// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/cpu.h"
#if V8_LIBC_MSVCRT
#include <intrin.h> // __cpuid()
#endif
#if V8_OS_LINUX
#include <linux/auxvec.h> // AT_HWCAP
#endif
#if V8_GLIBC_PREREQ(2, 16)
#include <sys/auxv.h> // getauxval()
#endif
#if V8_OS_QNX
#include <sys/syspage.h> // cpuinfo
#endif
#if V8_OS_LINUX && V8_HOST_ARCH_PPC
#include <elf.h>
#endif
#if V8_OS_AIX
#include <sys/systemcfg.h> // _system_configuration
#ifndef POWER_8
#define POWER_8 0x10000
#endif
#ifndef POWER_9
#define POWER_9 0x20000
#endif
#endif
#if V8_OS_POSIX
#include <unistd.h> // sysconf()
#endif
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include "src/base/logging.h"
#if V8_OS_WIN
#include "src/base/win32-headers.h" // NOLINT
#endif
namespace v8 {
namespace base {
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// Define __cpuid() for non-MSVC libraries.
#if !V8_LIBC_MSVCRT
static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
// Clear ecx to align with __cpuid() of MSVC:
// https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
#if defined(__i386__) && defined(__pic__)
// Make sure to preserve ebx, which contains the pointer
// to the GOT in case we're generating PIC.
__asm__ volatile(
"mov %%ebx, %%edi\n\t"
"cpuid\n\t"
"xchg %%edi, %%ebx\n\t"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
#else
__asm__ volatile("cpuid \n\t"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
#endif // defined(__i386__) && defined(__pic__)
}
#endif // !V8_LIBC_MSVCRT
#elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
#if V8_OS_LINUX
#if V8_HOST_ARCH_ARM
// See <uapi/asm/hwcap.h> kernel header.
/*
* HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
*/
#define HWCAP_SWP (1 << 0)
#define HWCAP_HALF (1 << 1)
#define HWCAP_THUMB (1 << 2)
#define HWCAP_26BIT (1 << 3) /* Play it safe */
#define HWCAP_FAST_MULT (1 << 4)
#define HWCAP_FPA (1 << 5)
#define HWCAP_VFP (1 << 6)
#define HWCAP_EDSP (1 << 7)
#define HWCAP_JAVA (1 << 8)
#define HWCAP_IWMMXT (1 << 9)
#define HWCAP_CRUNCH (1 << 10)
#define HWCAP_THUMBEE (1 << 11)
#define HWCAP_NEON (1 << 12)
#define HWCAP_VFPv3 (1 << 13)
#define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */
#define HWCAP_TLS (1 << 15)
#define HWCAP_VFPv4 (1 << 16)
#define HWCAP_IDIVA (1 << 17)
#define HWCAP_IDIVT (1 << 18)
#define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */
#define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT)
#define HWCAP_LPAE (1 << 20)
static uint32_t ReadELFHWCaps() {
uint32_t result = 0;
#if V8_GLIBC_PREREQ(2, 16)
result = static_cast<uint32_t>(getauxval(AT_HWCAP));
#else
// Read the ELF HWCAP flags by parsing /proc/self/auxv.
FILE* fp = fopen("/proc/self/auxv", "r");
if (fp != nullptr) {
struct { uint32_t tag; uint32_t value; } entry;
for (;;) {
size_t n = fread(&entry, sizeof(entry), 1, fp);
if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
break;
}
if (entry.tag == AT_HWCAP) {
result = entry.value;
break;
}
}
fclose(fp);
}
#endif
return result;
}
#endif // V8_HOST_ARCH_ARM
#if V8_HOST_ARCH_MIPS
int __detect_fp64_mode(void) {
double result = 0;
// Bit representation of (double)1 is 0x3FF0000000000000.
__asm__ volatile(
".set push\n\t"
".set noreorder\n\t"
".set oddspreg\n\t"
"lui $t0, 0x3FF0\n\t"
"ldc1 $f0, %0\n\t"
"mtc1 $t0, $f1\n\t"
"sdc1 $f0, %0\n\t"
".set pop\n\t"
: "+m"(result)
:
: "t0", "$f0", "$f1", "memory");
return !(result == 1);
}
int __detect_mips_arch_revision(void) {
// TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
// kernel.
uint32_t result = 0;
__asm__ volatile(
"move $v0, $zero\n\t"
// Encoding for "addi $v0, $v0, 1" on non-r6,
// which is encoding for "bovc $v0, %v0, 1" on r6.
// Use machine code directly to avoid compilation errors with different
// toolchains and maintain compatibility.
