);
__ bind(&failed);
// Restore target function and new target.
__ Pop(rdx);
__ Pop(rdi);
__ Pop(rax);
__ SmiUntag(rax, rax);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
__ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(rcx);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ movq(Operand(rsp,
config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize),
rax);
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ popq(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code), Register::from_code(code));
}
}
__ movq(
rbp,
Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
const int offsetToPC =
BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize;
__ popq(Operand(rsp, offsetToPC));
__ Drop(offsetToPC / kPointerSize);
__ addq(Operand(rsp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ Ret();
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
__ movp(rax, Operand(rsp, kPCOnStackSize));
__ ret(1 * kPointerSize); // Remove rax.
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : argArray
// -- rsp[16] : thisArg
// -- rsp[24] : receiver
// -----------------------------------
// 1. Load receiver into rdi, argArray into rbx (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ movp(rbx, rdx);
__ movp(rdi, args.GetReceiverOperand());
__ testp(rax, rax);
__ j(zero, &no_this_arg, Label::kNear);
{
__ movp(rdx, args.GetArgumentOperand(1));
__ cmpp(rax, Immediate(1));
__ j(equal, &no_arg_array, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(2));
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
}
// ----------- S t a t e -------------
// -- rbx : argArray
// -- rdi : receiver
// -- rsp[0] : return address
// -- rsp[8] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(rbx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
__ JumpIfRoot(rbx, Heap::kUndefinedValueRootIndex, &no_arguments,
Label::kNear);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver. Since we did not create a frame for
// Function.prototype.apply() yet, we use a normal Call builtin here.
__ bind(&no_arguments);
{
__ Set(rax, 0);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0] : Return address
// rsp[8] : Argument n
// rsp[16] : Argument n-1
// ...
// rsp[8 * n] : Argument 1
// rsp[8 * (n + 1)] : Receiver (callable to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{
Label done;
__ testp(rax, rax);
__ j(not_zero, &done, Label::kNear);
__ PopReturnAddressTo(rbx);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rbx);
__ incp(rax);
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(rsp, rax);
__ movp(rdi, args.GetReceiverOperand());
}
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
__ movp(rcx, rax);
StackArgumentsAccessor args(rsp, rcx);
__ bind(&loop);
__ movp(rbx, args.GetArgumentOperand(1));
__ movp(args.GetArgumentOperand(0), rbx);
__ decp(rcx);
__ j(not_zero, &loop); // While non-zero.
__ DropUnderReturnAddress(1, rbx); // Drop one slot under return address.
__ decp(rax); // One fewer argument (first argument is new receiver).
}
// 4. Call the callable.
// Since we did not create a frame for Function.prototype.call() yet,
// we use a normal Call builtin here.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : argumentsList
// -- rsp[16] : thisArgument
// -- rsp[24] : target
// -- rsp[32] : receiver
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rbx (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movp(rdx, rdi);
__ movp(rbx, rdi);
__ cmpp(rax, Immediate(1));
__ j(below, &done, Label::kNear);
__ movp(rdi, args.GetArgumentOperand(1)); // target
__ j(equal, &done, Label::kNear);
__ movp(rdx, args.GetArgumentOperand(2)); // thisArgument
__ cmpp(rax, Immediate(3));
__ j(below, &done, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(3)); // argumentsList
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ Push(rdx);
__ PushReturnAddressFrom(rcx);
}
// ----------- S t a t e -------------
// -- rbx : argumentsList
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : new.target (optional)
// -- rsp[16] : argumentsList
// -- rsp[24] : target
// -- rsp[32] : receiver
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rbx (if present),
// new.target into rdx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
StackArgumentsAccessor args(rsp, rax);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movp(rdx, rdi);
__ movp(rbx, rdi);
__ cmpp(rax, Immediate(1));
__ j(below, &done, Label::kNear);
__ movp(rdi, args.GetArgumentOperand(1)); // target
__ movp(rdx, rdi); // new.target defaults to target
__ j(equal, &done, Label::kNear);
__ movp(rbx, args.GetArgumentOperand(2)); // argumentsList
__ cmpp(rax, Immediate(3));
__ j(below, &done, Label::kNear);
__ movp(rdx, args.GetArgumentOperand(3)); // new.target
__ bind(&done);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(rcx);
}
// ----------- S t a t e -------------
// -- rbx : argumentsList
// -- rdx : new.target
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi,
AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
__ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ pushq(rbp);
__ movp(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ Push(rdi);
// Preserve the number of arguments on the stack. Must preserve rax,
// rbx and rcx because these registers are used when copying the
// arguments and the receiver.
