// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale i.MX23/i.MX28 SB image generator
*
* Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
*/
#ifdef CONFIG_MXS
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <openssl/evp.h>
#include "imagetool.h"
#include "mxsimage.h"
#include "pbl_crc32.h"
#include <image.h>
/*
* OpenSSL 1.1.0 and newer compatibility functions:
* https://wiki.openssl.org/index.php/1.1_API_Changes
*/
#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
(defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
static void *OPENSSL_zalloc(size_t num)
{
void *ret = OPENSSL_malloc(num);
if (ret != NULL)
memset(ret, 0, num);
return ret;
}
EVP_MD_CTX *EVP_MD_CTX_new(void)
{
return OPENSSL_zalloc(sizeof(EVP_MD_CTX));
}
void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
{
EVP_MD_CTX_cleanup(ctx);
OPENSSL_free(ctx);
}
int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_CTX_cleanup(ctx);
}
#endif
/*
* DCD block
* |-Write to address command block
* | 0xf00 == 0xf33d
* | 0xba2 == 0xb33f
* |-ORR address with mask command block
* | 0xf00 |= 0x1337
* |-Write to address command block
* | 0xba2 == 0xd00d
* :
*/
#define SB_HAB_DCD_WRITE 0xccUL
#define SB_HAB_DCD_CHECK 0xcfUL
#define SB_HAB_DCD_NOOP 0xc0UL
#define SB_HAB_DCD_MASK_BIT (1 << 3)
#define SB_HAB_DCD_SET_BIT (1 << 4)
/* Addr.n = Value.n */
#define SB_DCD_WRITE \
(SB_HAB_DCD_WRITE << 24)
/* Addr.n &= ~Value.n */
#define SB_DCD_ANDC \
((SB_HAB_DCD_WRITE << 24) | SB_HAB_DCD_SET_BIT)
/* Addr.n |= Value.n */
#define SB_DCD_ORR \
((SB_HAB_DCD_WRITE << 24) | SB_HAB_DCD_SET_BIT | SB_HAB_DCD_MASK_BIT)
/* (Addr.n & Value.n) == 0 */
#define SB_DCD_CHK_EQZ \
(SB_HAB_DCD_CHECK << 24)
/* (Addr.n & Value.n) == Value.n */
#define SB_DCD_CHK_EQ \
((SB_HAB_DCD_CHECK << 24) | SB_HAB_DCD_SET_BIT)
/* (Addr.n & Value.n) != Value.n */
#define SB_DCD_CHK_NEQ \
((SB_HAB_DCD_CHECK << 24) | SB_HAB_DCD_MASK_BIT)
/* (Addr.n & Value.n) != 0 */
#define SB_DCD_CHK_NEZ \
((SB_HAB_DCD_CHECK << 24) | SB_HAB_DCD_SET_BIT | SB_HAB_DCD_MASK_BIT)
/* NOP */
#define SB_DCD_NOOP \
(SB_HAB_DCD_NOOP << 24)
struct sb_dcd_ctx {
struct sb_dcd_ctx *dcd;
uint32_t id;
/* The DCD block. */
uint32_t *payload;
/* Size of the whole DCD block. */
uint32_t size;
/* Pointer to previous DCD command block. */
uint32_t *prev_dcd_head;
};
/*
* IMAGE
* |-SECTION
* | |-CMD
* | |-CMD
* | `-CMD
* |-SECTION
* | |-CMD
* : :
*/
struct sb_cmd_list {
char *cmd;
size_t len;
unsigned int lineno;
};
struct sb_cmd_ctx {
uint32_t size;
struct sb_cmd_ctx *cmd;
uint8_t *data;
uint32_t length;
struct sb_command payload;
struct sb_command c_payload;
};
struct sb_section_ctx {
uint32_t size;
/* Section flags */
unsigned int boot:1;
struct sb_section_ctx *sect;
struct sb_cmd_ctx *cmd_head;
struct sb_cmd_ctx *cmd_tail;
struct sb_sections_header payload;
};
struct sb_image_ctx {
unsigned int in_section:1;
unsigned int in_dcd:1;
/* Image configuration */
unsigned int display_progress:1;
unsigned int silent_dump:1;
char *input_filename;
char *output_filename;
char *cfg_filename;
uint8_t image_key[16];
/* Number of section in the image */
unsigned int sect_count;
/* Bootable section */
unsigned int sect_boot;
unsigned int sect_boot_found:1;
