// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/utils/random-number-generator.h"
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <new>
#include "src/base/bits.h"
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/base/platform/time.h"
namespace v8 {
namespace base {
static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER;
static RandomNumberGenerator::EntropySource entropy_source = nullptr;
// static
void RandomNumberGenerator::SetEntropySource(EntropySource source) {
LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
entropy_source = source;
}
RandomNumberGenerator::RandomNumberGenerator() {
// Check if embedder supplied an entropy source.
{ LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
if (entropy_source != nullptr) {
int64_t seed;
if (entropy_source(reinterpret_cast<unsigned char*>(&seed),
sizeof(seed))) {
SetSeed(seed);
return;
}
}
}
#if V8_OS_CYGWIN || V8_OS_WIN
// Use rand_s() to gather entropy on Windows. See:
// https://code.google.com/p/v8/issues/detail?id=2905
unsigned first_half, second_half;
errno_t result = rand_s(&first_half);
DCHECK_EQ(0, result);
result = rand_s(&second_half);
DCHECK_EQ(0, result);
SetSeed((static_cast<int64_t>(first_half) << 32) + second_half);
#else
// Gather entropy from /dev/urandom if available.
FILE* fp = fopen("/dev/urandom", "rb");
if (fp != nullptr) {
int64_t seed;
size_t n = fread(&seed, sizeof(seed), 1, fp);
fclose(fp);
if (n == 1) {
SetSeed(seed);
return;
}
}
// We cannot assume that random() or rand() were seeded
// properly, so instead of relying on random() or rand(),
// we just seed our PRNG using timing data as fallback.
// This is weak entropy, but it's sufficient, because
// it is the responsibility of the embedder to install
// an entropy source using v8::V8::SetEntropySource(),
// which provides reasonable entropy, see:
// https://code.google.com/p/v8/issues/detail?id=2905
int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24;
seed ^= TimeTicks::HighResolutionNow().ToInternalValue() << 16;
seed ^= TimeTicks::Now().ToInternalValue() << 8;
SetSeed(seed);
#endif // V8_OS_CYGWIN || V8_OS_WIN
}
int RandomNumberGenerator::NextInt(int max) {
DCHECK_LT(0, max);
// Fast path if max is a power of 2.
if (bits::IsPowerOfTwo(max)) {
return static_cast<int>((max * static_cast<int64_t>(Next(31))) >> 31);
}
while (true) {
int rnd = Next(31);
int val = rnd % max;
if (rnd - val + (max - 1) >= 0) {
return val;
}
}
}
double RandomNumberGenerator::NextDouble() {
XorShift128(&state0_, &state1_);
return ToDouble(state0_, state1_);
}
int64_t RandomNumberGenerator::NextInt64() {
XorShift128(&state0_, &state1_);
return bit_cast<int64_t>(state0_ + state1_);
}
void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) {
for (size_t n = 0; n < buflen; ++n) {
static_cast<uint8_t*>(buffer)[n] = static_cast<uint8_t>(Next(8));
}
}
static std::vector<uint64_t> ComplementSample(
const std::unordered_set<uint64_t>& set, uint64_t max) {
std::vector<uint64_t> result;
result.reserve(max - set.size());
for (uint64_t i = 0; i < max; i++) {
if (!set.count(i)) {
result.push_back(i);
}
}
return result;
}
std::vector<uint64_t> RandomNumberGenerator::NextSample(uint64_t max,
size_t n) {
CHECK_LE(n, max);
if (n == 0) {
return std::vector<uint64_t>();
}
// Choose to select or exclude, whatever needs fewer generator calls.
size_t smaller_part = static_cast<size_t>(
std::min(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
std::unordered_set<uint64_t> selected;
size_t counter = 0;
while (selected.size() != smaller_part && counter / 3 < smaller_part) {
uint64_t x = static_cast<uint64_t>(NextDouble() * max);
CHECK_LT(x, max);
selected.insert(x);
counter++;
}
if (selected.size() == smaller_part) {
if (smaller_part != n) {
return ComplementSample(selected, max);
}
return std::vector<uint64_t>(selected.begin(), selected.end());
}
// Failed to select numbers in smaller_part * 3 steps, try different approach.
return NextSampleSlow(max, n, selected);
}
std::vector<uint64_t> RandomNumberGenerator::NextSampleSlow(
uint64_t max, size_t n, const std::unordered_set<uint64_t>& excluded) {
CHECK_GE(max - excluded.size(), n);
std::vector<uint64_t> result;
result.reserve(max - excluded.size());
for (uint64_t i = 0; i < max; i++) {
if (!excluded.count(i)) {
result.push_back(i);
}
}
// Decrease result vector until it contains values to select or exclude,
// whatever needs fewer generator calls.
size_t larger_part = static_cast<size_t>(
std::max(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
// Excluded set may cause that initial result is already smaller than
// larget_part.
while (result.size() != larger_part && result.size() > n) {
size_t x = static_cast<size_t>(NextDouble() * result.size());
CHECK_LT(x, result.size());
std::swap(result[x], result.back());
result.pop_back();
}
if (result.size() != n) {
return ComplementSample(
std::unordered_set<uint64_t>(result.begin(), result.end()), max);
}
return result;
}
int RandomNumberGenerator::Next(int bits) {
DCHECK_LT(0, bits);
DCHECK_GE(32, bits);
XorShift128(&state0_, &state1_);
return static_cast<int>((state0_ + state1_) >> (64 - bits));
}
void RandomNumberGenerator::SetSeed(int64_t seed) {
initial_seed_ = seed;
state0_ = MurmurHash3(bit_cast<uint64_t>(seed));
state1_ = MurmurHash3(~state0_);
CHECK(state0_ != 0 || state1_ != 0);
}
uint64_t RandomNumberGenerator::MurmurHash3(uint64_t h) {
h ^= h >> 33;
h *= uint64_t{0xFF51AFD7ED558CCD};
h ^= h >> 33;
h *= uint64_t{0xC4CEB9FE1A85EC53};
h ^= h >> 33;
return h;
}
} // namespace base
} // namespace v8