HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
v8
src
arm64
simulator-arm64.cc
// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include
#include
#include
#include
#if V8_TARGET_ARCH_ARM64 #include "src/arm64/decoder-arm64-inl.h" #include "src/arm64/simulator-arm64.h" #include "src/assembler-inl.h" #include "src/codegen.h" #include "src/disasm.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/ostreams.h" #include "src/runtime/runtime-utils.h" namespace v8 { namespace internal { #if defined(USE_SIMULATOR) // This macro provides a platform independent use of sscanf. The reason for // SScanF not being implemented in a platform independent way through // ::v8::internal::OS in the same way as SNPrintF is that the // Windows C Run-Time Library does not provide vsscanf. #define SScanF sscanf // NOLINT // Helpers for colors. #define COLOUR(colour_code) "\033[0;" colour_code "m" #define COLOUR_BOLD(colour_code) "\033[1;" colour_code "m" #define NORMAL "" #define GREY "30" #define RED "31" #define GREEN "32" #define YELLOW "33" #define BLUE "34" #define MAGENTA "35" #define CYAN "36" #define WHITE "37" typedef char const * const TEXT_COLOUR; TEXT_COLOUR clr_normal = FLAG_log_colour ? COLOUR(NORMAL) : ""; TEXT_COLOUR clr_flag_name = FLAG_log_colour ? COLOUR_BOLD(WHITE) : ""; TEXT_COLOUR clr_flag_value = FLAG_log_colour ? COLOUR(NORMAL) : ""; TEXT_COLOUR clr_reg_name = FLAG_log_colour ? COLOUR_BOLD(CYAN) : ""; TEXT_COLOUR clr_reg_value = FLAG_log_colour ? COLOUR(CYAN) : ""; TEXT_COLOUR clr_vreg_name = FLAG_log_colour ? COLOUR_BOLD(MAGENTA) : ""; TEXT_COLOUR clr_vreg_value = FLAG_log_colour ? COLOUR(MAGENTA) : ""; TEXT_COLOUR clr_memory_address = FLAG_log_colour ? COLOUR_BOLD(BLUE) : ""; TEXT_COLOUR clr_debug_number = FLAG_log_colour ? COLOUR_BOLD(YELLOW) : ""; TEXT_COLOUR clr_debug_message = FLAG_log_colour ? COLOUR(YELLOW) : ""; TEXT_COLOUR clr_printf = FLAG_log_colour ? COLOUR(GREEN) : ""; // static base::LazyInstance
::type Simulator::global_monitor_ = LAZY_INSTANCE_INITIALIZER; // This is basically the same as PrintF, with a guard for FLAG_trace_sim. void Simulator::TraceSim(const char* format, ...) { if (FLAG_trace_sim) { va_list arguments; va_start(arguments, format); base::OS::VFPrint(stream_, format, arguments); va_end(arguments); } } const Instruction* Simulator::kEndOfSimAddress = nullptr; void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) { int width = msb - lsb + 1; DCHECK(is_uintn(bits, width) || is_intn(bits, width)); bits <<= lsb; uint32_t mask = ((1 << width) - 1) << lsb; DCHECK_EQ(mask & write_ignore_mask_, 0); value_ = (value_ & ~mask) | (bits & mask); } SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) { switch (id) { case NZCV: return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask); case FPCR: return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask); default: UNREACHABLE(); } } // Get the active Simulator for the current thread. Simulator* Simulator::current(Isolate* isolate) { Isolate::PerIsolateThreadData* isolate_data = isolate->FindOrAllocatePerThreadDataForThisThread(); DCHECK_NOT_NULL(isolate_data); Simulator* sim = isolate_data->simulator(); if (sim == nullptr) { if (FLAG_trace_sim || FLAG_log_instruction_stats || FLAG_debug_sim) { sim = new Simulator(new Decoder
(), isolate); } else { sim = new Decoder
(); sim->isolate_ = isolate; } isolate_data->set_simulator(sim); } return sim; } void Simulator::CallImpl(Address entry, CallArgument* args) { int index_x = 0; int index_d = 0; std::vector
stack_args(0); for (int i = 0; !args[i].IsEnd(); i++) { CallArgument arg = args[i]; if (arg.IsX() && (index_x < 8)) { set_xreg(index_x++, arg.bits()); } else if (arg.IsD() && (index_d < 8)) { set_dreg_bits(index_d++, arg.bits()); } else { DCHECK(arg.IsD() || arg.IsX()); stack_args.push_back(arg.bits()); } } // Process stack arguments, and make sure the stack is suitably aligned. uintptr_t original_stack = sp(); uintptr_t entry_stack = original_stack - stack_args.size() * sizeof(stack_args[0]); if (base::OS::ActivationFrameAlignment() != 0) { entry_stack &= -base::OS::ActivationFrameAlignment(); } char * stack = reinterpret_cast
(entry_stack); std::vector
::const_iterator it; for (it = stack_args.begin(); it != stack_args.end(); it++) { memcpy(stack, &(*it), sizeof(*it)); stack += sizeof(*it); } DCHECK(reinterpret_cast
(stack) <= original_stack); set_sp(entry_stack); // Call the generated code. set_pc(entry); set_lr(kEndOfSimAddress); CheckPCSComplianceAndRun(); set_sp(original_stack); } void Simulator::CheckPCSComplianceAndRun() { // Adjust JS-based stack limit to C-based stack limit. isolate_->stack_guard()->AdjustStackLimitForSimulator(); #ifdef DEBUG DCHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count()); DCHECK_EQ(kNumberOfCalleeSavedVRegisters, kCalleeSavedV.Count()); int64_t saved_registers[kNumberOfCalleeSavedRegisters]; uint64_t saved_fpregisters[kNumberOfCalleeSavedVRegisters]; CPURegList register_list = kCalleeSaved; CPURegList fpregister_list = kCalleeSavedV; for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) { // x31 is not a caller saved register, so no need to specify if we want // the stack or zero. saved_registers[i] = xreg(register_list.PopLowestIndex().code()); } for (int i = 0; i < kNumberOfCalleeSavedVRegisters; i++) { saved_fpregisters[i] = dreg_bits(fpregister_list.PopLowestIndex().code()); } int64_t original_stack = sp(); #endif // Start the simulation! Run(); #ifdef DEBUG DCHECK_EQ(original_stack, sp()); // Check that callee-saved registers have been preserved. register_list = kCalleeSaved; fpregister_list = kCalleeSavedV; for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) { DCHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code())); } for (int i = 0; i < kNumberOfCalleeSavedVRegisters; i++) { DCHECK(saved_fpregisters[i] == dreg_bits(fpregister_list.PopLowestIndex().code())); } // Corrupt caller saved register minus the return regiters. // In theory x0 to x7 can be used for return values, but V8 only uses x0, x1 // for now . register_list = kCallerSaved; register_list.Remove(x0); register_list.Remove(x1); // In theory d0 to d7 can be used for return values, but V8 only uses d0 // for now . fpregister_list = kCallerSavedV; fpregister_list.Remove(d0); CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue); CorruptRegisters(&fpregister_list, kCallerSavedVRegisterCorruptionValue); #endif } #ifdef DEBUG // The least significant byte of the curruption value holds the corresponding // register's code. void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) { if (list->type() == CPURegister::kRegister) { while (!list->IsEmpty()) { unsigned code = list->PopLowestIndex().code(); set_xreg(code, value | code); } } else { DCHECK_EQ(list->type(), CPURegister::kVRegister); while (!list->IsEmpty()) { unsigned code = list->PopLowestIndex().code(); set_dreg_bits(code, value | code); } } } void Simulator::CorruptAllCallerSavedCPURegisters() { // Corrupt alters its parameter so copy them first. CPURegList register_list = kCallerSaved; CPURegList fpregister_list = kCallerSavedV; CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue); CorruptRegisters(&fpregister_list, kCallerSavedVRegisterCorruptionValue); } #endif // Extending the stack by 2 * 64 bits is required for stack alignment purposes. uintptr_t Simulator::PushAddress(uintptr_t address) { DCHECK(sizeof(uintptr_t) < 2 * kXRegSize); intptr_t new_sp = sp() - 2 * kXRegSize; uintptr_t* alignment_slot = reinterpret_cast
(new_sp + kXRegSize); memcpy(alignment_slot, &kSlotsZapValue, kPointerSize); uintptr_t* stack_slot = reinterpret_cast
(new_sp); memcpy(stack_slot, &address, kPointerSize); set_sp(new_sp); return new_sp; } uintptr_t Simulator::PopAddress() { intptr_t current_sp = sp(); uintptr_t* stack_slot = reinterpret_cast
(current_sp); uintptr_t address = *stack_slot; DCHECK_LT(sizeof(uintptr_t), 2 * kXRegSize); set_sp(current_sp + 2 * kXRegSize); return address; } // Returns the limit of the stack area to enable checking for stack overflows. uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { // The simulator uses a separate JS stack. If we have exhausted the C stack, // we also drop down the JS limit to reflect the exhaustion on the JS stack. if (GetCurrentStackPosition() < c_limit) { return reinterpret_cast
(get_sp()); } // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes // to prevent overrunning the stack when pushing values. return stack_limit_ + 1024; } void Simulator::SetRedirectInstruction(Instruction* instruction) { instruction->SetInstructionBits( HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall)); } Simulator::Simulator(Decoder
* decoder, Isolate* isolate, FILE* stream) : decoder_(decoder), last_debugger_input_(nullptr), log_parameters_(NO_PARAM), isolate_(isolate) { // Setup the decoder. decoder_->AppendVisitor(this); Init(stream); if (FLAG_trace_sim) { decoder_->InsertVisitorBefore(print_disasm_, this); log_parameters_ = LOG_ALL; } if (FLAG_log_instruction_stats) { instrument_ = new Instrument(FLAG_log_instruction_file, FLAG_log_instruction_period); decoder_->AppendVisitor(instrument_); } } Simulator::Simulator() : decoder_(nullptr), last_debugger_input_(nullptr), log_parameters_(NO_PARAM), isolate_(nullptr) { Init(stdout); CHECK(!FLAG_trace_sim && !FLAG_log_instruction_stats); } void Simulator::Init(FILE* stream) { ResetState(); // Allocate and setup the simulator stack. stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_); stack_ = reinterpret_cast
(new byte[stack_size_]); stack_limit_ = stack_ + stack_protection_size_; uintptr_t tos = stack_ + stack_size_ - stack_protection_size_; // The stack pointer must be 16-byte aligned. set_sp(tos & ~0xFUL); stream_ = stream; print_disasm_ = new PrintDisassembler(stream_); // The debugger needs to disassemble code without the simulator executing an // instruction, so we create a dedicated decoder. disassembler_decoder_ = new Decoder
(); disassembler_decoder_->AppendVisitor(print_disasm_); } void Simulator::ResetState() { // Reset the system registers. nzcv_ = SimSystemRegister::DefaultValueFor(NZCV); fpcr_ = SimSystemRegister::DefaultValueFor(FPCR); // Reset registers to 0. pc_ = nullptr; for (unsigned i = 0; i < kNumberOfRegisters; i++) { set_xreg(i, 0xBADBEEF); } for (unsigned i = 0; i < kNumberOfVRegisters; i++) { // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP. set_dreg_bits(i, 0x7FF000007F800001UL); } // Returning to address 0 exits the Simulator. set_lr(kEndOfSimAddress); // Reset debug helpers. breakpoints_.empty(); break_on_next_ = false; } Simulator::~Simulator() { global_monitor_.Pointer()->RemoveProcessor(&global_monitor_processor_); delete[] reinterpret_cast