struct sb_section_ctx *sect_head;
struct sb_section_ctx *sect_tail;
struct sb_dcd_ctx *dcd_head;
struct sb_dcd_ctx *dcd_tail;
EVP_CIPHER_CTX *cipher_ctx;
EVP_MD_CTX *md_ctx;
uint8_t digest[32];
struct sb_key_dictionary_key sb_dict_key;
struct sb_boot_image_header payload;
};
/*
* Instruction semantics:
* NOOP
* TAG [LAST]
* LOAD address file
* LOAD IVT address IVT_entry_point
* FILL address pattern length
* JUMP [HAB] address [r0_arg]
* CALL [HAB] address [r0_arg]
* MODE mode
* For i.MX23, mode = USB/I2C/SPI1_FLASH/SPI2_FLASH/NAND_BCH
* JTAG/SPI3_EEPROM/SD_SSP0/SD_SSP1
* For i.MX28, mode = USB/I2C/SPI2_FLASH/SPI3_FLASH/NAND_BCH
* JTAG/SPI2_EEPROM/SD_SSP0/SD_SSP1
*/
/*
* AES libcrypto
*/
static int sb_aes_init(struct sb_image_ctx *ictx, uint8_t *iv, int enc)
{
EVP_CIPHER_CTX *ctx;
int ret;
/* If there is no init vector, init vector is all zeroes. */
if (!iv)
iv = ictx->image_key;
ctx = EVP_CIPHER_CTX_new();
ret = EVP_CipherInit(ctx, EVP_aes_128_cbc(), ictx->image_key, iv, enc);
if (ret == 1) {
EVP_CIPHER_CTX_set_padding(ctx, 0);
ictx->cipher_ctx = ctx;
}
return ret;
}
static int sb_aes_crypt(struct sb_image_ctx *ictx, uint8_t *in_data,
uint8_t *out_data, int in_len)
{
EVP_CIPHER_CTX *ctx = ictx->cipher_ctx;
int ret, outlen;
uint8_t *outbuf;
outbuf = malloc(in_len);
if (!outbuf)
return -ENOMEM;
memset(outbuf, 0, sizeof(in_len));
ret = EVP_CipherUpdate(ctx, outbuf, &outlen, in_data, in_len);
if (!ret) {
ret = -EINVAL;
goto err;
}
if (out_data)
memcpy(out_data, outbuf, outlen);
err:
free(outbuf);
return ret;
}
static int sb_aes_deinit(EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_CTX_reset(ctx);
}
static int sb_aes_reinit(struct sb_image_ctx *ictx, int enc)
{
int ret;
EVP_CIPHER_CTX *ctx = ictx->cipher_ctx;
struct sb_boot_image_header *sb_header = &ictx->payload;
uint8_t *iv = sb_header->iv;
ret = sb_aes_deinit(ctx);
if (!ret)
return ret;
return sb_aes_init(ictx, iv, enc);
}
/*
* Debug
*/
static void soprintf(struct sb_image_ctx *ictx, const char *fmt, ...)
{
va_list ap;
if (ictx->silent_dump)
return;
va_start(ap, fmt);
vfprintf(stdout, fmt, ap);
va_end(ap);
}
/*
* Code
*/
static time_t sb_get_timestamp(void)
{
struct tm time_2000 = {
.tm_yday = 1, /* Jan. 1st */
.tm_year = 100, /* 2000 */
};
time_t seconds_to_2000 = mktime(&time_2000);
time_t seconds_to_now = time(NULL);
return seconds_to_now - seconds_to_2000;
}
static int sb_get_time(time_t time, struct tm *tm)
{
struct tm time_2000 = {
.tm_yday = 1, /* Jan. 1st */
.tm_year = 0, /* 1900 */
};
const time_t seconds_to_2000 = mktime(&time_2000);
const time_t seconds_to_now = seconds_to_2000 + time;
struct tm *ret;
ret = gmtime_r(&seconds_to_now, tm);
return ret ? 0 : -EINVAL;
}
static void sb_encrypt_sb_header(struct sb_image_ctx *ictx)
{
EVP_MD_CTX *md_ctx = ictx->md_ctx;
struct sb_boot_image_header *sb_header = &ictx->payload;
uint8_t *sb_header_ptr = (uint8_t *)sb_header;
/* Encrypt the header, compute the digest. */
sb_aes_crypt(ictx, sb_header_ptr, NULL, sizeof(*sb_header));
EVP_DigestUpdate(md_ctx, sb_header_ptr, sizeof(*sb_header));
}
static void sb_encrypt_sb_sections_header(struct sb_image_ctx *ictx)
{
EVP_MD_CTX *md_ctx = ictx->md_ctx;
struct sb_section_ctx *sctx = ictx->sect_head;
struct sb_sections_header *shdr;
