// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-constructor-gen.h"
#include "src/ast/ast.h"
#include "src/builtins/builtins-call-gen.h"
#include "src/builtins/builtins-constructor.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/code-factory.h"
#include "src/code-stub-assembler.h"
#include "src/counters.h"
#include "src/interface-descriptors.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
void Builtins::Generate_ConstructVarargs(MacroAssembler* masm) {
Generate_CallOrConstructVarargs(masm,
BUILTIN_CODE(masm->isolate(), Construct));
}
void Builtins::Generate_ConstructForwardVarargs(MacroAssembler* masm) {
Generate_CallOrConstructForwardVarargs(
masm, CallOrConstructMode::kConstruct,
BUILTIN_CODE(masm->isolate(), Construct));
}
void Builtins::Generate_ConstructFunctionForwardVarargs(MacroAssembler* masm) {
Generate_CallOrConstructForwardVarargs(
masm, CallOrConstructMode::kConstruct,
BUILTIN_CODE(masm->isolate(), ConstructFunction));
}
TF_BUILTIN(ConstructWithArrayLike, CallOrConstructBuiltinsAssembler) {
TNode<Object> target = CAST(Parameter(Descriptor::kTarget));
SloppyTNode<Object> new_target = CAST(Parameter(Descriptor::kNewTarget));
TNode<Object> arguments_list = CAST(Parameter(Descriptor::kArgumentsList));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CallOrConstructWithArrayLike(target, new_target, arguments_list, context);
}
TF_BUILTIN(ConstructWithSpread, CallOrConstructBuiltinsAssembler) {
TNode<Object> target = CAST(Parameter(Descriptor::kTarget));
SloppyTNode<Object> new_target = CAST(Parameter(Descriptor::kNewTarget));
TNode<Object> spread = CAST(Parameter(Descriptor::kSpread));
TNode<Int32T> args_count =
UncheckedCast<Int32T>(Parameter(Descriptor::kActualArgumentsCount));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CallOrConstructWithSpread(target, new_target, spread, args_count, context);
}
typedef compiler::Node Node;
TF_BUILTIN(FastNewClosure, ConstructorBuiltinsAssembler) {
Node* shared_function_info = Parameter(Descriptor::kSharedFunctionInfo);
Node* feedback_cell = Parameter(Descriptor::kFeedbackCell);
Node* context = Parameter(Descriptor::kContext);
CSA_ASSERT(this, IsFeedbackCell(feedback_cell));
CSA_ASSERT(this, IsSharedFunctionInfo(shared_function_info));
IncrementCounter(isolate()->counters()->fast_new_closure_total(), 1);
// Bump the closure counter encoded the {feedback_cell}s map.
{
Node* const feedback_cell_map = LoadMap(feedback_cell);
Label no_closures(this), one_closure(this), cell_done(this);
GotoIf(IsNoClosuresCellMap(feedback_cell_map), &no_closures);
GotoIf(IsOneClosureCellMap(feedback_cell_map), &one_closure);
CSA_ASSERT(this, IsManyClosuresCellMap(feedback_cell_map),
feedback_cell_map, feedback_cell);
Goto(&cell_done);
BIND(&no_closures);
StoreMapNoWriteBarrier(feedback_cell, Heap::kOneClosureCellMapRootIndex);
Goto(&cell_done);
BIND(&one_closure);
StoreMapNoWriteBarrier(feedback_cell, Heap::kManyClosuresCellMapRootIndex);
Goto(&cell_done);
BIND(&cell_done);
}
// The calculation of |function_map_index| must be in sync with
// SharedFunctionInfo::function_map_index().
Node* const flags =
LoadObjectField(shared_function_info, SharedFunctionInfo::kFlagsOffset,
MachineType::Uint32());
Node* const function_map_index = IntPtrAdd(
DecodeWordFromWord32<SharedFunctionInfo::FunctionMapIndexBits>(flags),
IntPtrConstant(Context::FIRST_FUNCTION_MAP_INDEX));
CSA_ASSERT(this, UintPtrLessThanOrEqual(
function_map_index,
IntPtrConstant(Context::LAST_FUNCTION_MAP_INDEX)));
// Get the function map in the current native context and set that
// as the map of the allocated object.