(stack_); if (FLAG_log_instruction_stats) { delete instrument_; } delete disassembler_decoder_; delete print_disasm_; DeleteArray(last_debugger_input_); delete decoder_; } void Simulator::Run() { // Flush any written registers before executing anything, so that // manually-set registers are logged _before_ the first instruction. LogAllWrittenRegisters(); pc_modified_ = false; while (pc_ != kEndOfSimAddress) { ExecuteInstruction(); } } void Simulator::RunFrom(Instruction* start) { set_pc(start); Run(); } // Calls into the V8 runtime are based on this very simple interface. // Note: To be able to return two values from some calls the code in runtime.cc // uses the ObjectPair structure. // The simulator assumes all runtime calls return two 64-bits values. If they // don't, register x1 is clobbered. This is fine because x1 is caller-saved. typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3, int64_t arg4, int64_t arg5, int64_t arg6, int64_t arg7, int64_t arg8); typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2); typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2); typedef double (*SimulatorRuntimeFPCall)(double arg1); typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2); // This signature supports direct call in to API function native callback // (refer to InvocationCallback in v8.h). typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); // This signature supports direct call to accessor getter callback. typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1, void* arg2); void Simulator::DoRuntimeCall(Instruction* instr) { Redirection* redirection = Redirection::FromInstruction(instr); // The called C code might itself call simulated code, so any // caller-saved registers (including lr) could still be clobbered by a // redirected call. Instruction* return_address = lr(); int64_t external = reinterpret_cast
(redirection->external_function()); TraceSim("Call to host function at %p\n", redirection->external_function()); // SP must be 16-byte-aligned at the call interface. bool stack_alignment_exception = ((sp() & 0xF) != 0); if (stack_alignment_exception) { TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp()); FATAL("ALIGNMENT EXCEPTION"); } int64_t* stack_pointer = reinterpret_cast
(sp()); const int64_t arg0 = xreg(0); const int64_t arg1 = xreg(1); const int64_t arg2 = xreg(2); const int64_t arg3 = xreg(3); const int64_t arg4 = xreg(4); const int64_t arg5 = xreg(5); const int64_t arg6 = xreg(6); const int64_t arg7 = xreg(7); const int64_t arg8 = stack_pointer[0]; STATIC_ASSERT(kMaxCParameters == 9); switch (redirection->type()) { default: TraceSim("Type: Unknown.\n"); UNREACHABLE(); break; case ExternalReference::BUILTIN_CALL: case ExternalReference::BUILTIN_CALL_PAIR: { // Object* f(v8::internal::Arguments) or // ObjectPair f(v8::internal::Arguments). TraceSim("Type: BUILTIN_CALL\n"); SimulatorRuntimeCall target = reinterpret_cast
(external); // We don't know how many arguments are being passed, but we can // pass 8 without touching the stack. They will be ignored by the // host function if they aren't used. TraceSim( "Arguments: " "0x%016" PRIx64 ", 0x%016" PRIx64 ", " "0x%016" PRIx64 ", 0x%016" PRIx64 ", " "0x%016" PRIx64 ", 0x%016" PRIx64 ", " "0x%016" PRIx64 ", 0x%016" PRIx64 ", " "0x%016" PRIx64, arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); TraceSim("Returned: {%p, %p}\n", static_cast
(result.x), static_cast
(result.y)); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif set_xreg(0, reinterpret_cast
(result.x)); set_xreg(1, reinterpret_cast
(result.y)); break; } case ExternalReference::DIRECT_API_CALL: { // void f(v8::FunctionCallbackInfo&) TraceSim("Type: DIRECT_API_CALL\n"); SimulatorRuntimeDirectApiCall target = reinterpret_cast
(external); TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0)); target(xreg(0)); TraceSim("No return value."); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif break; } case ExternalReference::BUILTIN_COMPARE_CALL: { // int f(double, double) TraceSim("Type: BUILTIN_COMPARE_CALL\n"); SimulatorRuntimeCompareCall target = reinterpret_cast
(external); TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1)); int64_t result = target(dreg(0), dreg(1)); TraceSim("Returned: %" PRId64 "\n", result); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif set_xreg(0, result); break; } case ExternalReference::BUILTIN_FP_CALL: { // double f(double) TraceSim("Type: BUILTIN_FP_CALL\n"); SimulatorRuntimeFPCall target = reinterpret_cast
(external); TraceSim("Argument: %f\n", dreg(0)); double result = target(dreg(0)); TraceSim("Returned: %f\n", result); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif set_dreg(0, result); break; } case ExternalReference::BUILTIN_FP_FP_CALL: { // double f(double, double) TraceSim("Type: BUILTIN_FP_FP_CALL\n"); SimulatorRuntimeFPFPCall target = reinterpret_cast
(external); TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1)); double result = target(dreg(0), dreg(1)); TraceSim("Returned: %f\n", result); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif set_dreg(0, result); break; } case ExternalReference::BUILTIN_FP_INT_CALL: { // double f(double, int) TraceSim("Type: BUILTIN_FP_INT_CALL\n"); SimulatorRuntimeFPIntCall target = reinterpret_cast
(external); TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0)); double result = target(dreg(0), wreg(0)); TraceSim("Returned: %f\n", result); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif set_dreg(0, result); break; } case ExternalReference::DIRECT_GETTER_CALL: { // void f(Local
property, PropertyCallbackInfo& info) TraceSim("Type: DIRECT_GETTER_CALL\n"); SimulatorRuntimeDirectGetterCall target = reinterpret_cast
(external); TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n", xreg(0), xreg(1)); target(xreg(0), xreg(1)); TraceSim("No return value."); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif break; } case ExternalReference::PROFILING_API_CALL: { // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback) TraceSim("Type: PROFILING_API_CALL\n"); SimulatorRuntimeProfilingApiCall target = reinterpret_cast
(external); void* arg1 = Redirection::ReverseRedirection(xreg(1)); TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1); target(xreg(0), arg1); TraceSim("No return value."); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif break; } case ExternalReference::PROFILING_GETTER_CALL: { // void f(Local
property, PropertyCallbackInfo& info, // AccessorNameGetterCallback callback) TraceSim("Type: PROFILING_GETTER_CALL\n"); SimulatorRuntimeProfilingGetterCall target = reinterpret_cast
( external); void* arg2 = Redirection::ReverseRedirection(xreg(2)); TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n", xreg(0), xreg(1), arg2); target(xreg(0), xreg(1), arg2); TraceSim("No return value."); #ifdef DEBUG CorruptAllCallerSavedCPURegisters(); #endif break; } } set_lr(return_address); set_pc(return_address); } const char* Simulator::xreg_names[] = { "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "cp", "x28", "fp", "lr", "xzr", "sp"}; const char* Simulator::wreg_names[] = { "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15", "w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23", "w24", "w25", "w26", "wcp", "w28", "wfp", "wlr", "wzr", "wsp"}; const char* Simulator::sreg_names[] = { "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"}; const char* Simulator::dreg_names[] = { "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; const char* Simulator::vreg_names[] = { "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"}; const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) { static_assert(arraysize(Simulator::wreg_names) == (kNumberOfRegisters + 1), "Array must be large enough to hold all register names."); DCHECK_LT(code, static_cast
(kNumberOfRegisters)); // The modulo operator has no effect here, but it silences a broken GCC // warning about out-of-bounds array accesses. code %= kNumberOfRegisters; // If the code represents the stack pointer, index the name after zr. if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { code = kZeroRegCode + 1; } return wreg_names[code]; } const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) { static_assert(arraysize(Simulator::xreg_names) == (kNumberOfRegisters + 1), "Array must be large enough to hold all register names."); DCHECK_LT(code, static_cast
(kNumberOfRegisters)); code %= kNumberOfRegisters; // If the code represents the stack pointer, index the name after zr. if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { code = kZeroRegCode + 1; } return xreg_names[code]; } const char* Simulator::SRegNameForCode(unsigned code) { static_assert(arraysize(Simulator::sreg_names) == kNumberOfVRegisters, "Array must be large enough to hold all register names."); DCHECK_LT(code, static_cast
(kNumberOfVRegisters)); return sreg_names[code % kNumberOfVRegisters]; } const char* Simulator::DRegNameForCode(unsigned code) { static_assert(arraysize(Simulator::dreg_names) == kNumberOfVRegisters, "Array must be large enough to hold all register names."); DCHECK_LT(code, static_cast
(kNumberOfVRegisters)); return dreg_names[code % kNumberOfVRegisters]; } const char* Simulator::VRegNameForCode(unsigned code) { static_assert(arraysize(Simulator::vreg_names) == kNumberOfVRegisters, "Array must be large enough to hold all register names."); DCHECK_LT(code, static_cast
(kNumberOfVRegisters)); return vreg_names[code % kNumberOfVRegisters]; } void LogicVRegister::ReadUintFromMem(VectorFormat vform, int index, uint64_t addr) const { switch (LaneSizeInBitsFromFormat(vform)) { case 8: register_.Insert(index, SimMemory::Read
(addr)); break; case 16: register_.Insert(index, SimMemory::Read
(addr)); break; case 32: register_.Insert(index, SimMemory::Read
(addr)); break; case 64: register_.Insert(index, SimMemory::Read
(addr)); break; default: UNREACHABLE(); return; } } void LogicVRegister::WriteUintToMem(VectorFormat vform, int index, uint64_t addr) const { switch (LaneSizeInBitsFromFormat(vform)) { case 8: SimMemory::Write
(addr, static_cast
(Uint(vform, index))); break; case 16: SimMemory::Write
(addr, static_cast
(Uint(vform, index))); break; case 32: SimMemory::Write
(addr, static_cast
(Uint(vform, index))); break; case 64: SimMemory::Write
(addr, Uint(vform, index)); break; default: UNREACHABLE(); return; } } int Simulator::CodeFromName(const char* name) { for (unsigned i = 0; i < kNumberOfRegisters; i++) { if ((strcmp(xreg_names[i], name) == 0) || (strcmp(wreg_names[i], name) == 0)) { return i; } } for (unsigned i = 0; i < kNumberOfVRegisters; i++) { if ((strcmp(vreg_names[i], name) == 0) || (strcmp(dreg_names[i], name) == 0) || (strcmp(sreg_names[i], name) == 0)) { return i; } } if ((strcmp("sp", name) == 0) || (strcmp("wsp", name) == 0)) { return kSPRegInternalCode; } return -1; } // Helpers --------------------------------------------------------------------- template