uint8_t *sb_sections_header_ptr;
const int size = sizeof(*shdr);
while (sctx) {
shdr = &sctx->payload;
sb_sections_header_ptr = (uint8_t *)shdr;
sb_aes_crypt(ictx, sb_sections_header_ptr,
ictx->sb_dict_key.cbc_mac, size);
EVP_DigestUpdate(md_ctx, sb_sections_header_ptr, size);
sctx = sctx->sect;
};
}
static void sb_encrypt_key_dictionary_key(struct sb_image_ctx *ictx)
{
EVP_MD_CTX *md_ctx = ictx->md_ctx;
sb_aes_crypt(ictx, ictx->image_key, ictx->sb_dict_key.key,
sizeof(ictx->sb_dict_key.key));
EVP_DigestUpdate(md_ctx, &ictx->sb_dict_key, sizeof(ictx->sb_dict_key));
}
static void sb_decrypt_key_dictionary_key(struct sb_image_ctx *ictx)
{
EVP_MD_CTX *md_ctx = ictx->md_ctx;
EVP_DigestUpdate(md_ctx, &ictx->sb_dict_key, sizeof(ictx->sb_dict_key));
sb_aes_crypt(ictx, ictx->sb_dict_key.key, ictx->image_key,
sizeof(ictx->sb_dict_key.key));
}
static void sb_encrypt_tag(struct sb_image_ctx *ictx,
struct sb_cmd_ctx *cctx)
{
EVP_MD_CTX *md_ctx = ictx->md_ctx;
struct sb_command *cmd = &cctx->payload;
sb_aes_crypt(ictx, (uint8_t *)cmd,
(uint8_t *)&cctx->c_payload, sizeof(*cmd));
EVP_DigestUpdate(md_ctx, &cctx->c_payload, sizeof(*cmd));
}
static int sb_encrypt_image(struct sb_image_ctx *ictx)
{
/* Start image-wide crypto. */
ictx->md_ctx = EVP_MD_CTX_new();
EVP_DigestInit(ictx->md_ctx, EVP_sha1());
/*
* SB image header.
*/
sb_aes_init(ictx, NULL, 1);
sb_encrypt_sb_header(ictx);
/*
* SB sections header.
*/
sb_encrypt_sb_sections_header(ictx);
/*
* Key dictionary.
*/
sb_aes_reinit(ictx, 1);
sb_encrypt_key_dictionary_key(ictx);
/*
* Section tags.
*/
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
struct sb_section_ctx *sctx = ictx->sect_head;
while (sctx) {
cctx = sctx->cmd_head;
sb_aes_reinit(ictx, 1);
while (cctx) {
ccmd = &cctx->payload;
sb_encrypt_tag(ictx, cctx);
if (ccmd->header.tag == ROM_TAG_CMD) {
sb_aes_reinit(ictx, 1);
} else if (ccmd->header.tag == ROM_LOAD_CMD) {
sb_aes_crypt(ictx, cctx->data, cctx->data,
cctx->length);
EVP_DigestUpdate(ictx->md_ctx, cctx->data,
cctx->length);
}
cctx = cctx->cmd;
}
sctx = sctx->sect;
};
/*
* Dump the SHA1 of the whole image.
*/
sb_aes_reinit(ictx, 1);
EVP_DigestFinal(ictx->md_ctx, ictx->digest, NULL);
EVP_MD_CTX_free(ictx->md_ctx);
sb_aes_crypt(ictx, ictx->digest, ictx->digest, sizeof(ictx->digest));
/* Stop the encryption session. */
sb_aes_deinit(ictx->cipher_ctx);
return 0;
}
static int sb_load_file(struct sb_cmd_ctx *cctx, char *filename)
{
long real_size, roundup_size;
uint8_t *data;
long ret;
unsigned long size;
FILE *fp;
if (!filename) {
fprintf(stderr, "ERR: Missing filename!\n");
return -EINVAL;
}
fp = fopen(filename, "r");
if (!fp)
goto err_open;
ret = fseek(fp, 0, SEEK_END);
if (ret < 0)
goto err_file;
real_size = ftell(fp);
if (real_size < 0)
goto err_file;
ret = fseek(fp, 0, SEEK_SET);
if (ret < 0)
goto err_file;
roundup_size = roundup(real_size, SB_BLOCK_SIZE);
data = calloc(1, roundup_size);
if (!data)
goto err_file;
size = fread(data, 1, real_size, fp);
if (size != (unsigned long)real_size)
goto err_alloc;
cctx->data = data;
cctx->length = roundup_size;
fclose(fp);
return 0;
err_alloc:
free(data);
err_file:
fclose(fp);
err_open:
fprintf(stderr, "ERR: Failed to load file \"%s\"\n", filename);