Node* const native_context = LoadNativeContext(context);
Node* const function_map =
LoadContextElement(native_context, function_map_index);
// Create a new closure from the given function info in new space
Node* instance_size_in_bytes =
TimesPointerSize(LoadMapInstanceSizeInWords(function_map));
Node* const result = Allocate(instance_size_in_bytes);
StoreMapNoWriteBarrier(result, function_map);
InitializeJSObjectBodyNoSlackTracking(result, function_map,
instance_size_in_bytes,
JSFunction::kSizeWithoutPrototype);
// Initialize the rest of the function.
StoreObjectFieldRoot(result, JSObject::kPropertiesOrHashOffset,
Heap::kEmptyFixedArrayRootIndex);
StoreObjectFieldRoot(result, JSObject::kElementsOffset,
Heap::kEmptyFixedArrayRootIndex);
{
// Set function prototype if necessary.
Label done(this), init_prototype(this);
Branch(IsFunctionWithPrototypeSlotMap(function_map), &init_prototype,
&done);
BIND(&init_prototype);
StoreObjectFieldRoot(result, JSFunction::kPrototypeOrInitialMapOffset,
Heap::kTheHoleValueRootIndex);
Goto(&done);
BIND(&done);
}
STATIC_ASSERT(JSFunction::kSizeWithoutPrototype == 7 * kPointerSize);
StoreObjectFieldNoWriteBarrier(result, JSFunction::kFeedbackCellOffset,
feedback_cell);
StoreObjectFieldNoWriteBarrier(result, JSFunction::kSharedFunctionInfoOffset,
shared_function_info);
StoreObjectFieldNoWriteBarrier(result, JSFunction::kContextOffset, context);
Handle<Code> lazy_builtin_handle(
isolate()->builtins()->builtin(Builtins::kCompileLazy), isolate());
Node* lazy_builtin = HeapConstant(lazy_builtin_handle);
StoreObjectFieldNoWriteBarrier(result, JSFunction::kCodeOffset, lazy_builtin);
Return(result);
}
TF_BUILTIN(FastNewObject, ConstructorBuiltinsAssembler) {
Node* context = Parameter(Descriptor::kContext);
Node* target = Parameter(Descriptor::kTarget);
Node* new_target = Parameter(Descriptor::kNewTarget);
Label call_runtime(this);
Node* result = EmitFastNewObject(context, target, new_target, &call_runtime);
Return(result);
BIND(&call_runtime);
TailCallRuntime(Runtime::kNewObject, context, target, new_target);
}
Node* ConstructorBuiltinsAssembler::EmitFastNewObject(Node* context,
Node* target,
Node* new_target) {
VARIABLE(var_obj, MachineRepresentation::kTagged);
Label call_runtime(this), end(this);
Node* result = EmitFastNewObject(context, target, new_target, &call_runtime);
var_obj.Bind(result);
Goto(&end);
BIND(&call_runtime);
var_obj.Bind(CallRuntime(Runtime::kNewObject, context, target, new_target));
Goto(&end);
BIND(&end);
return var_obj.value();
}
Node* ConstructorBuiltinsAssembler::EmitFastNewObject(Node* context,
Node* target,
Node* new_target,
Label* call_runtime) {
CSA_ASSERT(this, HasInstanceType(target, JS_FUNCTION_TYPE));
CSA_ASSERT(this, IsJSReceiver(new_target));
// Verify that the new target is a JSFunction.
Label fast(this), end(this);
GotoIf(HasInstanceType(new_target, JS_FUNCTION_TYPE), &fast);
Goto(call_runtime);
BIND(&fast);
// Load the initial map and verify that it's in fact a map.
Node* initial_map =
LoadObjectField(new_target, JSFunction::kPrototypeOrInitialMapOffset);
GotoIf(TaggedIsSmi(initial_map), call_runtime);
GotoIf(DoesntHaveInstanceType(initial_map, MAP_TYPE), call_runtime);
// Fall back to runtime if the target differs from the new target's
// initial map constructor.