T Simulator::AddWithCarry(bool set_flags, T left, T right, int carry_in) { // Use unsigned types to avoid implementation-defined overflow behaviour. static_assert(std::is_unsigned
::value, "operands must be unsigned"); static_assert((sizeof(T) == kWRegSize) || (sizeof(T) == kXRegSize), "Only W- or X-sized operands are tested"); DCHECK((carry_in == 0) || (carry_in == 1)); T result = left + right + carry_in; if (set_flags) { nzcv().SetN(CalcNFlag(result)); nzcv().SetZ(CalcZFlag(result)); // Compute the C flag by comparing the result to the max unsigned integer. T max_uint_2op = std::numeric_limits
::max() - carry_in; nzcv().SetC((left > max_uint_2op) || ((max_uint_2op - left) < right)); // Overflow iff the sign bit is the same for the two inputs and different // for the result. T sign_mask = T(1) << (sizeof(T) * 8 - 1); T left_sign = left & sign_mask; T right_sign = right & sign_mask; T result_sign = result & sign_mask; nzcv().SetV((left_sign == right_sign) && (left_sign != result_sign)); LogSystemRegister(NZCV); } return result; } template
void Simulator::AddSubWithCarry(Instruction* instr) { // Use unsigned types to avoid implementation-defined overflow behaviour. static_assert(std::is_unsigned
::value, "operands must be unsigned"); T op2 = reg
(instr->Rm()); T new_val; if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) { op2 = ~op2; } new_val = AddWithCarry
(instr->FlagsUpdate(), reg
(instr->Rn()), op2, nzcv().C()); set_reg
(instr->Rd(), new_val); } template
T Simulator::ShiftOperand(T value, Shift shift_type, unsigned amount) { typedef typename std::make_unsigned
::type unsignedT; if (amount == 0) { return value; } switch (shift_type) { case LSL: return value << amount; case LSR: return static_cast
(value) >> amount; case ASR: return value >> amount; case ROR: { unsignedT mask = (static_cast
(1) << amount) - 1; return (static_cast
(value) >> amount) | ((value & mask) << (sizeof(mask) * 8 - amount)); } default: UNIMPLEMENTED(); return 0; } } template
T Simulator::ExtendValue(T value, Extend extend_type, unsigned left_shift) { const unsigned kSignExtendBShift = (sizeof(T) - 1) * 8; const unsigned kSignExtendHShift = (sizeof(T) - 2) * 8; const unsigned kSignExtendWShift = (sizeof(T) - 4) * 8; switch (extend_type) { case UXTB: value &= kByteMask; break; case UXTH: value &= kHalfWordMask; break; case UXTW: value &= kWordMask; break; case SXTB: value = (value << kSignExtendBShift) >> kSignExtendBShift; break; case SXTH: value = (value << kSignExtendHShift) >> kSignExtendHShift; break; case SXTW: value = (value << kSignExtendWShift) >> kSignExtendWShift; break; case UXTX: case SXTX: break; default: UNREACHABLE(); } return value << left_shift; } template
void Simulator::Extract(Instruction* instr) { unsigned lsb = instr->ImmS(); T op2 = reg
(instr->Rm()); T result = op2; if (lsb) { T op1 = reg
(instr->Rn()); result = op2 >> lsb | (op1 << ((sizeof(T) * 8) - lsb)); } set_reg
(instr->Rd(), result); } void Simulator::FPCompare(double val0, double val1) { AssertSupportedFPCR(); // TODO(jbramley): This assumes that the C++ implementation handles // comparisons in the way that we expect (as per AssertSupportedFPCR()). if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) { nzcv().SetRawValue(FPUnorderedFlag); } else if (val0 < val1) { nzcv().SetRawValue(FPLessThanFlag); } else if (val0 > val1) { nzcv().SetRawValue(FPGreaterThanFlag); } else if (val0 == val1) { nzcv().SetRawValue(FPEqualFlag); } else { UNREACHABLE(); } LogSystemRegister(NZCV); } Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatForSize( size_t reg_size, size_t lane_size) { DCHECK_GE(reg_size, lane_size); uint32_t format = 0; if (reg_size != lane_size) { switch (reg_size) { default: UNREACHABLE(); case kQRegSize: format = kPrintRegAsQVector; break; case kDRegSize: format = kPrintRegAsDVector; break; } } switch (lane_size) { default: UNREACHABLE(); case kQRegSize: format |= kPrintReg1Q; break; case kDRegSize: format |= kPrintReg1D; break; case kSRegSize: format |= kPrintReg1S; break; case kHRegSize: format |= kPrintReg1H; break; case kBRegSize: format |= kPrintReg1B; break; } // These sizes would be duplicate case labels. static_assert(kXRegSize == kDRegSize, "X and D registers must be same size."); static_assert(kWRegSize == kSRegSize, "W and S registers must be same size."); static_assert(kPrintXReg == kPrintReg1D, "X and D register printing code is shared."); static_assert(kPrintWReg == kPrintReg1S, "W and S register printing code is shared."); return static_cast
(format); } Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormat( VectorFormat vform) { switch (vform) { default: UNREACHABLE(); case kFormat16B: return kPrintReg16B; case kFormat8B: return kPrintReg8B; case kFormat8H: return kPrintReg8H; case kFormat4H: return kPrintReg4H; case kFormat4S: return kPrintReg4S; case kFormat2S: return kPrintReg2S; case kFormat2D: return kPrintReg2D; case kFormat1D: return kPrintReg1D; case kFormatB: return kPrintReg1B; case kFormatH: return kPrintReg1H; case kFormatS: return kPrintReg1S; case kFormatD: return kPrintReg1D; } } Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatFP( VectorFormat vform) { switch (vform) { default: UNREACHABLE(); case kFormat4S: return kPrintReg4SFP; case kFormat2S: return kPrintReg2SFP; case kFormat2D: return kPrintReg2DFP; case kFormat1D: return kPrintReg1DFP; case kFormatS: return kPrintReg1SFP; case kFormatD: return kPrintReg1DFP; } } void Simulator::SetBreakpoint(Instruction* location) { for (unsigned i = 0; i < breakpoints_.size(); i++) { if (breakpoints_.at(i).location == location) { PrintF(stream_, "Existing breakpoint at %p was %s\n", reinterpret_cast
(location), breakpoints_.at(i).enabled ? "disabled" : "enabled"); breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled; return; } } Breakpoint new_breakpoint = {location, true}; breakpoints_.push_back(new_breakpoint); PrintF(stream_, "Set a breakpoint at %p\n", reinterpret_cast
(location)); } void Simulator::ListBreakpoints() { PrintF(stream_, "Breakpoints:\n"); for (unsigned i = 0; i < breakpoints_.size(); i++) { PrintF(stream_, "%p : %s\n", reinterpret_cast
(breakpoints_.at(i).location), breakpoints_.at(i).enabled ? "enabled" : "disabled"); } } void Simulator::CheckBreakpoints() { bool hit_a_breakpoint = false; for (unsigned i = 0; i < breakpoints_.size(); i++) { if ((breakpoints_.at(i).location == pc_) && breakpoints_.at(i).enabled) { hit_a_breakpoint = true; // Disable this breakpoint. breakpoints_.at(i).enabled = false; } } if (hit_a_breakpoint) { PrintF(stream_, "Hit and disabled a breakpoint at %p.\n", reinterpret_cast
(pc_)); Debug(); } } void Simulator::CheckBreakNext() { // If the current instruction is a BL, insert a breakpoint just after it. if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) { SetBreakpoint(pc_->following()); break_on_next_ = false; } } void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) { Instruction* end = start->InstructionAtOffset(count * kInstrSize); for (Instruction* pc = start; pc < end; pc = pc->following()) { disassembler_decoder_->Decode(pc); } } void Simulator::PrintWrittenRegisters() { for (unsigned i = 0; i < kNumberOfRegisters; i++) { if (registers_[i].WrittenSinceLastLog()) PrintRegister(i); } } void Simulator::PrintWrittenVRegisters() { for (unsigned i = 0; i < kNumberOfVRegisters; i++) { // At this point there is no type information, so print as a raw 1Q. if (vregisters_[i].WrittenSinceLastLog()) PrintVRegister(i, kPrintReg1Q); } } void Simulator::PrintSystemRegisters() { PrintSystemRegister(NZCV); PrintSystemRegister(FPCR); } void Simulator::PrintRegisters() { for (unsigned i = 0; i < kNumberOfRegisters; i++) { PrintRegister(i); } } void Simulator::PrintVRegisters() { for (unsigned i = 0; i < kNumberOfVRegisters; i++) { // At this point there is no type information, so print as a raw 1Q. PrintVRegister(i, kPrintReg1Q); } } void Simulator::PrintRegister(unsigned code, Reg31Mode r31mode) { registers_[code].NotifyRegisterLogged(); // Don't print writes into xzr. if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) { return; } // The template for all x and w registers: // "# x{code}: 0x{value}" // "# w{code}: 0x{value}" PrintRegisterRawHelper(code, r31mode); fprintf(stream_, "\n"); } // Print a register's name and raw value. // // The `bytes` and `lsb` arguments can be used to limit the bytes that are // printed. These arguments are intended for use in cases where register hasn't // actually been updated (such as in PrintVWrite). // // No newline is printed. This allows the caller to print more details (such as // a floating-point interpretation or a memory access annotation). void Simulator::PrintVRegisterRawHelper(unsigned code, int bytes, int lsb) { // The template for vector types: // "# v{code}: 0xFFEEDDCCBBAA99887766554433221100". // An example with bytes=4 and lsb=8: // "# v{code}: 0xBBAA9988 ". fprintf(stream_, "# %s%5s: %s", clr_vreg_name, VRegNameForCode(code), clr_vreg_value); int msb = lsb + bytes - 1; int byte = kQRegSize - 1; // Print leading padding spaces. (Two spaces per byte.) while (byte > msb) { fprintf(stream_, " "); byte--; } // Print the specified part of the value, byte by byte. qreg_t rawbits = qreg(code); fprintf(stream_, "0x"); while (byte >= lsb) { fprintf(stream_, "%02x", rawbits.val[byte]); byte--; } // Print trailing padding spaces. while (byte >= 0) { fprintf(stream_, " "); byte--; } fprintf(stream_, "%s", clr_normal); } // Print each of the specified lanes of a register as a float or double value. // // The `lane_count` and `lslane` arguments can be used to limit the lanes that // are printed. These arguments are intended for use in cases where register // hasn't actually been updated (such as in PrintVWrite). // // No newline is printed. This allows the caller to print more details (such as // a memory access annotation). void Simulator::PrintVRegisterFPHelper(unsigned code, unsigned lane_size_in_bytes, int lane_count, int rightmost_lane) { DCHECK((lane_size_in_bytes == kSRegSize) || (lane_size_in_bytes == kDRegSize)); unsigned msb = (lane_count + rightmost_lane) * lane_size_in_bytes; DCHECK_LE(msb, static_cast
(kQRegSize)); // For scalar types ((lane_count == 1) && (rightmost_lane == 0)), a register // name is used: // " (s{code}: {value})" // " (d{code}: {value})" // For vector types, "..." is used to represent one or more omitted lanes. // " (..., {value}, {value}, ...)" if ((lane_count == 1) && (rightmost_lane == 0)) { const char* name = (lane_size_in_bytes == kSRegSize) ? SRegNameForCode(code) : DRegNameForCode(code); fprintf(stream_, " (%s%s: ", clr_vreg_name, name); } else { if (msb < (kQRegSize - 1)) { fprintf(stream_, " (..., "); } else { fprintf(stream_, " ("); } } // Print the list of values. const char* separator = ""; int leftmost_lane = rightmost_lane + lane_count - 1; for (int lane = leftmost_lane; lane >= rightmost_lane; lane--) { double value = (lane_size_in_bytes == kSRegSize) ? vreg(code).Get