return -EINVAL;
}
static uint8_t sb_command_checksum(struct sb_command *inst)
{
uint8_t *inst_ptr = (uint8_t *)inst;
uint8_t csum = 0;
unsigned int i;
for (i = 0; i < sizeof(struct sb_command); i++)
csum += inst_ptr[i];
return csum;
}
static int sb_token_to_long(char *tok, uint32_t *rid)
{
char *endptr;
unsigned long id;
if (tok[0] != '0' || tok[1] != 'x') {
fprintf(stderr, "ERR: Invalid hexadecimal number!\n");
return -EINVAL;
}
tok += 2;
errno = 0;
id = strtoul(tok, &endptr, 16);
if ((errno == ERANGE && id == ULONG_MAX) || (errno != 0 && id == 0)) {
fprintf(stderr, "ERR: Value can't be decoded!\n");
return -EINVAL;
}
/* Check for 32-bit overflow. */
if (id > 0xffffffff) {
fprintf(stderr, "ERR: Value too big!\n");
return -EINVAL;
}
if (endptr == tok) {
fprintf(stderr, "ERR: Deformed value!\n");
return -EINVAL;
}
*rid = (uint32_t)id;
return 0;
}
static int sb_grow_dcd(struct sb_dcd_ctx *dctx, unsigned int inc_size)
{
uint32_t *tmp;
if (!inc_size)
return 0;
dctx->size += inc_size;
tmp = realloc(dctx->payload, dctx->size);
if (!tmp)
return -ENOMEM;
dctx->payload = tmp;
/* Assemble and update the HAB DCD header. */
dctx->payload[0] = htonl((SB_HAB_DCD_TAG << 24) |
(dctx->size << 8) |
SB_HAB_VERSION);
return 0;
}
static int sb_build_dcd(struct sb_image_ctx *ictx, struct sb_cmd_list *cmd)
{
struct sb_dcd_ctx *dctx;
char *tok;
uint32_t id;
int ret;
dctx = calloc(1, sizeof(*dctx));
if (!dctx)
return -ENOMEM;
ret = sb_grow_dcd(dctx, 4);
if (ret)
goto err_dcd;
/* Read DCD block number. */
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: DCD block without number!\n",
cmd->lineno);
ret = -EINVAL;
goto err_dcd;
}
/* Parse the DCD block number. */
ret = sb_token_to_long(tok, &id);
if (ret) {
fprintf(stderr, "#%i ERR: Malformed DCD block number!\n",
cmd->lineno);
goto err_dcd;
}
dctx->id = id;
/*
* The DCD block is now constructed. Append it to the list.
* WARNING: The DCD size is still not computed and will be
* updated while parsing it's commands.
*/
if (!ictx->dcd_head) {
ictx->dcd_head = dctx;
ictx->dcd_tail = dctx;
} else {
ictx->dcd_tail->dcd = dctx;
ictx->dcd_tail = dctx;
}
return 0;
err_dcd:
free(dctx->payload);
free(dctx);
return ret;
}
static int sb_build_dcd_block(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd,
uint32_t type)
{
char *tok;
uint32_t address, value, length;
int ret;
struct sb_dcd_ctx *dctx = ictx->dcd_tail;
uint32_t *dcd;
if (dctx->prev_dcd_head && (type != SB_DCD_NOOP) &&
((dctx->prev_dcd_head[0] & 0xff0000ff) == type)) {
/* Same instruction as before, just append it. */
ret = sb_grow_dcd(dctx, 8);
if (ret)
return ret;
} else if (type == SB_DCD_NOOP) {
ret = sb_grow_dcd(dctx, 4);
if (ret)
return ret;
/* Update DCD command block pointer. */
dctx->prev_dcd_head = dctx->payload +
dctx->size / sizeof(*dctx->payload) - 1;
/* NOOP has only 4 bytes and no payload. */
goto noop;
} else {
/*
* Either a different instruction block started now
* or this is the first instruction block.
*/
ret = sb_grow_dcd(dctx, 12);
if (ret)
return ret;
/* Update DCD command block pointer. */
dctx->prev_dcd_head = dctx->payload +
dctx->size / sizeof(*dctx->payload) - 3;
}
dcd = dctx->payload + dctx->size / sizeof(*dctx->payload) - 2;
/*
* Prepare the command.