Node* new_target_constructor =
LoadObjectField(initial_map, Map::kConstructorOrBackPointerOffset);
GotoIf(WordNotEqual(target, new_target_constructor), call_runtime);
VARIABLE(properties, MachineRepresentation::kTagged);
Label instantiate_map(this), allocate_properties(this);
GotoIf(IsDictionaryMap(initial_map), &allocate_properties);
{
properties.Bind(EmptyFixedArrayConstant());
Goto(&instantiate_map);
}
BIND(&allocate_properties);
{
properties.Bind(AllocateNameDictionary(NameDictionary::kInitialCapacity));
Goto(&instantiate_map);
}
BIND(&instantiate_map);
return AllocateJSObjectFromMap(initial_map, properties.value(), nullptr,
kNone, kWithSlackTracking);
}
Node* ConstructorBuiltinsAssembler::EmitFastNewFunctionContext(
Node* scope_info, Node* slots, Node* context, ScopeType scope_type) {
slots = ChangeUint32ToWord(slots);
// TODO(ishell): Use CSA::OptimalParameterMode() here.
ParameterMode mode = INTPTR_PARAMETERS;
Node* min_context_slots = IntPtrConstant(Context::MIN_CONTEXT_SLOTS);
Node* length = IntPtrAdd(slots, min_context_slots);
Node* size = GetFixedArrayAllocationSize(length, PACKED_ELEMENTS, mode);
// Create a new closure from the given function info in new space
TNode<Context> function_context =
UncheckedCast<Context>(AllocateInNewSpace(size));
Heap::RootListIndex context_type;
switch (scope_type) {
case EVAL_SCOPE:
context_type = Heap::kEvalContextMapRootIndex;
break;
case FUNCTION_SCOPE:
context_type = Heap::kFunctionContextMapRootIndex;
break;
default:
UNREACHABLE();
}
StoreMapNoWriteBarrier(function_context, context_type);
StoreObjectFieldNoWriteBarrier(function_context, Context::kLengthOffset,
SmiTag(length));
// Set up the fixed slots.
StoreFixedArrayElement(function_context, Context::SCOPE_INFO_INDEX,
scope_info, SKIP_WRITE_BARRIER);
StoreFixedArrayElement(function_context, Context::PREVIOUS_INDEX, context,
SKIP_WRITE_BARRIER);
StoreFixedArrayElement(function_context, Context::EXTENSION_INDEX,
TheHoleConstant(), SKIP_WRITE_BARRIER);
// Copy the native context from the previous context.
Node* native_context = LoadNativeContext(context);
StoreFixedArrayElement(function_context, Context::NATIVE_CONTEXT_INDEX,
native_context, SKIP_WRITE_BARRIER);
// Initialize the rest of the slots to undefined.