".word 0x20420001\n\t"
"sw $v0, %0\n\t"
: "=m"(result)
:
: "v0", "memory");
// Result is 0 on r6 architectures, 1 on other architecture revisions.
// Fall-back to the least common denominator which is mips32 revision 1.
return result ? 1 : 6;
}
#endif // V8_HOST_ARCH_MIPS
// Extract the information exposed by the kernel via /proc/cpuinfo.
class CPUInfo final {
public:
CPUInfo() : datalen_(0) {
// Get the size of the cpuinfo file by reading it until the end. This is
// required because files under /proc do not always return a valid size
// when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
static const char PATHNAME[] = "/proc/cpuinfo";
FILE* fp = fopen(PATHNAME, "r");
if (fp != nullptr) {
for (;;) {
char buffer[256];
size_t n = fread(buffer, 1, sizeof(buffer), fp);
if (n == 0) {
break;
}
datalen_ += n;
}
fclose(fp);
}
// Read the contents of the cpuinfo file.
data_ = new char[datalen_ + 1];
fp = fopen(PATHNAME, "r");
if (fp != nullptr) {
for (size_t offset = 0; offset < datalen_; ) {
size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
if (n == 0) {
break;
}
offset += n;
}
fclose(fp);
}
// Zero-terminate the data.
data_[datalen_] = '\0';
}
~CPUInfo() {
delete[] data_;
}
// Extract the content of a the first occurrence of a given field in
// the content of the cpuinfo file and return it as a heap-allocated
// string that must be freed by the caller using delete[].
// Return nullptr if not found.
char* ExtractField(const char* field) const {
DCHECK_NOT_NULL(field);
// Look for first field occurrence, and ensure it starts the line.
size_t fieldlen = strlen(field);
char* p = data_;
for (;;) {
p = strstr(p, field);
if (p == nullptr) {
return nullptr;
}
if (p == data_ || p[-1] == '\n') {
break;
}
p += fieldlen;
}
// Skip to the first colon followed by a space.
p = strchr(p + fieldlen, ':');
if (p == nullptr || !isspace(p[1])) {
return nullptr;
}
p += 2;
// Find the end of the line.
char* q = strchr(p, '\n');
if (q == nullptr) {
q = data_ + datalen_;
}
// Copy the line into a heap-allocated buffer.
size_t len = q - p;
char* result = new char[len + 1];
if (result != nullptr) {
memcpy(result, p, len);
result[len] = '\0';
}
return result;
}
private:
char* data_;
size_t datalen_;
};
// Checks that a space-separated list of items contains one given 'item'.
static bool HasListItem(const char* list, const char* item) {
ssize_t item_len = strlen(item);
const char* p = list;
if (p != nullptr) {
while (*p != '\0') {
// Skip whitespace.
while (isspace(*p)) ++p;
// Find end of current list item.
const char* q = p;
while (*q != '\0' && !isspace(*q)) ++q;
if (item_len == q - p && memcmp(p, item, item_len) == 0) {
return true;
}
// Skip to next item.
p = q;
}
}
return false;
}
#endif // V8_OS_LINUX
#endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
CPU::CPU()
: stepping_(0),
model_(0),
ext_model_(0),
family_(0),
ext_family_(0),
type_(0),
implementer_(0),
architecture_(0),
variant_(-1),
part_(0),
icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
has_fpu_(false),
has_cmov_(false),
has_sahf_(false),
has_mmx_(false),
has_sse_(false),
has_sse2_(false),
has_sse3_(false),
has_ssse3_(false),
has_sse41_(false),
has_sse42_(false),
is_atom_(false),
has_osxsave_(false),
has_avx_(false),
has_fma3_(false),
has_bmi1_(false),
has_bmi2_(false),
has_lzcnt_(false),
has_popcnt_(false),
has_idiva_(false),
has_neon_(false),
has_thumb2_(false),
has_vfp_(false),
has_vfp3_(false),
has_vfp3_d32_(false),
is_fp64_mode_(false),
has_non_stop_time_stamp_counter_(false),
has_msa_(false) {
memcpy(vendor_, "Unknown", 8);
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
int cpu_info[4];
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
// the other three array elements. The CPU identification string is
// not in linear order. The code below arranges the information
// in a human readable form. The human readable order is CPUInfo[1] |
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
// before using memcpy to copy these three array elements to cpu_string.