__ SmiTag(r8, rax);
__ Push(r8);
__ Push(Immediate(0)); // Padding.
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movp(rsp, rbp);
__ popq(rbp);
// Remove caller arguments from the stack.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : new target (passed through to callee)
// -- rdi : function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->arguments_adaptors(), 1);
Label enough, too_few;
__ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
__ cmpp(rax, rbx);
__ j(less, &too_few);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// The registers rcx and r8 will be modified. The register rbx is only read.
Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rax, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(©);
__ incp(r8);
__ Push(Operand(rax, 0));
__ subp(rax, Immediate(kPointerSize));
__ cmpp(r8, rbx);
__ j(less, ©);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// The registers rcx and r8 will be modified. The register rbx is only read.
Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(©);
__ incp(r8);
__ Push(Operand(rdi, 0));
__ subp(rdi, Immediate(kPointerSize));
__ cmpp(r8, rax);
__ j(less, ©);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incp(r8);
__ Push(kScratchRegister);
__ cmpp(r8, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ movp(rax, rbx);
// rax : expected number of arguments
// rdx : new target (passed through to callee)
// rdi : function (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
__ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(rcx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
__ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(rcx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- rdi : target
// -- rax : number of parameters on the stack (not including the receiver)
// -- rbx : arguments list (a FixedArray)
// -- rcx : len (number of elements to push from args)
// -- rdx : new.target (for [[Construct]])
// -- rsp[0] : return address
// -----------------------------------
if (masm->emit_debug_code()) {
// Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0.
Label ok, fail;
__ AssertNotSmi(rbx);
Register map = r9;
__ movp(map, FieldOperand(rbx, HeapObject::kMapOffset));
__ CmpInstanceType(map, FIXED_ARRAY_TYPE);
__ j(equal, &ok);
__ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE);
__ j(not_equal, &fail);
__ cmpl(rcx, Immediate(0));
__ j(equal, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(r8, rsp);
// Make r8 the space we have left. The stack might already be overflowed
// here which will cause r8 to become negative.
__ subp(r8, kScratchRegister);
__ sarp(r8, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(r8, rcx);
__ j(greater, &done, Label::kNear); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Push additional arguments onto the stack.
{
__ PopReturnAddressTo(r8);
__ Set(r9, 0);
Label done, push, loop;
__ bind(&loop);
__ cmpl(r9, rcx);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ movp(r11,
FieldOperand(rbx, r9, times_pointer_size, FixedArray::kHeaderSize));
__ CompareRoot(r11, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(r11, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(r11);
__ incl(r9);
__ jmp(&loop);
__ bind(&done);
__ PushReturnAddressFrom(r8);
__ addq(rax, r9);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (for [[Construct]] calls)
// -- rdi : the target to call (can be any Object)
// -- rcx : start index (to support rest parameters)
// -----------------------------------
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear);
__ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(Map::IsConstructorBit::kMask));
__ j(not_zero, &new_target_constructor, Label::kNear);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(rdx);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ cmpp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &arguments_adaptor, Label::kNear);
{
__ movp(r8, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movp(r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset));
__ movzxwq(
r8, FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset));
__ movp(rbx, rbp);
}
__ jmp(&arguments_done, Label::kNear);
__ bind(&arguments_adaptor);
{
__ SmiUntag(r8,
Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ subl(r8, rcx);
__ j(less_equal, &stack_done);
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, r8, rcx, &stack_overflow, Label::kNear);
// Forward the arguments from the caller frame.
{
Label loop;
__ addl(rax, r8);
__ PopReturnAddressTo(rcx);
__ bind(&loop);
{
StackArgumentsAccessor args(rbx, r8, ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ Push(args.GetArgumentOperand(0));
__ decl(r8);
__ j(not_zero, &loop);
}
__ PushReturnAddressFrom(rcx);
}
}
__ jmp(&stack_done, Label::kNear);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
__ AssertFunction(rdi);
// ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
__ j(not_zero, &class_constructor);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
} else {
Label convert_to_object, convert_receiver;
__ movp(rcx, args.GetReceiverOperand());
__ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
__ j(above_equal, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex,
&convert_global_proxy, Label::kNear);
__ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(rax, rax);
__ Push(rax);
__ Push(rdi);
__ movp(rax, rcx);
__ Push(rsi);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(rsi);
__ movp(rcx, rax);
__ Pop(rdi);
__ Pop(rax);
__ SmiUntag(rax, rax);
}
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ movp(args.GetReceiverOperand(), rcx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
__ movzxwq(
rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(rax);
ParameterCount expected(rbx);
__ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -----------------------------------
// Load [[BoundArguments]] into rcx and length of that into rbx.