Node* undefined = UndefinedConstant();
BuildFastFixedArrayForEach(
function_context, PACKED_ELEMENTS, min_context_slots, length,
[this, undefined](Node* context, Node* offset) {
StoreNoWriteBarrier(MachineRepresentation::kTagged, context, offset,
undefined);
},
mode);
return function_context;
}
TF_BUILTIN(FastNewFunctionContextEval, ConstructorBuiltinsAssembler) {
Node* scope_info = Parameter(Descriptor::kScopeInfo);
Node* slots = Parameter(Descriptor::kSlots);
Node* context = Parameter(Descriptor::kContext);
Return(EmitFastNewFunctionContext(scope_info, slots, context,
ScopeType::EVAL_SCOPE));
}
TF_BUILTIN(FastNewFunctionContextFunction, ConstructorBuiltinsAssembler) {
Node* scope_info = Parameter(Descriptor::kScopeInfo);
Node* slots = Parameter(Descriptor::kSlots);
Node* context = Parameter(Descriptor::kContext);
Return(EmitFastNewFunctionContext(scope_info, slots, context,
ScopeType::FUNCTION_SCOPE));
}
Node* ConstructorBuiltinsAssembler::EmitCreateRegExpLiteral(
Node* feedback_vector, Node* slot, Node* pattern, Node* flags,
Node* context) {
Label call_runtime(this, Label::kDeferred), end(this);
VARIABLE(result, MachineRepresentation::kTagged);
TNode<Object> literal_site =
CAST(LoadFeedbackVectorSlot(feedback_vector, slot, 0, INTPTR_PARAMETERS));
GotoIf(NotHasBoilerplate(literal_site), &call_runtime);
{
Node* boilerplate = literal_site;
CSA_ASSERT(this, IsJSRegExp(boilerplate));
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Node* copy = Allocate(size);
for (int offset = 0; offset < size; offset += kPointerSize) {
Node* value = LoadObjectField(boilerplate, offset);
StoreObjectFieldNoWriteBarrier(copy, offset, value);
}
result.Bind(copy);
Goto(&end);
}
BIND(&call_runtime);
{
result.Bind(CallRuntime(Runtime::kCreateRegExpLiteral, context,
feedback_vector, SmiTag(slot), pattern, flags));
Goto(&end);
}
BIND(&end);
return result.value();
}
TF_BUILTIN(CreateRegExpLiteral, ConstructorBuiltinsAssembler) {
Node* feedback_vector = Parameter(Descriptor::kFeedbackVector);
Node* slot = SmiUntag(Parameter(Descriptor::kSlot));
Node* pattern = Parameter(Descriptor::kPattern);
Node* flags = Parameter(Descriptor::kFlags);
Node* context = Parameter(Descriptor::kContext);
Node* result =
EmitCreateRegExpLiteral(feedback_vector, slot, pattern, flags, context);
Return(result);
}
Node* ConstructorBuiltinsAssembler::EmitCreateShallowArrayLiteral(
Node* feedback_vector, Node* slot, Node* context, Label* call_runtime,
AllocationSiteMode allocation_site_mode) {
Label zero_capacity(this), cow_elements(this), fast_elements(this),
return_result(this);
VARIABLE(result, MachineRepresentation::kTagged);
TNode<Object> maybe_allocation_site =
CAST(LoadFeedbackVectorSlot(feedback_vector, slot, 0, INTPTR_PARAMETERS));
GotoIf(NotHasBoilerplate(maybe_allocation_site), call_runtime);
TNode<AllocationSite> allocation_site = CAST(maybe_allocation_site);
TNode<JSArray> boilerplate = CAST(LoadBoilerplate(allocation_site));
ParameterMode mode = OptimalParameterMode();
if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
return CloneFastJSArray(context, boilerplate, mode, allocation_site);
} else {
return CloneFastJSArray(context, boilerplate, mode);
}
}
TF_BUILTIN(CreateShallowArrayLiteral, ConstructorBuiltinsAssembler) {
Node* feedback_vector = Parameter(Descriptor::kFeedbackVector);
Node* slot = SmiUntag(Parameter(Descriptor::kSlot));
Node* constant_elements = Parameter(Descriptor::kConstantElements);
Node* context = Parameter(Descriptor::kContext);
Label call_runtime(this, Label::kDeferred);
Return(EmitCreateShallowArrayLiteral(feedback_vector, slot, context,
&call_runtime,
DONT_TRACK_ALLOCATION_SITE));
BIND(&call_runtime);
{
Comment("call runtime");
int const flags =
AggregateLiteral::kDisableMementos | AggregateLiteral::kIsShallow;
Return(CallRuntime(Runtime::kCreateArrayLiteral, context, feedback_vector,
SmiTag(slot), constant_elements, SmiConstant(flags)));
}
}
Node* ConstructorBuiltinsAssembler::EmitCreateEmptyArrayLiteral(
Node* feedback_vector, Node* slot, Node* context) {
// Array literals always have a valid AllocationSite to properly track
// elements transitions.