(lane) : vreg(code).Get
(lane); fprintf(stream_, "%s%s%#g%s", separator, clr_vreg_value, value, clr_normal); separator = ", "; } if (rightmost_lane > 0) { fprintf(stream_, ", ..."); } fprintf(stream_, ")"); } // Print a register's name and raw value. // // Only the least-significant `size_in_bytes` bytes of the register are printed, // but the value is aligned as if the whole register had been printed. // // For typical register updates, size_in_bytes should be set to kXRegSize // -- the default -- so that the whole register is printed. Other values of // size_in_bytes are intended for use when the register hasn't actually been // updated (such as in PrintWrite). // // No newline is printed. This allows the caller to print more details (such as // a memory access annotation). void Simulator::PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode, int size_in_bytes) { // The template for all supported sizes. // "# x{code}: 0xFFEEDDCCBBAA9988" // "# w{code}: 0xBBAA9988" // "# w{code}<15:0>: 0x9988" // "# w{code}<7:0>: 0x88" unsigned padding_chars = (kXRegSize - size_in_bytes) * 2; const char* name = ""; const char* suffix = ""; switch (size_in_bytes) { case kXRegSize: name = XRegNameForCode(code, r31mode); break; case kWRegSize: name = WRegNameForCode(code, r31mode); break; case 2: name = WRegNameForCode(code, r31mode); suffix = "<15:0>"; padding_chars -= strlen(suffix); break; case 1: name = WRegNameForCode(code, r31mode); suffix = "<7:0>"; padding_chars -= strlen(suffix); break; default: UNREACHABLE(); } fprintf(stream_, "# %s%5s%s: ", clr_reg_name, name, suffix); // Print leading padding spaces. DCHECK_LT(padding_chars, kXRegSize * 2U); for (unsigned i = 0; i < padding_chars; i++) { putc(' ', stream_); } // Print the specified bits in hexadecimal format. uint64_t bits = reg
(code, r31mode); bits &= kXRegMask >> ((kXRegSize - size_in_bytes) * 8); static_assert(sizeof(bits) == kXRegSize, "X registers and uint64_t must be the same size."); int chars = size_in_bytes * 2; fprintf(stream_, "%s0x%0*" PRIx64 "%s", clr_reg_value, chars, bits, clr_normal); } void Simulator::PrintVRegister(unsigned code, PrintRegisterFormat format) { vregisters_[code].NotifyRegisterLogged(); int lane_size_log2 = format & kPrintRegLaneSizeMask; int reg_size_log2; if (format & kPrintRegAsQVector) { reg_size_log2 = kQRegSizeLog2; } else if (format & kPrintRegAsDVector) { reg_size_log2 = kDRegSizeLog2; } else { // Scalar types. reg_size_log2 = lane_size_log2; } int lane_count = 1 << (reg_size_log2 - lane_size_log2); int lane_size = 1 << lane_size_log2; // The template for vector types: // "# v{code}: 0x{rawbits} (..., {value}, ...)". // The template for scalar types: // "# v{code}: 0x{rawbits} ({reg}:{value})". // The values in parentheses after the bit representations are floating-point // interpretations. They are displayed only if the kPrintVRegAsFP bit is set. PrintVRegisterRawHelper(code); if (format & kPrintRegAsFP) { PrintVRegisterFPHelper(code, lane_size, lane_count); } fprintf(stream_, "\n"); } void Simulator::PrintSystemRegister(SystemRegister id) { switch (id) { case NZCV: fprintf(stream_, "# %sNZCV: %sN:%d Z:%d C:%d V:%d%s\n", clr_flag_name, clr_flag_value, nzcv().N(), nzcv().Z(), nzcv().C(), nzcv().V(), clr_normal); break; case FPCR: { static const char * rmode[] = { "0b00 (Round to Nearest)", "0b01 (Round towards Plus Infinity)", "0b10 (Round towards Minus Infinity)", "0b11 (Round towards Zero)" }; DCHECK(fpcr().RMode() < arraysize(rmode)); fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n", clr_flag_name, clr_flag_value, fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()], clr_normal); break; } default: UNREACHABLE(); } } void Simulator::PrintRead(uintptr_t address, unsigned reg_code, PrintRegisterFormat format) { registers_[reg_code].NotifyRegisterLogged(); USE(format); // The template is "# {reg}: 0x{value} <- {address}". PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister); fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n", clr_memory_address, address, clr_normal); } void Simulator::PrintVRead(uintptr_t address, unsigned reg_code, PrintRegisterFormat format, unsigned lane) { vregisters_[reg_code].NotifyRegisterLogged(); // The template is "# v{code}: 0x{rawbits} <- address". PrintVRegisterRawHelper(reg_code); if (format & kPrintRegAsFP) { PrintVRegisterFPHelper(reg_code, GetPrintRegLaneSizeInBytes(format), GetPrintRegLaneCount(format), lane); } fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n", clr_memory_address, address, clr_normal); } void Simulator::PrintWrite(uintptr_t address, unsigned reg_code, PrintRegisterFormat format) { DCHECK_EQ(GetPrintRegLaneCount(format), 1U); // The template is "# v{code}: 0x{value} -> {address}". To keep the trace tidy // and readable, the value is aligned with the values in the register trace. PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister, GetPrintRegSizeInBytes(format)); fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n", clr_memory_address, address, clr_normal); } void Simulator::PrintVWrite(uintptr_t address, unsigned reg_code, PrintRegisterFormat format, unsigned lane) { // The templates: // "# v{code}: 0x{rawbits} -> {address}" // "# v{code}: 0x{rawbits} (..., {value}, ...) -> {address}". // "# v{code}: 0x{rawbits} ({reg}:{value}) -> {address}" // Because this trace doesn't represent a change to the source register's // value, only the relevant part of the value is printed. To keep the trace // tidy and readable, the raw value is aligned with the other values in the // register trace. int lane_count = GetPrintRegLaneCount(format); int lane_size = GetPrintRegLaneSizeInBytes(format); int reg_size = GetPrintRegSizeInBytes(format); PrintVRegisterRawHelper(reg_code, reg_size, lane_size * lane); if (format & kPrintRegAsFP) { PrintVRegisterFPHelper(reg_code, lane_size, lane_count, lane); } fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n", clr_memory_address, address, clr_normal); } // Visitors--------------------------------------------------------------------- void Simulator::VisitUnimplemented(Instruction* instr) { fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n", reinterpret_cast
(instr), instr->InstructionBits()); UNIMPLEMENTED(); } void Simulator::VisitUnallocated(Instruction* instr) { fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n", reinterpret_cast
(instr), instr->InstructionBits()); UNIMPLEMENTED(); } void Simulator::VisitPCRelAddressing(Instruction* instr) { switch (instr->Mask(PCRelAddressingMask)) { case ADR: set_reg(instr->Rd(), instr->ImmPCOffsetTarget()); break; case ADRP: // Not implemented in the assembler. UNIMPLEMENTED(); break; default: UNREACHABLE(); break; } } void Simulator::VisitUnconditionalBranch(Instruction* instr) { switch (instr->Mask(UnconditionalBranchMask)) { case BL: set_lr(instr->following()); V8_FALLTHROUGH; case B: set_pc(instr->ImmPCOffsetTarget()); break; default: UNREACHABLE(); } } void Simulator::VisitConditionalBranch(Instruction* instr) { DCHECK(instr->Mask(ConditionalBranchMask) == B_cond); if (ConditionPassed(static_cast
(instr->ConditionBranch()))) { set_pc(instr->ImmPCOffsetTarget()); } } void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) { Instruction* target = reg
(instr->Rn()); switch (instr->Mask(UnconditionalBranchToRegisterMask)) { case BLR: { set_lr(instr->following()); if (instr->Rn() == 31) { // BLR XZR is used as a guard for the constant pool. We should never hit // this, but if we do trap to allow debugging. Debug(); } V8_FALLTHROUGH; } case BR: case RET: set_pc(target); break; default: UNIMPLEMENTED(); } } void Simulator::VisitTestBranch(Instruction* instr) { unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) | instr->ImmTestBranchBit40(); bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0); switch (instr->Mask(TestBranchMask)) { case TBZ: break; case TBNZ: take_branch = !take_branch; break; default: UNIMPLEMENTED(); } if (take_branch) { set_pc(instr->ImmPCOffsetTarget()); } } void Simulator::VisitCompareBranch(Instruction* instr) { unsigned rt = instr->Rt(); bool take_branch = false; switch (instr->Mask(CompareBranchMask)) { case CBZ_w: take_branch = (wreg(rt) == 0); break; case CBZ_x: take_branch = (xreg(rt) == 0); break; case CBNZ_w: take_branch = (wreg(rt) != 0); break; case CBNZ_x: take_branch = (xreg(rt) != 0); break; default: UNIMPLEMENTED(); } if (take_branch) { set_pc(instr->ImmPCOffsetTarget()); } } template
void Simulator::AddSubHelper(Instruction* instr, T op2) { // Use unsigned types to avoid implementation-defined overflow behaviour. static_assert(std::is_unsigned
::value, "operands must be unsigned"); bool set_flags = instr->FlagsUpdate(); T new_val = 0; Instr operation = instr->Mask(AddSubOpMask); switch (operation) { case ADD: case ADDS: { new_val = AddWithCarry
(set_flags, reg
(instr->Rn(), instr->RnMode()), op2); break; } case SUB: case SUBS: { new_val = AddWithCarry
(set_flags, reg
(instr->Rn(), instr->RnMode()), ~op2, 1); break; } default: UNREACHABLE(); } set_reg
(instr->Rd(), new_val, instr->RdMode()); } void Simulator::VisitAddSubShifted(Instruction* instr) { Shift shift_type = static_cast
(instr->ShiftDP()); unsigned shift_amount = instr->ImmDPShift(); if (instr->SixtyFourBits()) { uint64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount); AddSubHelper(instr, op2); } else { uint32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount); AddSubHelper(instr, op2); } } void Simulator::VisitAddSubImmediate(Instruction* instr) { int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0); if (instr->SixtyFourBits()) { AddSubHelper(instr, static_cast
(op2)); } else { AddSubHelper(instr, static_cast
(op2)); } } void Simulator::VisitAddSubExtended(Instruction* instr) { Extend ext = static_cast
(instr->ExtendMode()); unsigned left_shift = instr->ImmExtendShift(); if (instr->SixtyFourBits()) { uint64_t op2 = ExtendValue(xreg(instr->Rm()), ext, left_shift); AddSubHelper(instr, op2); } else { uint32_t op2 = ExtendValue(wreg(instr->Rm()), ext, left_shift); AddSubHelper(instr, op2); } } void Simulator::VisitAddSubWithCarry(Instruction* instr) { if (instr->SixtyFourBits()) { AddSubWithCarry
(instr); } else { AddSubWithCarry
(instr); } } void Simulator::VisitLogicalShifted(Instruction* instr) { Shift shift_type = static_cast