*/
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing DCD address!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/* Read DCD destination address. */
ret = sb_token_to_long(tok, &address);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect DCD address!\n",
cmd->lineno);
goto err;
}
tok = strtok(NULL, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing DCD value!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/* Read DCD operation value. */
ret = sb_token_to_long(tok, &value);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect DCD value!\n",
cmd->lineno);
goto err;
}
/* Fill in the new DCD entry. */
dcd[0] = htonl(address);
dcd[1] = htonl(value);
noop:
/* Update the DCD command block. */
length = dctx->size -
((dctx->prev_dcd_head - dctx->payload) *
sizeof(*dctx->payload));
dctx->prev_dcd_head[0] = htonl(type | (length << 8));
err:
return ret;
}
static int sb_build_section(struct sb_image_ctx *ictx, struct sb_cmd_list *cmd)
{
struct sb_section_ctx *sctx;
struct sb_sections_header *shdr;
char *tok;
uint32_t bootable = 0;
uint32_t id;
int ret;
sctx = calloc(1, sizeof(*sctx));
if (!sctx)
return -ENOMEM;
/* Read section number. */
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Section without number!\n",
cmd->lineno);
ret = -EINVAL;
goto err_sect;
}
/* Parse the section number. */
ret = sb_token_to_long(tok, &id);
if (ret) {
fprintf(stderr, "#%i ERR: Malformed section number!\n",
cmd->lineno);
goto err_sect;
}
/* Read section's BOOTABLE flag. */
tok = strtok(NULL, " ");
if (tok && (strlen(tok) == 8) && !strncmp(tok, "BOOTABLE", 8))
bootable = SB_SECTION_FLAG_BOOTABLE;
sctx->boot = bootable;
shdr = &sctx->payload;
shdr->section_number = id;
shdr->section_flags = bootable;
/*
* The section is now constructed. Append it to the list.
* WARNING: The section size is still not computed and will
* be updated while parsing it's commands.
*/
ictx->sect_count++;
/* Mark that this section is bootable one. */
if (bootable) {
if (ictx->sect_boot_found) {
fprintf(stderr,
"#%i WARN: Multiple bootable section!\n",
cmd->lineno);
} else {
ictx->sect_boot = id;
ictx->sect_boot_found = 1;
}
}
if (!ictx->sect_head) {
ictx->sect_head = sctx;
ictx->sect_tail = sctx;
} else {
ictx->sect_tail->sect = sctx;
ictx->sect_tail = sctx;
}
return 0;
err_sect:
free(sctx);
return ret;
}
static int sb_build_command_nop(struct sb_image_ctx *ictx)
{
struct sb_section_ctx *sctx = ictx->sect_tail;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
ccmd = &cctx->payload;
/*
* Construct the command.
*/
ccmd->header.checksum = 0x5a;
ccmd->header.tag = ROM_NOP_CMD;
cctx->size = sizeof(*ccmd);
/*
* Append the command to the last section.
*/
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
return 0;
}
static int sb_build_command_tag(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd)
{
struct sb_section_ctx *sctx = ictx->sect_tail;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
char *tok;
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
ccmd = &cctx->payload;
/*
* Prepare the command.
*/
/* Check for the LAST keyword. */
tok = strtok(cmd->cmd, " ");
if (tok && !strcmp(tok, "LAST"))
ccmd->header.flags = ROM_TAG_CMD_FLAG_ROM_LAST_TAG;
/*
* Construct the command.
*/
ccmd->header.checksum = 0x5a;
ccmd->header.tag = ROM_TAG_CMD;
cctx->size = sizeof(*ccmd);
/*
* Append the command to the last section.
*/
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
return 0;
}
static int sb_build_command_load(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd)
{
struct sb_section_ctx *sctx = ictx->sect_tail;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
char *tok;
int ret, is_ivt = 0, is_dcd = 0;
uint32_t dest, dcd = 0;
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
ccmd = &cctx->payload;
/*
* Prepare the command.