TNode<Object> maybe_allocation_site =
CAST(LoadFeedbackVectorSlot(feedback_vector, slot, 0, INTPTR_PARAMETERS));
TVARIABLE(AllocationSite, allocation_site);
Label create_empty_array(this),
initialize_allocation_site(this, Label::kDeferred), done(this);
GotoIf(TaggedIsSmi(maybe_allocation_site), &initialize_allocation_site);
{
allocation_site = CAST(maybe_allocation_site);
Goto(&create_empty_array);
}
// TODO(cbruni): create the AllocationSite in CSA.
BIND(&initialize_allocation_site);
{
allocation_site =
CreateAllocationSiteInFeedbackVector(feedback_vector, SmiTag(slot));
Goto(&create_empty_array);
}
BIND(&create_empty_array);
TNode<Int32T> kind = LoadElementsKind(allocation_site.value());
TNode<Context> native_context = LoadNativeContext(context);
Comment("LoadJSArrayElementsMap");
Node* array_map = LoadJSArrayElementsMap(kind, native_context);
Node* zero = SmiConstant(0);
Comment("Allocate JSArray");
Node* result =
AllocateJSArray(GetInitialFastElementsKind(), array_map, zero, zero,
allocation_site.value(), ParameterMode::SMI_PARAMETERS);
Goto(&done);
BIND(&done);
return result;
}
TF_BUILTIN(CreateEmptyArrayLiteral, ConstructorBuiltinsAssembler) {
Node* feedback_vector = Parameter(Descriptor::kFeedbackVector);
Node* slot = SmiUntag(Parameter(Descriptor::kSlot));
Node* context = Parameter(Descriptor::kContext);
Node* result = EmitCreateEmptyArrayLiteral(feedback_vector, slot, context);
Return(result);
}
Node* ConstructorBuiltinsAssembler::EmitCreateShallowObjectLiteral(
Node* feedback_vector, Node* slot, Label* call_runtime) {
TNode<Object> maybe_allocation_site =
CAST(LoadFeedbackVectorSlot(feedback_vector, slot, 0, INTPTR_PARAMETERS));
GotoIf(NotHasBoilerplate(maybe_allocation_site), call_runtime);
TNode<AllocationSite> allocation_site = CAST(maybe_allocation_site);
TNode<JSObject> boilerplate = LoadBoilerplate(allocation_site);
TNode<Map> boilerplate_map = LoadMap(boilerplate);
CSA_ASSERT(this, IsJSObjectMap(boilerplate_map));
VARIABLE(var_properties, MachineRepresentation::kTagged);
{
Node* bit_field_3 = LoadMapBitField3(boilerplate_map);
GotoIf(IsSetWord32<Map::IsDeprecatedBit>(bit_field_3), call_runtime);
// Directly copy over the property store for dict-mode boilerplates.
Label if_dictionary(this), if_fast(this), done(this);
Branch(IsSetWord32<Map::IsDictionaryMapBit>(bit_field_3), &if_dictionary,
&if_fast);
BIND(&if_dictionary);
{
Comment("Copy dictionary properties");
var_properties.Bind(CopyNameDictionary(
CAST(LoadSlowProperties(boilerplate)), call_runtime));
// Slow objects have no in-object properties.
Goto(&done);
}
BIND(&if_fast);
{
// TODO(cbruni): support copying out-of-object properties.
Node* boilerplate_properties = LoadFastProperties(boilerplate);
GotoIfNot(IsEmptyFixedArray(boilerplate_properties), call_runtime);
var_properties.Bind(EmptyFixedArrayConstant());
Goto(&done);
}
BIND(&done);
}
VARIABLE(var_elements, MachineRepresentation::kTagged);
{
// Copy the elements backing store, assuming that it's flat.
Label if_empty_fixed_array(this), if_copy_elements(this), done(this);
Node* boilerplate_elements = LoadElements(boilerplate);
Branch(IsEmptyFixedArray(boilerplate_elements), &if_empty_fixed_array,
&if_copy_elements);
BIND(&if_empty_fixed_array);
var_elements.Bind(boilerplate_elements);
Goto(&done);
BIND(&if_copy_elements);
CSA_ASSERT(this, Word32BinaryNot(
IsFixedCOWArrayMap(LoadMap(boilerplate_elements))));
ExtractFixedArrayFlags flags;
flags |= ExtractFixedArrayFlag::kAllFixedArrays;
flags |= ExtractFixedArrayFlag::kNewSpaceAllocationOnly;
flags |= ExtractFixedArrayFlag::kDontCopyCOW;
var_elements.Bind(CloneFixedArray(boilerplate_elements, flags));
Goto(&done);
BIND(&done);
}
// Ensure new-space allocation for a fresh JSObject so we can skip write
// barriers when copying all object fields.