__cpuid(cpu_info, 0);
unsigned num_ids = cpu_info[0];
std::swap(cpu_info[2], cpu_info[3]);
memcpy(vendor_, cpu_info + 1, 12);
vendor_[12] = '\0';
// Interpret CPU feature information.
if (num_ids > 0) {
__cpuid(cpu_info, 1);
stepping_ = cpu_info[0] & 0xF;
model_ = ((cpu_info[0] >> 4) & 0xF) + ((cpu_info[0] >> 12) & 0xF0);
family_ = (cpu_info[0] >> 8) & 0xF;
type_ = (cpu_info[0] >> 12) & 0x3;
ext_model_ = (cpu_info[0] >> 16) & 0xF;
ext_family_ = (cpu_info[0] >> 20) & 0xFF;
has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
has_avx_ = (cpu_info[2] & 0x10000000) != 0;
has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
if (family_ == 0x6) {
switch (model_) {
case 0x1C: // SLT
case 0x26:
case 0x36:
case 0x27:
case 0x35:
case 0x37: // SLM
case 0x4A:
case 0x4D:
case 0x4C: // AMT
case 0x6E:
is_atom_ = true;
}
}
}
// There are separate feature flags for VEX-encoded GPR instructions.
if (num_ids >= 7) {
__cpuid(cpu_info, 7);
has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
}
// Query extended IDs.
__cpuid(cpu_info, 0x80000000);
unsigned num_ext_ids = cpu_info[0];
// Interpret extended CPU feature information.
if (num_ext_ids > 0x80000000) {
__cpuid(cpu_info, 0x80000001);
has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
// SAHF must be probed in long mode.
has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
}
// Check if CPU has non stoppable time stamp counter.
const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007;
if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
__cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
}
#elif V8_HOST_ARCH_ARM
#if V8_OS_LINUX
CPUInfo cpu_info;
// Extract implementor from the "CPU implementer" field.
char* implementer = cpu_info.ExtractField("CPU implementer");
if (implementer != nullptr) {
char* end;
implementer_ = strtol(implementer, &end, 0);
if (end == implementer) {
implementer_ = 0;
}
delete[] implementer;
}
char* variant = cpu_info.ExtractField("CPU variant");
if (variant != nullptr) {
char* end;
variant_ = strtol(variant, &end, 0);
if (end == variant) {
variant_ = -1;
}
delete[] variant;
}
// Extract part number from the "CPU part" field.
char* part = cpu_info.ExtractField("CPU part");
if (part != nullptr) {
char* end;
part_ = strtol(part, &end, 0);
if (end == part) {
part_ = 0;
}
delete[] part;
}
// Extract architecture from the "CPU Architecture" field.
// The list is well-known, unlike the the output of
// the 'Processor' field which can vary greatly.
// See the definition of the 'proc_arch' array in
// $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
// same file.
char* architecture = cpu_info.ExtractField("CPU architecture");
if (architecture != nullptr) {
char* end;
architecture_ = strtol(architecture, &end, 10);
if (end == architecture) {
// Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
if (strcmp(architecture, "AArch64") == 0) {
architecture_ = 8;
} else {
architecture_ = 0;
}
}
delete[] architecture;
// Unfortunately, it seems that certain ARMv6-based CPUs
// report an incorrect architecture number of 7!
//
// See http://code.google.com/p/android/issues/detail?id=10812
//
// We try to correct this by looking at the 'elf_platform'
// field reported by the 'Processor' field, which is of the
// form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
// an ARMv6-one. For example, the Raspberry Pi is one popular
// ARMv6 device that reports architecture 7.
if (architecture_ == 7) {
char* processor = cpu_info.ExtractField("Processor");
if (HasListItem(processor, "(v6l)")) {
architecture_ = 6;
}
delete[] processor;
}
// elf_platform moved to the model name field in Linux v3.8.
if (architecture_ == 7) {
char* processor = cpu_info.ExtractField("model name");
if (HasListItem(processor, "(v6l)")) {
architecture_ = 6;
}
delete[] processor;
}
}
// Try to extract the list of CPU features from ELF hwcaps.
uint32_t hwcaps = ReadELFHWCaps();
if (hwcaps != 0) {
has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
has_neon_ = (hwcaps & HWCAP_NEON) != 0;
has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
(hwcaps & HWCAP_VFPD32) != 0));
} else {
// Try to fallback to "Features" CPUInfo field.
char* features = cpu_info.ExtractField("Features");
has_idiva_ = HasListItem(features, "idiva");
has_neon_ = HasListItem(features, "neon");
has_thumb2_ = HasListItem(features, "thumb2");
has_vfp_ = HasListItem(features, "vfp");
if (HasListItem(features, "vfpv3d16")) {
has_vfp3_ = true;
} else if (HasListItem(features, "vfpv3")) {
has_vfp3_ = true;
has_vfp3_d32_ = true;
}
delete[] features;
}
// Some old kernels will report vfp not vfpv3. Here we make an attempt
// to detect vfpv3 by checking for vfp *and* neon, since neon is only
// available on architectures with vfpv3. Checking neon on its own is
// not enough as it is possible to have neon without vfp.