Label no_bound_arguments;
__ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntag(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ testl(rbx, rbx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -- rcx : the [[BoundArguments]] (implemented as FixedArray)
// -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0));
__ subp(rsp, kScratchRegister);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(rsp, Heap::kRealStackLimitRootIndex);
__ j(greater, &done, Label::kNear); // Signed comparison.
// Restore the stack pointer.
__ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Adjust effective number of arguments to include return address.
__ incl(rax);
// Relocate arguments and return address down the stack.
{
Label loop;
__ Set(rcx, 0);
__ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0));
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister);
__ incl(rcx);
__ cmpl(rcx, rax);
__ j(less, &loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntag(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ bind(&loop);
__ decl(rbx);
__ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size,
FixedArray::kHeaderSize));
__ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister);
__ leal(rax, Operand(rax, 1));
__ j(greater, &loop);
}
// Adjust effective number of arguments (rax contains the number of
// arguments from the call plus return address plus the number of
// [[BoundArguments]]), so we need to subtract one for the return address.
__ decl(rax);
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(rdi);
// Patch the receiver to [[BoundThis]].
StackArgumentsAccessor args(rsp, rax);
__ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
__ movp(args.GetReceiverOperand(), rbx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdi : the target to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
Label non_callable;
__ JumpIfSmi(rdi, &non_callable);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, equal);
__ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, equal);
// Check if target has a [[Call]] internal method.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(Map::IsCallableBit::kMask));
__ j(zero, &non_callable, Label::kNear);
// Check if target is a proxy and call CallProxy external builtin
__ CmpInstanceType(rcx, JS_PROXY_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET,
equal);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertConstructor(rdi);
__ AssertFunction(rdi);
// Calling convention for function specific ConstructStubs require
// rbx to contain either an AllocationSite or undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET, not_zero);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertConstructor(rdi);
__ AssertBoundFunction(rdi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmpp(rdi, rdx);
__ j(not_equal, &done, Label::kNear);
__ movp(rdx,
FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments (not including the receiver)
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -----------------------------------
StackArgumentsAccessor args(rsp, rax);
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(rdi, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ movq(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(Map::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Dispatch based on instance type.
__ CmpInstanceType(rcx, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, equal);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, equal);
// Only dispatch to proxies after checking whether they are constructors.
__ CmpInstanceType(rcx, JS_PROXY_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET,
equal);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ movp(args.GetReceiverOperand(), rdi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movp(rax, Operand(rax, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
Label skip;
// If the code object is null, just return to the caller.
__ testp(rax, rax);
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ leave();
}
// Load deoptimization data from the code object.
__ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ SmiUntag(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex) -
kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
__ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ movq(StackOperandForReturnAddress(0), rax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was pushed to the stack by the caller as int32.
__ Pop(r11);
// Convert to Smi for the runtime call.
__ SmiTag(r11, r11);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
arraysize(wasm::kGpParamRegisters),
"frame size mismatch");
for (Register reg : wasm::kGpParamRegisters) {
__ Push(reg);
}
static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
arraysize(wasm::kFpParamRegisters),
"frame size mismatch");
__ subp(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
int offset = 0;
for (DoubleRegister reg : wasm::kFpParamRegisters) {
__ movdqu(Operand(rsp, offset), reg);
offset += kSimd128Size;
}
// Push the WASM instance as an explicit argument to WasmCompileLazy.
__ Push(kWasmInstanceRegister);
// Push the function index as second argument.
__ Push(r11);
// Load the correct CEntry builtin from the instance object.
__ movp(rcx, FieldOperand(kWasmInstanceRegister,
WasmInstanceObject::kCEntryStubOffset));
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::kZero);
__ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, rcx);
// The entrypoint address is the return value.
__ movq(r11, kReturnRegister0);
// Restore registers.
for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
offset -= kSimd128Size;
__ movdqu(reg, Operand(rsp, offset));
}
DCHECK_EQ(0, offset);
__ addp(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
__ Pop(reg);
}
}
// Finally, jump to the entrypoint.
__ jmp(r11);
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
//
// If argv_mode == kArgvInRegister:
// r15: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
// stack to be aligned to 16 bytes. It only allows a single-word to be
// returned in register rax. Larger return sizes must be written to an address
// passed as a hidden first argument.
const Register kCCallArg0 = rcx;
const Register kCCallArg1 = rdx;
const Register kCCallArg2 = r8;
const Register kCCallArg3 = r9;
const int kArgExtraStackSpace = 2;
const int kMaxRegisterResultSize = 1;
#else
// GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
// are returned in rax, and a struct of two pointers are returned in rax+rdx.