(instr->ShiftDP()); unsigned shift_amount = instr->ImmDPShift(); if (instr->SixtyFourBits()) { uint64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount); op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2; LogicalHelper(instr, op2); } else { uint32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount); op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2; LogicalHelper(instr, op2); } } void Simulator::VisitLogicalImmediate(Instruction* instr) { if (instr->SixtyFourBits()) { LogicalHelper(instr, static_cast
(instr->ImmLogical())); } else { LogicalHelper(instr, static_cast
(instr->ImmLogical())); } } template
void Simulator::LogicalHelper(Instruction* instr, T op2) { T op1 = reg
(instr->Rn()); T result = 0; bool update_flags = false; // Switch on the logical operation, stripping out the NOT bit, as it has a // different meaning for logical immediate instructions. switch (instr->Mask(LogicalOpMask & ~NOT)) { case ANDS: update_flags = true; V8_FALLTHROUGH; case AND: result = op1 & op2; break; case ORR: result = op1 | op2; break; case EOR: result = op1 ^ op2; break; default: UNIMPLEMENTED(); } if (update_flags) { nzcv().SetN(CalcNFlag(result)); nzcv().SetZ(CalcZFlag(result)); nzcv().SetC(0); nzcv().SetV(0); LogSystemRegister(NZCV); } set_reg
(instr->Rd(), result, instr->RdMode()); } void Simulator::VisitConditionalCompareRegister(Instruction* instr) { if (instr->SixtyFourBits()) { ConditionalCompareHelper(instr, static_cast
(xreg(instr->Rm()))); } else { ConditionalCompareHelper(instr, static_cast
(wreg(instr->Rm()))); } } void Simulator::VisitConditionalCompareImmediate(Instruction* instr) { if (instr->SixtyFourBits()) { ConditionalCompareHelper(instr, static_cast
(instr->ImmCondCmp())); } else { ConditionalCompareHelper(instr, static_cast
(instr->ImmCondCmp())); } } template
void Simulator::ConditionalCompareHelper(Instruction* instr, T op2) { // Use unsigned types to avoid implementation-defined overflow behaviour. static_assert(std::is_unsigned
::value, "operands must be unsigned"); T op1 = reg
(instr->Rn()); if (ConditionPassed(static_cast
(instr->Condition()))) { // If the condition passes, set the status flags to the result of comparing // the operands. if (instr->Mask(ConditionalCompareMask) == CCMP) { AddWithCarry
(true, op1, ~op2, 1); } else { DCHECK(instr->Mask(ConditionalCompareMask) == CCMN); AddWithCarry
(true, op1, op2, 0); } } else { // If the condition fails, set the status flags to the nzcv immediate. nzcv().SetFlags(instr->Nzcv()); LogSystemRegister(NZCV); } } void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) { int offset = instr->ImmLSUnsigned() << instr->SizeLS(); LoadStoreHelper(instr, offset, Offset); } void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) { LoadStoreHelper(instr, instr->ImmLS(), Offset); } void Simulator::VisitLoadStorePreIndex(Instruction* instr) { LoadStoreHelper(instr, instr->ImmLS(), PreIndex); } void Simulator::VisitLoadStorePostIndex(Instruction* instr) { LoadStoreHelper(instr, instr->ImmLS(), PostIndex); } void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) { Extend ext = static_cast
(instr->ExtendMode()); DCHECK((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS(); int64_t offset = ExtendValue(xreg(instr->Rm()), ext, shift_amount); LoadStoreHelper(instr, offset, Offset); } void Simulator::LoadStoreHelper(Instruction* instr, int64_t offset, AddrMode addrmode) { unsigned srcdst = instr->Rt(); unsigned addr_reg = instr->Rn(); uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode); uintptr_t stack = 0; { base::LockGuard
lock_guard(&global_monitor_.Pointer()->mutex); if (instr->IsLoad()) { local_monitor_.NotifyLoad(); } else { local_monitor_.NotifyStore(); global_monitor_.Pointer()->NotifyStore_Locked(&global_monitor_processor_); } } // Handle the writeback for stores before the store. On a CPU the writeback // and the store are atomic, but when running on the simulator it is possible // to be interrupted in between. The simulator is not thread safe and V8 does // not require it to be to run JavaScript therefore the profiler may sample // the "simulated" CPU in the middle of load/store with writeback. The code // below ensures that push operations are safe even when interrupted: the // stack pointer will be decremented before adding an element to the stack. if (instr->IsStore()) { LoadStoreWriteBack(addr_reg, offset, addrmode); // For store the address post writeback is used to check access below the // stack. stack = sp(); } LoadStoreOp op = static_cast
(instr->Mask(LoadStoreMask)); switch (op) { // Use _no_log variants to suppress the register trace (LOG_REGS, // LOG_VREGS). We will print a more detailed log. case LDRB_w: set_wreg_no_log(srcdst, MemoryRead
(address)); break; case LDRH_w: set_wreg_no_log(srcdst, MemoryRead
(address)); break; case LDR_w: set_wreg_no_log(srcdst, MemoryRead
(address)); break; case LDR_x: set_xreg_no_log(srcdst, MemoryRead
(address)); break; case LDRSB_w: set_wreg_no_log(srcdst, MemoryRead
(address)); break; case LDRSH_w: set_wreg_no_log(srcdst, MemoryRead
(address)); break; case LDRSB_x: set_xreg_no_log(srcdst, MemoryRead
(address)); break; case LDRSH_x: set_xreg_no_log(srcdst, MemoryRead
(address)); break; case LDRSW_x: set_xreg_no_log(srcdst, MemoryRead
(address)); break; case LDR_b: set_breg_no_log(srcdst, MemoryRead
(address)); break; case LDR_h: set_hreg_no_log(srcdst, MemoryRead
(address)); break; case LDR_s: set_sreg_no_log(srcdst, MemoryRead
(address)); break; case LDR_d: set_dreg_no_log(srcdst, MemoryRead
(address)); break; case LDR_q: set_qreg_no_log(srcdst, MemoryRead
(address)); break; case STRB_w: MemoryWrite
(address, wreg(srcdst)); break; case STRH_w: MemoryWrite
(address, wreg(srcdst)); break; case STR_w: MemoryWrite
(address, wreg(srcdst)); break; case STR_x: MemoryWrite
(address, xreg(srcdst)); break; case STR_b: MemoryWrite
(address, breg(srcdst)); break; case STR_h: MemoryWrite
(address, hreg(srcdst)); break; case STR_s: MemoryWrite
(address, sreg(srcdst)); break; case STR_d: MemoryWrite
(address, dreg(srcdst)); break; case STR_q: MemoryWrite
(address, qreg(srcdst)); break; default: UNIMPLEMENTED(); } // Print a detailed trace (including the memory address) instead of the basic // register:value trace generated by set_*reg(). unsigned access_size = 1 << instr->SizeLS(); if (instr->IsLoad()) { if ((op == LDR_s) || (op == LDR_d)) { LogVRead(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size)); } else if ((op == LDR_b) || (op == LDR_h) || (op == LDR_q)) { LogVRead(address, srcdst, GetPrintRegisterFormatForSize(access_size)); } else { LogRead(address, srcdst, GetPrintRegisterFormatForSize(access_size)); } } else { if ((op == STR_s) || (op == STR_d)) { LogVWrite(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size)); } else if ((op == STR_b) || (op == STR_h) || (op == STR_q)) { LogVWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size)); } else { LogWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size)); } } // Handle the writeback for loads after the load to ensure safe pop // operation even when interrupted in the middle of it. The stack pointer // is only updated after the load so pop(fp) will never break the invariant // sp <= fp expected while walking the stack in the sampler. if (instr->IsLoad()) { // For loads the address pre writeback is used to check access below the // stack. stack = sp(); LoadStoreWriteBack(addr_reg, offset, addrmode); } // Accesses below the stack pointer (but above the platform stack limit) are // not allowed in the ABI. CheckMemoryAccess(address, stack); } void Simulator::VisitLoadStorePairOffset(Instruction* instr) { LoadStorePairHelper(instr, Offset); } void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) { LoadStorePairHelper(instr, PreIndex); } void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) { LoadStorePairHelper(instr, PostIndex); } void Simulator::LoadStorePairHelper(Instruction* instr, AddrMode addrmode) { unsigned rt = instr->Rt(); unsigned rt2 = instr->Rt2(); unsigned addr_reg = instr->Rn(); size_t access_size = 1 << instr->SizeLSPair(); int64_t offset = instr->ImmLSPair() * access_size; uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode); uintptr_t address2 = address + access_size; uintptr_t stack = 0; { base::LockGuard
lock_guard(&global_monitor_.Pointer()->mutex); if (instr->IsLoad()) { local_monitor_.NotifyLoad(); } else { local_monitor_.NotifyStore(); global_monitor_.Pointer()->NotifyStore_Locked(&global_monitor_processor_); } } // Handle the writeback for stores before the store. On a CPU the writeback // and the store are atomic, but when running on the simulator it is possible // to be interrupted in between. The simulator is not thread safe and V8 does // not require it to be to run JavaScript therefore the profiler may sample // the "simulated" CPU in the middle of load/store with writeback. The code // below ensures that push operations are safe even when interrupted: the // stack pointer will be decremented before adding an element to the stack. if (instr->IsStore()) { LoadStoreWriteBack(addr_reg, offset, addrmode); // For store the address post writeback is used to check access below the // stack. stack = sp(); } LoadStorePairOp op = static_cast
(instr->Mask(LoadStorePairMask)); // 'rt' and 'rt2' can only be aliased for stores. DCHECK(((op & LoadStorePairLBit) == 0) || (rt != rt2)); switch (op) { // Use _no_log variants to suppress the register trace (LOG_REGS, // LOG_VREGS). We will print a more detailed log. case LDP_w: { DCHECK_EQ(access_size, static_cast
(kWRegSize)); set_wreg_no_log(rt, MemoryRead
(address)); set_wreg_no_log(rt2, MemoryRead
(address2)); break; } case LDP_s: { DCHECK_EQ(access_size, static_cast
(kSRegSize)); set_sreg_no_log(rt, MemoryRead
(address)); set_sreg_no_log(rt2, MemoryRead
(address2)); break; } case LDP_x: { DCHECK_EQ(access_size, static_cast
(kXRegSize)); set_xreg_no_log(rt, MemoryRead
(address)); set_xreg_no_log(rt2, MemoryRead
(address2)); break; } case LDP_d: { DCHECK_EQ(access_size, static_cast
(kDRegSize)); set_dreg_no_log(rt, MemoryRead
(address)); set_dreg_no_log(rt2, MemoryRead
(address2)); break; } case LDP_q: { DCHECK_EQ(access_size, static_cast
(kQRegSize)); set_qreg(rt, MemoryRead
(address), NoRegLog); set_qreg(rt2, MemoryRead
(address2), NoRegLog); break; } case LDPSW_x: { DCHECK_EQ(access_size, static_cast
(kWRegSize)); set_xreg_no_log(rt, MemoryRead
(address)); set_xreg_no_log(rt2, MemoryRead
(address2)); break; } case STP_w: { DCHECK_EQ(access_size, static_cast
(kWRegSize)); MemoryWrite
(address, wreg(rt)); MemoryWrite
(address2, wreg(rt2)); break; } case STP_s: { DCHECK_EQ(access_size, static_cast
(kSRegSize)); MemoryWrite
(address, sreg(rt)); MemoryWrite
(address2, sreg(rt2)); break; } case STP_x: { DCHECK_EQ(access_size, static_cast
(kXRegSize)); MemoryWrite
(address, xreg(rt)); MemoryWrite
(address2, xreg(rt2)); break; } case STP_d: { DCHECK_EQ(access_size, static_cast