STATIC_ASSERT(JSObject::kMaxInstanceSize < kMaxRegularHeapObjectSize);
Node* instance_size =
TimesPointerSize(LoadMapInstanceSizeInWords(boilerplate_map));
Node* allocation_size = instance_size;
bool needs_allocation_memento = FLAG_allocation_site_pretenuring;
if (needs_allocation_memento) {
// Prepare for inner-allocating the AllocationMemento.
allocation_size =
IntPtrAdd(instance_size, IntPtrConstant(AllocationMemento::kSize));
}
Node* copy = AllocateInNewSpace(allocation_size);
{
Comment("Initialize Literal Copy");
// Initialize Object fields.
StoreMapNoWriteBarrier(copy, boilerplate_map);
StoreObjectFieldNoWriteBarrier(copy, JSObject::kPropertiesOrHashOffset,
var_properties.value());
StoreObjectFieldNoWriteBarrier(copy, JSObject::kElementsOffset,
var_elements.value());
}
// Initialize the AllocationMemento before potential GCs due to heap number
// allocation when copying the in-object properties.
if (needs_allocation_memento) {
InitializeAllocationMemento(copy, instance_size, allocation_site);
}
{
// Copy over in-object properties.
Label continue_with_write_barrier(this), done_init(this);
VARIABLE(offset, MachineType::PointerRepresentation(),
IntPtrConstant(JSObject::kHeaderSize));
// Mutable heap numbers only occur on 32-bit platforms.
bool may_use_mutable_heap_numbers =
FLAG_track_double_fields && !FLAG_unbox_double_fields;
{
Comment("Copy in-object properties fast");
Label continue_fast(this, &offset);
Branch(WordEqual(offset.value(), instance_size), &done_init,
&continue_fast);
BIND(&continue_fast);
Node* field = LoadObjectField(boilerplate, offset.value());
if (may_use_mutable_heap_numbers) {
Label store_field(this);
GotoIf(TaggedIsSmi(field), &store_field);
GotoIf(IsMutableHeapNumber(field), &continue_with_write_barrier);
Goto(&store_field);
BIND(&store_field);
}
StoreObjectFieldNoWriteBarrier(copy, offset.value(), field);
offset.Bind(IntPtrAdd(offset.value(), IntPtrConstant(kPointerSize)));
Branch(WordNotEqual(offset.value(), instance_size), &continue_fast,
&done_init);
}
if (!may_use_mutable_heap_numbers) {
BIND(&done_init);
return copy;
}
// Continue initializing the literal after seeing the first sub-object
// potentially causing allocation. In this case we prepare the new literal
// by copying all pending fields over from the boilerplate and emit full
// write barriers from here on.
BIND(&continue_with_write_barrier);
{
Comment("Copy in-object properties slow");
BuildFastLoop(offset.value(), instance_size,
[=](Node* offset) {
Node* field = LoadObjectField(boilerplate, offset);
StoreObjectFieldNoWriteBarrier(copy, offset, field);
},
kPointerSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
Comment("Copy mutable HeapNumber values");
BuildFastLoop(offset.value(), instance_size,
[=](Node* offset) {
Node* field = LoadObjectField(copy, offset);
Label copy_mutable_heap_number(this, Label::kDeferred),
continue_loop(this);
// We only have to clone complex field values.