// Larger return sizes must be written to an address passed as a hidden first
// argument.
const Register kCCallArg0 = rdi;
const Register kCCallArg1 = rsi;
const Register kCCallArg2 = rdx;
const Register kCCallArg3 = rcx;
const int kArgExtraStackSpace = 0;
const int kMaxRegisterResultSize = 2;
#endif // _WIN64
// Enter the exit frame that transitions from JavaScript to C++.
int arg_stack_space =
kArgExtraStackSpace +
(result_size <= kMaxRegisterResultSize ? 0 : result_size);
if (argv_mode == kArgvInRegister) {
DCHECK(save_doubles == kDontSaveFPRegs);
DCHECK(!builtin_exit_frame);
__ EnterApiExitFrame(arg_stack_space);
// Move argc into r14 (argv is already in r15).
__ movp(r14, rax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles == kSaveFPRegs,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: argv pointer (C callee-saved).
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function. The arguments object will be created by stubs declared by
// DECLARE_RUNTIME_FUNCTION().
if (result_size <= kMaxRegisterResultSize) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax), or a register pair (rax, rdx).
__ movp(kCCallArg0, r14); // argc.
__ movp(kCCallArg1, r15); // argv.
__ Move(kCCallArg2, ExternalReference::isolate_address(masm->isolate()));
} else {
DCHECK_LE(result_size, 2);
// Pass a pointer to the result location as the first argument.
__ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
// Pass a pointer to the Arguments object as the second argument.
__ movp(kCCallArg1, r14); // argc.
__ movp(kCCallArg2, r15); // argv.
__ Move(kCCallArg3, ExternalReference::isolate_address(masm->isolate()));
}
__ call(rbx);
if (result_size > kMaxRegisterResultSize) {
// Read result values stored on stack. Result is stored
// above the the two Arguments object slots on Win64.
DCHECK_LE(result_size, 2);
__ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
__ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
}
// Result is in rax or rdx:rax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(rax, Heap::kExceptionRootIndex);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
__ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
Operand pending_exception_operand =
masm->ExternalOperand(pending_exception_address);
__ cmpp(r14, pending_exception_operand);
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set rax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ movp(arg_reg_1, Immediate(0)); // argc.
__ movp(arg_reg_2, Immediate(0)); // argv.
__ Move(arg_reg_3, ExternalReference::isolate_address(masm->isolate()));
__ PrepareCallCFunction(3);
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ movp(rsi, masm->ExternalOperand(pending_handler_context_address));
__ movp(rsp, masm->ExternalOperand(pending_handler_sp_address));
__ movp(rbp, masm->ExternalOperand(pending_handler_fp_address));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (rsi == 0) for non-JS frames.
Label skip;
__ testp(rsi, rsi);
__ j(zero, &skip, Label::kNear);
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
__ bind(&skip);
// Reset the masking register. This is done independent of the underlying
// feature flag {FLAG_branch_load_poisoning} to make the snapshot work with
// both configurations. It is safe to always do this, because the underlying
// register is caller-saved and can be arbitrarily clobbered.
__ ResetSpeculationPoisonRegister();
// Compute the handler entry address and jump to it.
__ movp(rdi, masm->ExternalOperand(pending_handler_entrypoint_address));
__ jmp(rdi);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 4 * kRegisterSize;
MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(rsp, kArgumentOffset + kDoubleSize / 2));
// The result is returned on the stack.
MemOperand return_operand = mantissa_operand;
Register scratch1 = rbx;
// Since we must use rcx for shifts below, use some other register (rax)
// to calculate the result if ecx is the requested return register.
Register result_reg = rax;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead
// for the result.