(kDRegSize)); MemoryWrite
(address, dreg(rt)); MemoryWrite
(address2, dreg(rt2)); break; } case STP_q: { DCHECK_EQ(access_size, static_cast
(kQRegSize)); MemoryWrite
(address, qreg(rt)); MemoryWrite
(address2, qreg(rt2)); break; } default: UNREACHABLE(); } // Print a detailed trace (including the memory address) instead of the basic // register:value trace generated by set_*reg(). if (instr->IsLoad()) { if ((op == LDP_s) || (op == LDP_d)) { LogVRead(address, rt, GetPrintRegisterFormatForSizeFP(access_size)); LogVRead(address2, rt2, GetPrintRegisterFormatForSizeFP(access_size)); } else if (op == LDP_q) { LogVRead(address, rt, GetPrintRegisterFormatForSize(access_size)); LogVRead(address2, rt2, GetPrintRegisterFormatForSize(access_size)); } else { LogRead(address, rt, GetPrintRegisterFormatForSize(access_size)); LogRead(address2, rt2, GetPrintRegisterFormatForSize(access_size)); } } else { if ((op == STP_s) || (op == STP_d)) { LogVWrite(address, rt, GetPrintRegisterFormatForSizeFP(access_size)); LogVWrite(address2, rt2, GetPrintRegisterFormatForSizeFP(access_size)); } else if (op == STP_q) { LogVWrite(address, rt, GetPrintRegisterFormatForSize(access_size)); LogVWrite(address2, rt2, GetPrintRegisterFormatForSize(access_size)); } else { LogWrite(address, rt, GetPrintRegisterFormatForSize(access_size)); LogWrite(address2, rt2, GetPrintRegisterFormatForSize(access_size)); } } // Handle the writeback for loads after the load to ensure safe pop // operation even when interrupted in the middle of it. The stack pointer // is only updated after the load so pop(fp) will never break the invariant // sp <= fp expected while walking the stack in the sampler. if (instr->IsLoad()) { // For loads the address pre writeback is used to check access below the // stack. stack = sp(); LoadStoreWriteBack(addr_reg, offset, addrmode); } // Accesses below the stack pointer (but above the platform stack limit) are // not allowed in the ABI. CheckMemoryAccess(address, stack); } void Simulator::VisitLoadLiteral(Instruction* instr) { uintptr_t address = instr->LiteralAddress(); unsigned rt = instr->Rt(); { base::LockGuard
lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(); } switch (instr->Mask(LoadLiteralMask)) { // Use _no_log variants to suppress the register trace (LOG_REGS, // LOG_VREGS), then print a more detailed log. case LDR_w_lit: set_wreg_no_log(rt, MemoryRead
(address)); LogRead(address, rt, kPrintWReg); break; case LDR_x_lit: set_xreg_no_log(rt, MemoryRead
(address)); LogRead(address, rt, kPrintXReg); break; case LDR_s_lit: set_sreg_no_log(rt, MemoryRead
(address)); LogVRead(address, rt, kPrintSReg); break; case LDR_d_lit: set_dreg_no_log(rt, MemoryRead
(address)); LogVRead(address, rt, kPrintDReg); break; default: UNREACHABLE(); } } uintptr_t Simulator::LoadStoreAddress(unsigned addr_reg, int64_t offset, AddrMode addrmode) { const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask; uint64_t address = xreg(addr_reg, Reg31IsStackPointer); if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) { // When the base register is SP the stack pointer is required to be // quadword aligned prior to the address calculation and write-backs. // Misalignment will cause a stack alignment fault. FATAL("ALIGNMENT EXCEPTION"); } if ((addrmode == Offset) || (addrmode == PreIndex)) { address += offset; } return address; } void Simulator::LoadStoreWriteBack(unsigned addr_reg, int64_t offset, AddrMode addrmode) { if ((addrmode == PreIndex) || (addrmode == PostIndex)) { DCHECK_NE(offset, 0); uint64_t address = xreg(addr_reg, Reg31IsStackPointer); set_reg(addr_reg, address + offset, Reg31IsStackPointer); } } Simulator::TransactionSize Simulator::get_transaction_size(unsigned size) { switch (size) { case 0: return TransactionSize::None; case 1: return TransactionSize::Byte; case 2: return TransactionSize::HalfWord; case 4: return TransactionSize::Word; case 8: return TransactionSize::DoubleWord; default: UNREACHABLE(); } return TransactionSize::None; } void Simulator::VisitLoadStoreAcquireRelease(Instruction* instr) { unsigned rt = instr->Rt(); unsigned rn = instr->Rn(); LoadStoreAcquireReleaseOp op = static_cast
( instr->Mask(LoadStoreAcquireReleaseMask)); int32_t is_acquire_release = instr->LoadStoreXAcquireRelease(); int32_t is_exclusive = (instr->LoadStoreXNotExclusive() == 0); int32_t is_load = instr->LoadStoreXLoad(); int32_t is_pair = instr->LoadStoreXPair(); USE(is_acquire_release); USE(is_pair); DCHECK_NE(is_acquire_release, 0); // Non-acquire/release unimplemented. DCHECK_EQ(is_pair, 0); // Pair unimplemented. unsigned access_size = 1 << instr->LoadStoreXSizeLog2(); uintptr_t address = LoadStoreAddress(rn, 0, AddrMode::Offset); DCHECK_EQ(address % access_size, 0); base::LockGuard
lock_guard(&global_monitor_.Pointer()->mutex); if (is_load != 0) { if (is_exclusive) { local_monitor_.NotifyLoadExcl(address, get_transaction_size(access_size)); global_monitor_.Pointer()->NotifyLoadExcl_Locked( address, &global_monitor_processor_); } else { local_monitor_.NotifyLoad(); } switch (op) { case LDAR_b: case LDAXR_b: set_wreg_no_log(rt, MemoryRead
(address)); break; case LDAR_h: case LDAXR_h: set_wreg_no_log(rt, MemoryRead
(address)); break; case LDAR_w: case LDAXR_w: set_wreg_no_log(rt, MemoryRead
(address)); break; case LDAR_x: case LDAXR_x: set_xreg_no_log(rt, MemoryRead
(address)); break; default: UNIMPLEMENTED(); } LogRead(address, rt, GetPrintRegisterFormatForSize(access_size)); } else { if (is_exclusive) { unsigned rs = instr->Rs(); DCHECK_NE(rs, rt); DCHECK_NE(rs, rn); if (local_monitor_.NotifyStoreExcl(address, get_transaction_size(access_size)) && global_monitor_.Pointer()->NotifyStoreExcl_Locked( address, &global_monitor_processor_)) { switch (op) { case STLXR_b: MemoryWrite
(address, wreg(rt)); break; case STLXR_h: MemoryWrite
(address, wreg(rt)); break; case STLXR_w: MemoryWrite
(address, wreg(rt)); break; case STLXR_x: MemoryWrite
(address, xreg(rt)); break; default: UNIMPLEMENTED(); } LogWrite(address, rt, GetPrintRegisterFormatForSize(access_size)); set_wreg(rs, 0); } else { set_wreg(rs, 1); } } else { local_monitor_.NotifyStore(); global_monitor_.Pointer()->NotifyStore_Locked(&global_monitor_processor_); switch (op) { case STLR_b: MemoryWrite
(address, wreg(rt)); break; case STLR_h: MemoryWrite
(address, wreg(rt)); break; case STLR_w: MemoryWrite
(address, wreg(rt)); break; case STLR_x: MemoryWrite
(address, xreg(rt)); break; default: UNIMPLEMENTED(); } } } } void Simulator::CheckMemoryAccess(uintptr_t address, uintptr_t stack) { if ((address >= stack_limit_) && (address < stack)) { fprintf(stream_, "ACCESS BELOW STACK POINTER:\n"); fprintf(stream_, " sp is here: 0x%016" PRIx64 "\n", static_cast
(stack)); fprintf(stream_, " access was here: 0x%016" PRIx64 "\n", static_cast
(address)); fprintf(stream_, " stack limit is here: 0x%016" PRIx64 "\n", static_cast
(stack_limit_)); fprintf(stream_, "\n"); FATAL("ACCESS BELOW STACK POINTER"); } } void Simulator::VisitMoveWideImmediate(Instruction* instr) { MoveWideImmediateOp mov_op = static_cast
(instr->Mask(MoveWideImmediateMask)); int64_t new_xn_val = 0; bool is_64_bits = instr->SixtyFourBits() == 1; // Shift is limited for W operations. DCHECK(is_64_bits || (instr->ShiftMoveWide() < 2)); // Get the shifted immediate. int64_t shift = instr->ShiftMoveWide() * 16; int64_t shifted_imm16 = static_cast
(instr->ImmMoveWide()) << shift; // Compute the new value. switch (mov_op) { case MOVN_w: case MOVN_x: { new_xn_val = ~shifted_imm16; if (!is_64_bits) new_xn_val &= kWRegMask; break; } case MOVK_w: case MOVK_x: { unsigned reg_code = instr->Rd(); int64_t prev_xn_val = is_64_bits ? xreg(reg_code) : wreg(reg_code); new_xn_val = (prev_xn_val & ~(0xFFFFL << shift)) | shifted_imm16; break; } case MOVZ_w: case MOVZ_x: { new_xn_val = shifted_imm16; break; } default: UNREACHABLE(); } // Update the destination register. set_xreg(instr->Rd(), new_xn_val); } void Simulator::VisitConditionalSelect(Instruction* instr) { uint64_t new_val = xreg(instr->Rn()); if (ConditionFailed(static_cast
(instr->Condition()))) { new_val = xreg(instr->Rm()); switch (instr->Mask(ConditionalSelectMask)) { case CSEL_w: case CSEL_x: break; case CSINC_w: case CSINC_x: new_val++; break; case CSINV_w: case CSINV_x: new_val = ~new_val; break; case CSNEG_w: case CSNEG_x: new_val = -new_val; break; default: UNIMPLEMENTED(); } } if (instr->SixtyFourBits()) { set_xreg(instr->Rd(), new_val); } else { set_wreg(instr->Rd(), static_cast
(new_val)); } } void Simulator::VisitDataProcessing1Source(Instruction* instr) { unsigned dst = instr->Rd(); unsigned src = instr->Rn(); switch (instr->Mask(DataProcessing1SourceMask)) { case RBIT_w: set_wreg(dst, base::bits::ReverseBits(wreg(src))); break; case RBIT_x: set_xreg(dst, base::bits::ReverseBits(xreg(src))); break; case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), 1)); break; case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), 1)); break; case REV_w: set_wreg(dst, ReverseBytes(wreg(src), 2)); break; case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), 2)); break; case REV_x: set_xreg(dst, ReverseBytes(xreg(src), 3)); break; case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSizeInBits)); break; case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSizeInBits)); break; case CLS_w: { set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSizeInBits)); break; } case CLS_x: { set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSizeInBits)); break; } default: UNIMPLEMENTED(); } } template
void Simulator::DataProcessing2Source(Instruction* instr) { Shift shift_op = NO_SHIFT; T result = 0; switch (instr->Mask(DataProcessing2SourceMask)) { case SDIV_w: case SDIV_x: { T rn = reg
(instr->Rn()); T rm = reg
(instr->Rm()); if ((rn == std::numeric_limits
::min()) && (rm == -1)) { result = std::numeric_limits
::min(); } else if (rm == 0) { // Division by zero can be trapped, but not on A-class processors. result = 0; } else { result = rn / rm; } break; } case UDIV_w: case UDIV_x: { typedef typename std::make_unsigned
::type unsignedT; unsignedT rn = static_cast
(reg
(instr->Rn())); unsignedT rm = static_cast
(reg
(instr->Rm())); if (rm == 0) { // Division by zero can be trapped, but not on A-class processors. result = 0; } else { result = rn / rm; } break; } case LSLV_w: case LSLV_x: shift_op = LSL; break; case LSRV_w: case LSRV_x: shift_op = LSR; break; case ASRV_w: case ASRV_x: shift_op = ASR; break; case RORV_w: case RORV_x: shift_op = ROR; break; default: UNIMPLEMENTED(); } if (shift_op != NO_SHIFT) { // Shift distance encoded in the least-significant five/six bits of the // register. unsigned shift = wreg(instr->Rm()); if (sizeof(T) == kWRegSize) { shift &= kShiftAmountWRegMask; } else { shift &= kShiftAmountXRegMask; } result = ShiftOperand(reg