GotoIf(TaggedIsSmi(field), &continue_loop);
Branch(IsMutableHeapNumber(field),
©_mutable_heap_number, &continue_loop);
BIND(©_mutable_heap_number);
{
Node* double_value = LoadHeapNumberValue(field);
Node* mutable_heap_number =
AllocateMutableHeapNumberWithValue(double_value);
StoreObjectField(copy, offset, mutable_heap_number);
Goto(&continue_loop);
}
BIND(&continue_loop);
},
kPointerSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
Goto(&done_init);
}
BIND(&done_init);
}
return copy;
}
TF_BUILTIN(CreateShallowObjectLiteral, ConstructorBuiltinsAssembler) {
Label call_runtime(this);
Node* feedback_vector = Parameter(Descriptor::kFeedbackVector);
Node* slot = SmiUntag(Parameter(Descriptor::kSlot));
Node* copy =
EmitCreateShallowObjectLiteral(feedback_vector, slot, &call_runtime);
Return(copy);
BIND(&call_runtime);
Node* object_boilerplate_description =
Parameter(Descriptor::kObjectBoilerplateDescription);
Node* flags = Parameter(Descriptor::kFlags);
Node* context = Parameter(Descriptor::kContext);
TailCallRuntime(Runtime::kCreateObjectLiteral, context, feedback_vector,
SmiTag(slot), object_boilerplate_description, flags);
}
// Used by the CreateEmptyObjectLiteral bytecode and the Object constructor.
Node* ConstructorBuiltinsAssembler::EmitCreateEmptyObjectLiteral(
Node* context) {
Node* native_context = LoadNativeContext(context);
Node* object_function =
LoadContextElement(native_context, Context::OBJECT_FUNCTION_INDEX);
Node* map = LoadObjectField(object_function,
JSFunction::kPrototypeOrInitialMapOffset);
CSA_ASSERT(this, IsMap(map));
// Ensure that slack tracking is disabled for the map.
STATIC_ASSERT(Map::kNoSlackTracking == 0);
CSA_ASSERT(
this, IsClearWord32<Map::ConstructionCounterBits>(LoadMapBitField3(map)));
Node* empty_fixed_array = EmptyFixedArrayConstant();
Node* result =
AllocateJSObjectFromMap(map, empty_fixed_array, empty_fixed_array);
return result;
}
// ES #sec-object-constructor
TF_BUILTIN(ObjectConstructor, ConstructorBuiltinsAssembler) {
int const kValueArg = 0;
Node* argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
Node* context = Parameter(Descriptor::kContext);
Node* new_target = Parameter(Descriptor::kJSNewTarget);
VARIABLE(var_result, MachineRepresentation::kTagged);
Label if_subclass(this, Label::kDeferred), if_notsubclass(this),
return_result(this);
GotoIf(IsUndefined(new_target), &if_notsubclass);
TNode<JSFunction> target = CAST(Parameter(Descriptor::kJSTarget));
Branch(WordEqual(new_target, target), &if_notsubclass, &if_subclass);
BIND(&if_subclass);
{
Node* result =
CallBuiltin(Builtins::kFastNewObject, context, target, new_target);
var_result.Bind(result);
Goto(&return_result);
}
BIND(&if_notsubclass);
{
Label if_newobject(this, Label::kDeferred), if_toobject(this);
Node* value_index = IntPtrConstant(kValueArg);
GotoIf(UintPtrGreaterThanOrEqual(value_index, argc), &if_newobject);
Node* value = args.AtIndex(value_index);
GotoIf(IsNull(value), &if_newobject);
Branch(IsUndefined(value), &if_newobject, &if_toobject);
BIND(&if_newobject);
{
Node* result = EmitCreateEmptyObjectLiteral(context);
var_result.Bind(result);
Goto(&return_result);
}
BIND(&if_toobject);
{
Node* result = CallBuiltin(Builtins::kToObject, context, value);
var_result.Bind(result);
Goto(&return_result);
}
}
BIND(&return_result);
args.PopAndReturn(var_result.value());
}
// ES #sec-number-constructor
TF_BUILTIN(NumberConstructor, ConstructorBuiltinsAssembler) {
Node* context = Parameter(Descriptor::kContext);
Node* argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
// 1. If no arguments were passed to this function invocation, let n be +0.