*/
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing LOAD address or 'IVT'!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/* Check for "IVT" flag. */
if (!strcmp(tok, "IVT"))
is_ivt = 1;
if (!strcmp(tok, "DCD"))
is_dcd = 1;
if (is_ivt || is_dcd) {
tok = strtok(NULL, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing LOAD address!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
}
/* Read load destination address. */
ret = sb_token_to_long(tok, &dest);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect LOAD address!\n",
cmd->lineno);
goto err;
}
/* Read filename or IVT entrypoint or DCD block ID. */
tok = strtok(NULL, " ");
if (!tok) {
fprintf(stderr,
"#%i ERR: Missing LOAD filename or IVT ep or DCD block ID!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
if (is_ivt) {
/* Handle IVT. */
struct sb_ivt_header *ivt;
uint32_t ivtep;
ret = sb_token_to_long(tok, &ivtep);
if (ret) {
fprintf(stderr,
"#%i ERR: Incorrect IVT entry point!\n",
cmd->lineno);
goto err;
}
ivt = calloc(1, sizeof(*ivt));
if (!ivt) {
ret = -ENOMEM;
goto err;
}
ivt->header = sb_hab_ivt_header();
ivt->entry = ivtep;
ivt->self = dest;
cctx->data = (uint8_t *)ivt;
cctx->length = sizeof(*ivt);
} else if (is_dcd) {
struct sb_dcd_ctx *dctx = ictx->dcd_head;
uint32_t dcdid;
uint8_t *payload;
uint32_t asize;
ret = sb_token_to_long(tok, &dcdid);
if (ret) {
fprintf(stderr,
"#%i ERR: Incorrect DCD block ID!\n",
cmd->lineno);
goto err;
}
while (dctx) {
if (dctx->id == dcdid)
break;
dctx = dctx->dcd;
}
if (!dctx) {
fprintf(stderr, "#%i ERR: DCD block %08x not found!\n",
cmd->lineno, dcdid);
goto err;
}
asize = roundup(dctx->size, SB_BLOCK_SIZE);
payload = calloc(1, asize);
if (!payload) {
ret = -ENOMEM;
goto err;
}
memcpy(payload, dctx->payload, dctx->size);
cctx->data = payload;
cctx->length = asize;
/* Set the Load DCD flag. */
dcd = ROM_LOAD_CMD_FLAG_DCD_LOAD;
} else {
/* Regular LOAD of a file. */
ret = sb_load_file(cctx, tok);
if (ret) {
fprintf(stderr, "#%i ERR: Cannot load '%s'!\n",
cmd->lineno, tok);
goto err;
}
}
if (cctx->length & (SB_BLOCK_SIZE - 1)) {
fprintf(stderr, "#%i ERR: Unaligned payload!\n",
cmd->lineno);
}
/*
* Construct the command.
*/
ccmd->header.checksum = 0x5a;
ccmd->header.tag = ROM_LOAD_CMD;
ccmd->header.flags = dcd;
ccmd->load.address = dest;
ccmd->load.count = cctx->length;
ccmd->load.crc32 = pbl_crc32(0,
(const char *)cctx->data,
cctx->length);
cctx->size = sizeof(*ccmd) + cctx->length;
/*
* Append the command to the last section.
*/
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
return 0;
err:
free(cctx);
return ret;
}
static int sb_build_command_fill(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd)
{
struct sb_section_ctx *sctx = ictx->sect_tail;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
char *tok;
uint32_t address, pattern, length;
int ret;
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
ccmd = &cctx->payload;
/*
* Prepare the command.
*/
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing FILL address!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/* Read fill destination address. */
ret = sb_token_to_long(tok, &address);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect FILL address!\n",
cmd->lineno);
goto err;
}
tok = strtok(NULL, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing FILL pattern!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/* Read fill pattern address. */
ret = sb_token_to_long(tok, &pattern);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect FILL pattern!\n",
cmd->lineno);
goto err;
}
tok = strtok(NULL, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing FILL length!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/* Read fill pattern address. */
ret = sb_token_to_long(tok, &length);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect FILL length!\n",
cmd->lineno);
goto err;
}
/*
* Construct the command.
*/
ccmd->header.checksum = 0x5a;
ccmd->header.tag = ROM_FILL_CMD;
ccmd->fill.address = address;
ccmd->fill.count = length;
ccmd->fill.pattern = pattern;
cctx->size = sizeof(*ccmd);
/*
* Append the command to the last section.
*/
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
return 0;
err:
free(cctx);
return ret;
}
static int sb_build_command_jump_call(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd,
unsigned int is_call)
{
struct sb_section_ctx *sctx = ictx->sect_tail;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
char *tok;
uint32_t dest, arg = 0x0;
uint32_t hab = 0;
int ret;
const char *cmdname = is_call ? "CALL" : "JUMP";
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
ccmd = &cctx->payload;
/*
* Prepare the command.
*/
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr,
"#%i ERR: Missing %s address or 'HAB'!\n",
cmd->lineno, cmdname);
ret = -EINVAL;
goto err;
}
/* Check for "HAB" flag. */
if (!strcmp(tok, "HAB")) {
hab = is_call ? ROM_CALL_CMD_FLAG_HAB : ROM_JUMP_CMD_FLAG_HAB;
tok = strtok(NULL, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing %s address!\n",
cmd->lineno, cmdname);
ret = -EINVAL;
goto err;
}
}
/* Read load destination address. */
ret = sb_token_to_long(tok, &dest);
if (ret) {
fprintf(stderr, "#%i ERR: Incorrect %s address!\n",
cmd->lineno, cmdname);
goto err;
}
tok = strtok(NULL, " ");
if (tok) {
ret = sb_token_to_long(tok, &arg);
if (ret) {
fprintf(stderr,
"#%i ERR: Incorrect %s argument!\n",
cmd->lineno, cmdname);
goto err;
}
}
/*
* Construct the command.