(instr->Rn()), shift_op, shift); } set_reg
(instr->Rd(), result); } void Simulator::VisitDataProcessing2Source(Instruction* instr) { if (instr->SixtyFourBits()) { DataProcessing2Source
(instr); } else { DataProcessing2Source
(instr); } } // The algorithm used is described in section 8.2 of // Hacker's Delight, by Henry S. Warren, Jr. // It assumes that a right shift on a signed integer is an arithmetic shift. static int64_t MultiplyHighSigned(int64_t u, int64_t v) { uint64_t u0, v0, w0; int64_t u1, v1, w1, w2, t; u0 = u & 0xFFFFFFFFL; u1 = u >> 32; v0 = v & 0xFFFFFFFFL; v1 = v >> 32; w0 = u0 * v0; t = u1 * v0 + (w0 >> 32); w1 = t & 0xFFFFFFFFL; w2 = t >> 32; w1 = u0 * v1 + w1; return u1 * v1 + w2 + (w1 >> 32); } void Simulator::VisitDataProcessing3Source(Instruction* instr) { int64_t result = 0; // Extract and sign- or zero-extend 32-bit arguments for widening operations. uint64_t rn_u32 = reg
(instr->Rn()); uint64_t rm_u32 = reg
(instr->Rm()); int64_t rn_s32 = reg
(instr->Rn()); int64_t rm_s32 = reg
(instr->Rm()); switch (instr->Mask(DataProcessing3SourceMask)) { case MADD_w: case MADD_x: result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm())); break; case MSUB_w: case MSUB_x: result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm())); break; case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break; case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break; case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break; case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break; case SMULH_x: DCHECK_EQ(instr->Ra(), kZeroRegCode); result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm())); break; default: UNIMPLEMENTED(); } if (instr->SixtyFourBits()) { set_xreg(instr->Rd(), result); } else { set_wreg(instr->Rd(), static_cast
(result)); } } template
void Simulator::BitfieldHelper(Instruction* instr) { typedef typename std::make_unsigned
::type unsignedT; T reg_size = sizeof(T) * 8; T R = instr->ImmR(); T S = instr->ImmS(); T diff = S - R; T mask; if (diff >= 0) { mask = diff < reg_size - 1 ? (static_cast
(1) << (diff + 1)) - 1 : static_cast
(-1); } else { uint64_t umask = ((1L << (S + 1)) - 1); umask = (umask >> R) | (umask << (reg_size - R)); mask = static_cast
(umask); diff += reg_size; } // inzero indicates if the extracted bitfield is inserted into the // destination register value or in zero. // If extend is true, extend the sign of the extracted bitfield. bool inzero = false; bool extend = false; switch (instr->Mask(BitfieldMask)) { case BFM_x: case BFM_w: break; case SBFM_x: case SBFM_w: inzero = true; extend = true; break; case UBFM_x: case UBFM_w: inzero = true; break; default: UNIMPLEMENTED(); } T dst = inzero ? 0 : reg
(instr->Rd()); T src = reg
(instr->Rn()); // Rotate source bitfield into place. T result = (static_cast
(src) >> R) | (src << (reg_size - R)); // Determine the sign extension. T topbits_preshift = (static_cast
(1) << (reg_size - diff - 1)) - 1; T signbits = (extend && ((src >> S) & 1) ? topbits_preshift : 0) << (diff + 1); // Merge sign extension, dest/zero and bitfield. result = signbits | (result & mask) | (dst & ~mask); set_reg
(instr->Rd(), result); } void Simulator::VisitBitfield(Instruction* instr) { if (instr->SixtyFourBits()) { BitfieldHelper
(instr); } else { BitfieldHelper
(instr); } } void Simulator::VisitExtract(Instruction* instr) { if (instr->SixtyFourBits()) { Extract
(instr); } else { Extract
(instr); } } void Simulator::VisitFPImmediate(Instruction* instr) { AssertSupportedFPCR(); unsigned dest = instr->Rd(); switch (instr->Mask(FPImmediateMask)) { case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break; case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break; default: UNREACHABLE(); } } void Simulator::VisitFPIntegerConvert(Instruction* instr) { AssertSupportedFPCR(); unsigned dst = instr->Rd(); unsigned src = instr->Rn(); FPRounding round = fpcr().RMode(); switch (instr->Mask(FPIntegerConvertMask)) { case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break; case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break; case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break; case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break; case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break; case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break; case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break; case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break; case FCVTMS_ws: set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity)); break; case FCVTMS_xs: set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity)); break; case FCVTMS_wd: set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity)); break; case FCVTMS_xd: set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity)); break; case FCVTMU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity)); break; case FCVTMU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity)); break; case FCVTMU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity)); break; case FCVTMU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity)); break; case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break; case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break; case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break; case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break; case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break; case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break; case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break; case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break; case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break; case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break; case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break; case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break; case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break; case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break; case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break; case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break; case FMOV_ws: set_wreg(dst, sreg_bits(src)); break; case FMOV_xd: set_xreg(dst, dreg_bits(src)); break; case FMOV_sw: set_sreg_bits(dst, wreg(src)); break; case FMOV_dx: set_dreg_bits(dst, xreg(src)); break; // A 32-bit input can be handled in the same way as a 64-bit input, since // the sign- or zero-extension will not affect the conversion. case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break; case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break; case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break; case UCVTF_dw: { set_dreg(dst, UFixedToDouble(reg
(src), 0, round)); break; } case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break; case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break; case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break; case UCVTF_sw: { set_sreg(dst, UFixedToFloat(reg
(src), 0, round)); break; } default: UNREACHABLE(); } } void Simulator::VisitFPFixedPointConvert(Instruction* instr) { AssertSupportedFPCR(); unsigned dst = instr->Rd(); unsigned src = instr->Rn(); int fbits = 64 - instr->FPScale(); FPRounding round = fpcr().RMode(); switch (instr->Mask(FPFixedPointConvertMask)) { // A 32-bit input can be handled in the same way as a 64-bit input, since // the sign- or zero-extension will not affect the conversion. case SCVTF_dx_fixed: set_dreg(dst, FixedToDouble(xreg(src), fbits, round)); break; case SCVTF_dw_fixed: set_dreg(dst, FixedToDouble(wreg(src), fbits, round)); break; case UCVTF_dx_fixed: set_dreg(dst, UFixedToDouble(xreg(src), fbits, round)); break; case UCVTF_dw_fixed: { set_dreg(dst, UFixedToDouble(reg
(src), fbits, round)); break; } case SCVTF_sx_fixed: set_sreg(dst, FixedToFloat(xreg(src), fbits, round)); break; case SCVTF_sw_fixed: set_sreg(dst, FixedToFloat(wreg(src), fbits, round)); break; case UCVTF_sx_fixed: set_sreg(dst, UFixedToFloat(xreg(src), fbits, round)); break; case UCVTF_sw_fixed: { set_sreg(dst, UFixedToFloat(reg
(src), fbits, round)); break; } default: UNREACHABLE(); } } void Simulator::VisitFPCompare(Instruction* instr) { AssertSupportedFPCR(); switch (instr->Mask(FPCompareMask)) { case FCMP_s: FPCompare(sreg(instr->Rn()), sreg(instr->Rm())); break; case FCMP_d: FPCompare(dreg(instr->Rn()), dreg(instr->Rm())); break; case FCMP_s_zero: FPCompare(sreg(instr->Rn()), 0.0f); break; case FCMP_d_zero: FPCompare(dreg(instr->Rn()), 0.0); break; default: UNIMPLEMENTED(); } } void Simulator::VisitFPConditionalCompare(Instruction* instr) { AssertSupportedFPCR(); switch (instr->Mask(FPConditionalCompareMask)) { case FCCMP_s: if (ConditionPassed(static_cast
(instr->Condition()))) { FPCompare(sreg(instr->Rn()), sreg(instr->Rm())); } else { nzcv().SetFlags(instr->Nzcv()); LogSystemRegister(NZCV); } break; case FCCMP_d: { if (ConditionPassed(static_cast
(instr->Condition()))) { FPCompare(dreg(instr->Rn()), dreg(instr->Rm())); } else { // If the condition fails, set the status flags to the nzcv immediate. nzcv().SetFlags(instr->Nzcv()); LogSystemRegister(NZCV); } break; } default: UNIMPLEMENTED(); } } void Simulator::VisitFPConditionalSelect(Instruction* instr) { AssertSupportedFPCR(); Instr selected; if (ConditionPassed(static_cast
(instr->Condition()))) { selected = instr->Rn(); } else { selected = instr->Rm(); } switch (instr->Mask(FPConditionalSelectMask)) { case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break; case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break; default: UNIMPLEMENTED(); } } void Simulator::VisitFPDataProcessing1Source(Instruction* instr) { AssertSupportedFPCR(); FPRounding fpcr_rounding = static_cast