VARIABLE(var_n, MachineRepresentation::kTagged, SmiConstant(0));
Label if_nloaded(this, &var_n);
GotoIf(WordEqual(argc, IntPtrConstant(0)), &if_nloaded);
// 2. Else,
// a. Let prim be ? ToNumeric(value).
// b. If Type(prim) is BigInt, let n be the Number value for prim.
// c. Otherwise, let n be prim.
Node* value = args.AtIndex(0);
var_n.Bind(ToNumber(context, value, BigIntHandling::kConvertToNumber));
Goto(&if_nloaded);
BIND(&if_nloaded);
{
// 3. If NewTarget is undefined, return n.
Node* n_value = var_n.value();
Node* new_target = Parameter(Descriptor::kJSNewTarget);
Label return_n(this), constructnumber(this, Label::kDeferred);
Branch(IsUndefined(new_target), &return_n, &constructnumber);
BIND(&return_n);
{ args.PopAndReturn(n_value); }
BIND(&constructnumber);
{
// 4. Let O be ? OrdinaryCreateFromConstructor(NewTarget,
// "%NumberPrototype%", « [[NumberData]] »).
// 5. Set O.[[NumberData]] to n.
// 6. Return O.
// We are not using Parameter(Descriptor::kJSTarget) and loading the value
// from the current frame here in order to reduce register pressure on the
// fast path.
TNode<JSFunction> target = LoadTargetFromFrame();
Node* result =
CallBuiltin(Builtins::kFastNewObject, context, target, new_target);
StoreObjectField(result, JSValue::kValueOffset, n_value);
args.PopAndReturn(result);
}
}
}
TF_BUILTIN(GenericConstructorLazyDeoptContinuation,
ConstructorBuiltinsAssembler) {
Node* result = Parameter(Descriptor::kResult);
Return(result);
}
// https://tc39.github.io/ecma262/#sec-string-constructor
TF_BUILTIN(StringConstructor, ConstructorBuiltinsAssembler) {
Node* context = Parameter(Descriptor::kContext);
Node* argc =
ChangeInt32ToIntPtr(Parameter(Descriptor::kJSActualArgumentsCount));
CodeStubArguments args(this, argc);
TNode<Object> new_target = CAST(Parameter(Descriptor::kJSNewTarget));
// 1. If no arguments were passed to this function invocation, let s be "".
VARIABLE(var_s, MachineRepresentation::kTagged, EmptyStringConstant());
Label if_sloaded(this, &var_s);
GotoIf(WordEqual(argc, IntPtrConstant(0)), &if_sloaded);
// 2. Else,
// a. If NewTarget is undefined [...]
Node* value = args.AtIndex(0);
Label if_tostring(this, &var_s);
GotoIfNot(IsUndefined(new_target), &if_tostring);
// 2a. [...] and Type(value) is Symbol, return SymbolDescriptiveString(value).
GotoIf(TaggedIsSmi(value), &if_tostring);
GotoIfNot(IsSymbol(value), &if_tostring);
{
Node* result =
CallRuntime(Runtime::kSymbolDescriptiveString, context, value);
args.PopAndReturn(result);
}
// 2b. Let s be ? ToString(value).
BIND(&if_tostring);
{
var_s.Bind(CallBuiltin(Builtins::kToString, context, value));
Goto(&if_sloaded);
}
// 3. If NewTarget is undefined, return s.
BIND(&if_sloaded);
{
Node* s_value = var_s.value();
Label return_s(this), constructstring(this, Label::kDeferred);
Branch(IsUndefined(new_target), &return_s, &constructstring);
BIND(&return_s);
{ args.PopAndReturn(s_value); }
BIND(&constructstring);
{
// We are not using Parameter(Descriptor::kJSTarget) and loading the value
// from the current frame here in order to reduce register pressure on the
// fast path.
TNode<JSFunction> target = LoadTargetFromFrame();
Node* result =
CallBuiltin(Builtins::kFastNewObject, context, target, new_target);
StoreObjectField(result, JSValue::kValueOffset, s_value);
args.PopAndReturn(result);
}
}
}
} // namespace internal
} // namespace v8