if (has_vfp_ && has_neon_) {
has_vfp3_ = true;
}
// VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
if (architecture_ < 7 && has_vfp3_) {
architecture_ = 7;
}
// ARMv7 implies Thumb2.
if (architecture_ >= 7) {
has_thumb2_ = true;
}
// The earliest architecture with Thumb2 is ARMv6T2.
if (has_thumb2_ && architecture_ < 6) {
architecture_ = 6;
}
// We don't support any FPUs other than VFP.
has_fpu_ = has_vfp_;
#elif V8_OS_QNX
uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
if (cpu_flags & ARM_CPU_FLAG_V7) {
architecture_ = 7;
has_thumb2_ = true;
} else if (cpu_flags & ARM_CPU_FLAG_V6) {
architecture_ = 6;
// QNX doesn't say if Thumb2 is available.
// Assume false for the architectures older than ARMv7.
}
DCHECK_GE(architecture_, 6);
has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
has_vfp_ = has_fpu_;
if (cpu_flags & ARM_CPU_FLAG_NEON) {
has_neon_ = true;
has_vfp3_ = has_vfp_;
#ifdef ARM_CPU_FLAG_VFP_D32
has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
#endif
}
has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
#endif // V8_OS_LINUX
#elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
// Simple detection of FPU at runtime for Linux.
// It is based on /proc/cpuinfo, which reveals hardware configuration
// to user-space applications. According to MIPS (early 2010), no similar
// facility is universally available on the MIPS architectures,
// so it's up to individual OSes to provide such.
CPUInfo cpu_info;
char* cpu_model = cpu_info.ExtractField("cpu model");
has_fpu_ = HasListItem(cpu_model, "FPU");
char* ASEs = cpu_info.ExtractField("ASEs implemented");
has_msa_ = HasListItem(ASEs, "msa");
delete[] cpu_model;
delete[] ASEs;
#ifdef V8_HOST_ARCH_MIPS
is_fp64_mode_ = __detect_fp64_mode();
architecture_ = __detect_mips_arch_revision();
#endif
#elif V8_HOST_ARCH_ARM64
// Implementer, variant and part are currently unused under ARM64.
#elif V8_HOST_ARCH_PPC
#ifndef USE_SIMULATOR
#if V8_OS_LINUX
// Read processor info from /proc/self/auxv.
char* auxv_cpu_type = nullptr;
FILE* fp = fopen("/proc/self/auxv", "r");
if (fp != nullptr) {
#if V8_TARGET_ARCH_PPC64
Elf64_auxv_t entry;
#else
Elf32_auxv_t entry;
#endif
for (;;) {
size_t n = fread(&entry, sizeof(entry), 1, fp);
if (n == 0 || entry.a_type == AT_NULL) {
break;
}
switch (entry.a_type) {
case AT_PLATFORM:
auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
break;
case AT_ICACHEBSIZE:
icache_line_size_ = entry.a_un.a_val;
break;
case AT_DCACHEBSIZE:
dcache_line_size_ = entry.a_un.a_val;
break;
}
}
fclose(fp);
}
part_ = -1;
if (auxv_cpu_type) {
if (strcmp(auxv_cpu_type, "power9") == 0) {
part_ = PPC_POWER9;
} else if (strcmp(auxv_cpu_type, "power8") == 0) {
part_ = PPC_POWER8;
} else if (strcmp(auxv_cpu_type, "power7") == 0) {
part_ = PPC_POWER7;
} else if (strcmp(auxv_cpu_type, "power6") == 0) {
part_ = PPC_POWER6;
} else if (strcmp(auxv_cpu_type, "power5") == 0) {
part_ = PPC_POWER5;
} else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
part_ = PPC_G5;
} else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
part_ = PPC_G4;
} else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
part_ = PPC_PA6T;
}
}
#elif V8_OS_AIX
switch (_system_configuration.implementation) {
case POWER_9:
part_ = PPC_POWER9;
break;
case POWER_8:
part_ = PPC_POWER8;
break;
case POWER_7:
part_ = PPC_POWER7;
break;
case POWER_6:
part_ = PPC_POWER6;
break;
case POWER_5:
part_ = PPC_POWER5;
break;
}
#endif // V8_OS_AIX
#endif // !USE_SIMULATOR
#endif // V8_HOST_ARCH_PPC
}
} // namespace base
} // namespace v8