(fpcr().RMode()); VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS; SimVRegister& rd = vreg(instr->Rd()); SimVRegister& rn = vreg(instr->Rn()); bool inexact_exception = false; unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); switch (instr->Mask(FPDataProcessing1SourceMask)) { case FMOV_s: set_sreg(fd, sreg(fn)); return; case FMOV_d: set_dreg(fd, dreg(fn)); return; case FABS_s: case FABS_d: fabs_(vform, vreg(fd), vreg(fn)); // Explicitly log the register update whilst we have type information. LogVRegister(fd, GetPrintRegisterFormatFP(vform)); return; case FNEG_s: case FNEG_d: fneg(vform, vreg(fd), vreg(fn)); // Explicitly log the register update whilst we have type information. LogVRegister(fd, GetPrintRegisterFormatFP(vform)); return; case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); return; case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); return; case FCVT_hs: set_hreg(fd, FPToFloat16(sreg(fn), FPTieEven)); return; case FCVT_sh: set_sreg(fd, FPToFloat(hreg(fn))); return; case FCVT_dh: set_dreg(fd, FPToDouble(FPToFloat(hreg(fn)))); return; case FCVT_hd: set_hreg(fd, FPToFloat16(dreg(fn), FPTieEven)); return; case FSQRT_s: case FSQRT_d: fsqrt(vform, rd, rn); // Explicitly log the register update whilst we have type information. LogVRegister(fd, GetPrintRegisterFormatFP(vform)); return; case FRINTI_s: case FRINTI_d: break; // Use FPCR rounding mode. case FRINTX_s: case FRINTX_d: inexact_exception = true; break; case FRINTA_s: case FRINTA_d: fpcr_rounding = FPTieAway; break; case FRINTM_s: case FRINTM_d: fpcr_rounding = FPNegativeInfinity; break; case FRINTN_s: case FRINTN_d: fpcr_rounding = FPTieEven; break; case FRINTP_s: case FRINTP_d: fpcr_rounding = FPPositiveInfinity; break; case FRINTZ_s: case FRINTZ_d: fpcr_rounding = FPZero; break; default: UNIMPLEMENTED(); } // Only FRINT* instructions fall through the switch above. frint(vform, rd, rn, fpcr_rounding, inexact_exception); // Explicitly log the register update whilst we have type information LogVRegister(fd, GetPrintRegisterFormatFP(vform)); } void Simulator::VisitFPDataProcessing2Source(Instruction* instr) { AssertSupportedFPCR(); VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS; SimVRegister& rd = vreg(instr->Rd()); SimVRegister& rn = vreg(instr->Rn()); SimVRegister& rm = vreg(instr->Rm()); switch (instr->Mask(FPDataProcessing2SourceMask)) { case FADD_s: case FADD_d: fadd(vform, rd, rn, rm); break; case FSUB_s: case FSUB_d: fsub(vform, rd, rn, rm); break; case FMUL_s: case FMUL_d: fmul(vform, rd, rn, rm); break; case FNMUL_s: case FNMUL_d: fnmul(vform, rd, rn, rm); break; case FDIV_s: case FDIV_d: fdiv(vform, rd, rn, rm); break; case FMAX_s: case FMAX_d: fmax(vform, rd, rn, rm); break; case FMIN_s: case FMIN_d: fmin(vform, rd, rn, rm); break; case FMAXNM_s: case FMAXNM_d: fmaxnm(vform, rd, rn, rm); break; case FMINNM_s: case FMINNM_d: fminnm(vform, rd, rn, rm); break; default: UNREACHABLE(); } // Explicitly log the register update whilst we have type information. LogVRegister(instr->Rd(), GetPrintRegisterFormatFP(vform)); } void Simulator::VisitFPDataProcessing3Source(Instruction* instr) { AssertSupportedFPCR(); unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); unsigned fm = instr->Rm(); unsigned fa = instr->Ra(); switch (instr->Mask(FPDataProcessing3SourceMask)) { // fd = fa +/- (fn * fm) case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break; case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break; case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break; case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break; // Negated variants of the above. case FNMADD_s: set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm))); break; case FNMSUB_s: set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm))); break; case FNMADD_d: set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm))); break; case FNMSUB_d: set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm))); break; default: UNIMPLEMENTED(); } } bool Simulator::FPProcessNaNs(Instruction* instr) { unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); unsigned fm = instr->Rm(); bool done = false; if (instr->Mask(FP64) == FP64) { double result = FPProcessNaNs(dreg(fn), dreg(fm)); if (std::isnan(result)) { set_dreg(fd, result); done = true; } } else { float result = FPProcessNaNs(sreg(fn), sreg(fm)); if (std::isnan(result)) { set_sreg(fd, result); done = true; } } return done; } void Simulator::VisitSystem(Instruction* instr) { // Some system instructions hijack their Op and Cp fields to represent a // range of immediates instead of indicating a different instruction. This // makes the decoding tricky. if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { switch (instr->Mask(SystemSysRegMask)) { case MRS: { switch (instr->ImmSystemRegister()) { case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break; case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break; default: UNIMPLEMENTED(); } break; } case MSR: { switch (instr->ImmSystemRegister()) { case NZCV: nzcv().SetRawValue(wreg(instr->Rt())); LogSystemRegister(NZCV); break; case FPCR: fpcr().SetRawValue(wreg(instr->Rt())); LogSystemRegister(FPCR); break; default: UNIMPLEMENTED(); } break; } } } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { DCHECK(instr->Mask(SystemHintMask) == HINT); switch (instr->ImmHint()) { case NOP: case CSDB: break; default: UNIMPLEMENTED(); } } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) { __sync_synchronize(); } else { UNIMPLEMENTED(); } } bool Simulator::GetValue(const char* desc, int64_t* value) { int regnum = CodeFromName(desc); if (regnum >= 0) { unsigned code = regnum; if (code == kZeroRegCode) { // Catch the zero register and return 0. *value = 0; return true; } else if (code == kSPRegInternalCode) { // Translate the stack pointer code to 31, for Reg31IsStackPointer. code = 31; } if (desc[0] == 'w') { *value = wreg(code, Reg31IsStackPointer); } else { *value = xreg(code, Reg31IsStackPointer); } return true; } else if (strncmp(desc, "0x", 2) == 0) { return SScanF(desc + 2, "%" SCNx64, reinterpret_cast
(value)) == 1; } else { return SScanF(desc, "%" SCNu64, reinterpret_cast
(value)) == 1; } } bool Simulator::PrintValue(const char* desc) { if (strcmp(desc, "sp") == 0) { DCHECK(CodeFromName(desc) == static_cast
(kSPRegInternalCode)); PrintF(stream_, "%s sp:%s 0x%016" PRIx64 "%s\n", clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal); return true; } else if (strcmp(desc, "wsp") == 0) { DCHECK(CodeFromName(desc) == static_cast
(kSPRegInternalCode)); PrintF(stream_, "%s wsp:%s 0x%08" PRIx32 "%s\n", clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal); return true; } int i = CodeFromName(desc); static_assert(kNumberOfRegisters == kNumberOfVRegisters, "Must be same number of Registers as VRegisters."); if (i < 0 || static_cast
(i) >= kNumberOfVRegisters) return false; if (desc[0] == 'v') { PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n", clr_vreg_name, VRegNameForCode(i), clr_vreg_value, bit_cast
(dreg(i)), clr_normal, clr_vreg_name, DRegNameForCode(i), clr_vreg_value, dreg(i), clr_vreg_name, SRegNameForCode(i), clr_vreg_value, sreg(i), clr_normal); return true; } else if (desc[0] == 'd') { PrintF(stream_, "%s %s:%s %g%s\n", clr_vreg_name, DRegNameForCode(i), clr_vreg_value, dreg(i), clr_normal); return true; } else if (desc[0] == 's') { PrintF(stream_, "%s %s:%s %g%s\n", clr_vreg_name, SRegNameForCode(i), clr_vreg_value, sreg(i), clr_normal); return true; } else if (desc[0] == 'w') { PrintF(stream_, "%s %s:%s 0x%08" PRIx32 "%s\n", clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal); return true; } else { // X register names have a wide variety of starting characters, but anything // else will be an X register. PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s\n", clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal); return true; } } void Simulator::Debug() { #define COMMAND_SIZE 63 #define ARG_SIZE 255 #define STR(a) #a #define XSTR(a) STR(a) char cmd[COMMAND_SIZE + 1]; char arg1[ARG_SIZE + 1]; char arg2[ARG_SIZE + 1]; char* argv[3] = { cmd, arg1, arg2 }; // Make sure to have a proper terminating character if reaching the limit. cmd[COMMAND_SIZE] = 0; arg1[ARG_SIZE] = 0; arg2[ARG_SIZE] = 0; bool done = false; bool cleared_log_disasm_bit = false; while (!done) { // Disassemble the next instruction to execute before doing anything else. PrintInstructionsAt(pc_, 1); // Read the command line. char* line = ReadLine("sim> "); if (line == nullptr) { break; } else { // Repeat last command by default. char* last_input = last_debugger_input(); if (strcmp(line, "\n") == 0 && (last_input != nullptr)) { DeleteArray(line); line = last_input; } else { // Update the latest command ran set_last_debugger_input(line); } // Use sscanf to parse the individual parts of the command line. At the // moment no command expects more than two parameters. int argc = SScanF(line, "%" XSTR(COMMAND_SIZE) "s " "%" XSTR(ARG_SIZE) "s " "%" XSTR(ARG_SIZE) "s", cmd, arg1, arg2); // stepi / si ------------------------------------------------------------ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { // We are about to execute instructions, after which by default we // should increment the pc_. If it was set when reaching this debug // instruction, it has not been cleared because this instruction has not // completed yet. So clear it manually. pc_modified_ = false; if (argc == 1) { ExecuteInstruction(); } else { int64_t number_of_instructions_to_execute = 1; GetValue(arg1, &number_of_instructions_to_execute); set_log_parameters(log_parameters() | LOG_DISASM); while (number_of_instructions_to_execute-- > 0) { ExecuteInstruction(); } set_log_parameters(log_parameters() & ~LOG_DISASM); PrintF("\n"); } // If it was necessary, the pc has already been updated or incremented // when executing the instruction. So we do not want it to be updated // again. It will be cleared when exiting. pc_modified_ = true; // next / n -------------------------------------------------------------- } else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) { // Tell the simulator to break after the next executed BL. break_on_next_ = true; // Continue. done = true; // continue / cont / c --------------------------------------------------- } else if ((strcmp(cmd, "continue") == 0) || (strcmp(cmd, "cont") == 0) || (strcmp(cmd, "c") == 0)) { // Leave the debugger shell. done = true; // disassemble / disasm / di --------------------------------------------- } else if (strcmp(cmd, "disassemble") == 0 || strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { int64_t n_of_instrs_to_disasm = 10; // default value. int64_t address = reinterpret_cast
(pc_); // default value. if (argc >= 2) { // disasm
GetValue(arg1, &n_of_instrs_to_disasm); } if (argc >= 3) { // disasm
GetValue(arg2, &address); } // Disassemble. PrintInstructionsAt(reinterpret_cast
(address), n_of_instrs_to_disasm); PrintF("\n"); // print / p ------------------------------------------------------------- } else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) { if (argc == 2) { if (strcmp(arg1, "all") == 0) { PrintRegisters(); PrintVRegisters(); } else { if (!PrintValue(arg1)) { PrintF("%s unrecognized\n", arg1); } } } else { PrintF( "print
\n" " Print the content of a register. (alias 'p')\n" " 'print all' will print all registers.\n" " Use 'printobject' to get more details about the value.\n"); } // printobject / po ------------------------------------------------------ } else if ((strcmp(cmd, "printobject") == 0) || (strcmp(cmd, "po") == 0)) { if (argc == 2) { int64_t value; StdoutStream os; if (GetValue(arg1, &value)) { Object* obj = reinterpret_cast