Register save_reg = rax;
__ pushq(rcx);
__ pushq(scratch1);
__ pushq(save_reg);
__ movl(scratch1, mantissa_operand);
__ Movsd(kScratchDoubleReg, mantissa_operand);
__ movl(rcx, exponent_operand);
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
__ shrl(rcx, Immediate(HeapNumber::kExponentShift));
__ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
__ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits, Label::kNear);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
__ subl(rcx, Immediate(delta));
__ xorl(result_reg, result_reg);
__ cmpl(rcx, Immediate(31));
__ j(above, &done, Label::kNear);
__ shll_cl(scratch1);
__ jmp(&check_negative, Label::kNear);
__ bind(&process_64_bits);
__ Cvttsd2siq(result_reg, kScratchDoubleReg);
__ jmp(&done, Label::kNear);
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ movl(result_reg, scratch1);
__ negl(result_reg);
__ cmpl(exponent_operand, Immediate(0));
__ cmovl(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
__ movl(return_operand, result_reg);
__ popq(save_reg);
__ popq(scratch1);
__ popq(rcx);
__ ret(0);
}
void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
const Register exponent = rdx;
const Register scratch = rcx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ movp(scratch, Immediate(1));
__ Cvtlsi2sd(double_result, scratch);
Label fast_power, try_arithmetic_simplification;
// Detect integer exponents stored as double.
__ DoubleToI(exponent, double_exponent, double_scratch,
&try_arithmetic_simplification, &try_arithmetic_simplification);
__ jmp(&int_exponent);
__ bind(&try_arithmetic_simplification);
__ Cvttsd2si(exponent, double_exponent);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmpl(exponent, Immediate(0x1));
__ j(overflow, &call_runtime);
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ subp(rsp, Immediate(kDoubleSize));
__ Movsd(Operand(rsp, 0), double_exponent);
__ fld_d(Operand(rsp, 0)); // E
__ Movsd(Operand(rsp, 0), double_base);
__ fld_d(Operand(rsp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1);
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(rsp, 0));
__ Movsd(double_result, Operand(rsp, 0));
__ addp(rsp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ addp(rsp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
// Back up exponent as we need to check if exponent is negative later.
__ movp(scratch, exponent); // Back up exponent.
__ Movsd(double_scratch, double_base); // Back up base.
__ Movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, while_false;
__ testl(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ negl(scratch);
__ bind(&no_neg);
__ j(zero, &while_false, Label::kNear);
__ shrl(scratch, Immediate(1));
// Above condition means CF==0 && ZF==0. This means that the
// bit that has been shifted out is 0 and the result is not 0.
__ j(above, &while_true, Label::kNear);
__ Movsd(double_result, double_scratch);
__ j(zero, &while_false, Label::kNear);
__ bind(&while_true);
__ shrl(scratch, Immediate(1));
__ Mulsd(double_scratch, double_scratch);
__ j(above, &while_true, Label::kNear);
__ Mulsd(double_result, double_scratch);
__ j(not_zero, &while_true);
__ bind(&while_false);
// If the exponent is negative, return 1/result.
__ testl(exponent, exponent);
__ j(greater, &done);
__ Divsd(double_scratch2, double_result);
__ Movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ Xorpd(double_scratch2, double_scratch2);
__ Ucomisd(double_scratch2, double_result);
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// input was a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ Cvtlsi2sd(double_exponent, exponent);
// Returning or bailing out.
__ bind(&call_runtime);
// Move base to the correct argument register. Exponent is already in xmm1.
__ Movsd(xmm0, double_base);
DCHECK(double_exponent == xmm1);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(2);
__ CallCFunction(ExternalReference::power_double_double_function(), 2);
}
// Return value is in xmm0.
__ Movsd(double_result, xmm0);
__ bind(&done);
__ ret(0);
}
namespace {
void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
ElementsKind kind) {
Label not_zero_case, not_one_case;
Label normal_sequence;
__ testp(rax, rax);
__ j(not_zero, ¬_zero_case);
__ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
.code(),
RelocInfo::CODE_TARGET);
__ bind(¬_zero_case);
__ cmpl(rax, Immediate(1));
__ j(greater, ¬_one_case);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(rcx, args.GetArgumentOperand(0));
__ testp(rcx, rcx);
__ j(zero, &normal_sequence);
__ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
masm->isolate(), GetHoleyElementsKind(kind))
.code(),
RelocInfo::CODE_TARGET);
}
__ bind(&normal_sequence);
__ Jump(
CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
.code(),
RelocInfo::CODE_TARGET);
__ bind(¬_one_case);
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor);
__ Jump(code, RelocInfo::CODE_TARGET);
}
} // namespace
void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
__ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rcx, MAP_TYPE, rcx);
__ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following masking takes care of that anyway.
__ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(rcx);
if (FLAG_debug_code) {
Label done;
__ cmpl(rcx, Immediate(PACKED_ELEMENTS));
__ j(equal, &done);
__ cmpl(rcx, Immediate(HOLEY_ELEMENTS));
__ Assert(
equal,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmpl(rcx, Immediate(PACKED_ELEMENTS));
__ j(equal, &fast_elements_case);
GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64