*/
ccmd->header.checksum = 0x5a;
ccmd->header.tag = is_call ? ROM_CALL_CMD : ROM_JUMP_CMD;
ccmd->header.flags = hab;
ccmd->call.address = dest;
ccmd->call.argument = arg;
cctx->size = sizeof(*ccmd);
/*
* Append the command to the last section.
*/
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
return 0;
err:
free(cctx);
return ret;
}
static int sb_build_command_jump(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd)
{
return sb_build_command_jump_call(ictx, cmd, 0);
}
static int sb_build_command_call(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd)
{
return sb_build_command_jump_call(ictx, cmd, 1);
}
static int sb_build_command_mode(struct sb_image_ctx *ictx,
struct sb_cmd_list *cmd)
{
struct sb_section_ctx *sctx = ictx->sect_tail;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
char *tok;
int ret;
unsigned int i;
uint32_t mode = 0xffffffff;
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
ccmd = &cctx->payload;
/*
* Prepare the command.
*/
tok = strtok(cmd->cmd, " ");
if (!tok) {
fprintf(stderr, "#%i ERR: Missing MODE boot mode argument!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
for (i = 0; i < ARRAY_SIZE(modetable); i++) {
if (!strcmp(tok, modetable[i].name)) {
mode = modetable[i].mode;
break;
}
if (!modetable[i].altname)
continue;
if (!strcmp(tok, modetable[i].altname)) {
mode = modetable[i].mode;
break;
}
}
if (mode == 0xffffffff) {
fprintf(stderr, "#%i ERR: Invalid MODE boot mode argument!\n",
cmd->lineno);
ret = -EINVAL;
goto err;
}
/*
* Construct the command.
*/
ccmd->header.checksum = 0x5a;
ccmd->header.tag = ROM_MODE_CMD;
ccmd->mode.mode = mode;
cctx->size = sizeof(*ccmd);
/*
* Append the command to the last section.
*/
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
return 0;
err:
free(cctx);
return ret;
}
static int sb_prefill_image_header(struct sb_image_ctx *ictx)
{
struct sb_boot_image_header *hdr = &ictx->payload;
/* Fill signatures */
memcpy(hdr->signature1, "STMP", 4);
memcpy(hdr->signature2, "sgtl", 4);
/* SB Image version 1.1 */
hdr->major_version = SB_VERSION_MAJOR;
hdr->minor_version = SB_VERSION_MINOR;
/* Boot image major version */
hdr->product_version.major = htons(0x999);
hdr->product_version.minor = htons(0x999);
hdr->product_version.revision = htons(0x999);
/* Boot image major version */
hdr->component_version.major = htons(0x999);
hdr->component_version.minor = htons(0x999);
hdr->component_version.revision = htons(0x999);
/* Drive tag must be 0x0 for i.MX23 */
hdr->drive_tag = 0;
hdr->header_blocks =
sizeof(struct sb_boot_image_header) / SB_BLOCK_SIZE;
hdr->section_header_size =
sizeof(struct sb_sections_header) / SB_BLOCK_SIZE;
hdr->timestamp_us = sb_get_timestamp() * 1000000;
hdr->flags = ictx->display_progress ?
SB_IMAGE_FLAG_DISPLAY_PROGRESS : 0;
/* FIXME -- We support only default key */
hdr->key_count = 1;
return 0;
}
static int sb_postfill_image_header(struct sb_image_ctx *ictx)
{
struct sb_boot_image_header *hdr = &ictx->payload;
struct sb_section_ctx *sctx = ictx->sect_head;
uint32_t kd_size, sections_blocks;
EVP_MD_CTX *md_ctx;
/* The main SB header size in blocks. */
hdr->image_blocks = hdr->header_blocks;
/* Size of the key dictionary, which has single zero entry. */
kd_size = hdr->key_count * sizeof(struct sb_key_dictionary_key);
hdr->image_blocks += kd_size / SB_BLOCK_SIZE;
/* Now count the payloads. */
hdr->section_count = ictx->sect_count;
while (sctx) {
hdr->image_blocks += sctx->size / SB_BLOCK_SIZE;
sctx = sctx->sect;
}
if (!ictx->sect_boot_found) {
fprintf(stderr, "ERR: No bootable section selected!\n");
return -EINVAL;
}
hdr->first_boot_section_id = ictx->sect_boot;
/* The n * SB section size in blocks. */
sections_blocks = hdr->section_count * hdr->section_header_size;
hdr->image_blocks += sections_blocks;
/* Key dictionary offset. */
hdr->key_dictionary_block = hdr->header_blocks + sections_blocks;
/* Digest of the whole image. */
hdr->image_blocks += 2;
/* Pointer past the dictionary. */
hdr->first_boot_tag_block =
hdr->key_dictionary_block + kd_size / SB_BLOCK_SIZE;
/* Compute header digest. */
md_ctx = EVP_MD_CTX_new();
EVP_DigestInit(md_ctx, EVP_sha1());
EVP_DigestUpdate(md_ctx, hdr->signature1,
sizeof(struct sb_boot_image_header) -
sizeof(hdr->digest));
EVP_DigestFinal(md_ctx, hdr->digest, NULL);
EVP_MD_CTX_free(md_ctx);
return 0;
}
static int sb_fixup_sections_and_tags(struct sb_image_ctx *ictx)
{
/* Fixup the placement of sections. */
struct sb_boot_image_header *ihdr = &ictx->payload;
struct sb_section_ctx *sctx = ictx->sect_head;
struct sb_sections_header *shdr;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
uint32_t offset = ihdr->first_boot_tag_block;
while (sctx) {
shdr = &sctx->payload;
/* Fill in the section TAG offset. */
shdr->section_offset = offset + 1;
offset += shdr->section_size;
/* Section length is measured from the TAG block. */
shdr->section_size--;
/* Fixup the TAG command. */
cctx = sctx->cmd_head;
while (cctx) {
ccmd = &cctx->payload;
if (ccmd->header.tag == ROM_TAG_CMD) {
ccmd->tag.section_number = shdr->section_number;
ccmd->tag.section_length = shdr->section_size;
ccmd->tag.section_flags = shdr->section_flags;
}
/* Update the command checksum. */
ccmd->header.checksum = sb_command_checksum(ccmd);
cctx = cctx->cmd;
}
sctx = sctx->sect;
}
return 0;
}
static int sb_parse_line(struct sb_image_ctx *ictx, struct sb_cmd_list *cmd)
{
char *tok;
char *line = cmd->cmd;
char *rptr = NULL;
int ret;
/* Analyze the identifier on this line first. */
tok = strtok_r(line, " ", &rptr);
if (!tok || (strlen(tok) == 0)) {
fprintf(stderr, "#%i ERR: Invalid line!\n", cmd->lineno);
return -EINVAL;
}
cmd->cmd = rptr;
/* set DISPLAY_PROGRESS flag */
if (!strcmp(tok, "DISPLAYPROGRESS")) {
ictx->display_progress = 1;
return 0;
}
/* DCD */
if (!strcmp(tok, "DCD")) {
ictx->in_section = 0;
ictx->in_dcd = 1;
sb_build_dcd(ictx, cmd);
return 0;
}
/* Section */
if (!strcmp(tok, "SECTION")) {
ictx->in_section = 1;
ictx->in_dcd = 0;
sb_build_section(ictx, cmd);
return 0;
}
if (!ictx->in_section && !ictx->in_dcd) {
fprintf(stderr, "#%i ERR: Data outside of a section!\n",
cmd->lineno);
return -EINVAL;
}
if (ictx->in_section) {
/* Section commands */
if (!strcmp(tok, "NOP")) {
ret = sb_build_command_nop(ictx);
} else if (!strcmp(tok, "TAG")) {
ret = sb_build_command_tag(ictx, cmd);
} else if (!strcmp(tok, "LOAD")) {
ret = sb_build_command_load(ictx, cmd);
} else if (!strcmp(tok, "FILL")) {
ret = sb_build_command_fill(ictx, cmd);
} else if (!strcmp(tok, "JUMP")) {
ret = sb_build_command_jump(ictx, cmd);
} else if (!strcmp(tok, "CALL")) {
ret = sb_build_command_call(ictx, cmd);
} else if (!strcmp(tok, "MODE")) {
ret = sb_build_command_mode(ictx, cmd);
} else {
fprintf(stderr,
"#%i ERR: Unsupported instruction '%s'!\n",
cmd->lineno, tok);
return -ENOTSUP;
}
} else if (ictx->in_dcd) {
char *lptr;
uint32_t ilen = '1';
tok = strtok_r(tok, ".", &lptr);
if (!tok || (strlen(tok) == 0) || (lptr && strlen(lptr) != 1)) {
fprintf(stderr, "#%i ERR: Invalid line!\n",
cmd->lineno);
return -EINVAL;
}
if (lptr &&
(lptr[0] != '1' && lptr[0] != '2' && lptr[0] != '4')) {
fprintf(stderr, "#%i ERR: Invalid instruction width!\n",
cmd->lineno);
return -EINVAL;
}
if (lptr)
ilen = lptr[0] - '1';
/* DCD commands */
if (!strcmp(tok, "WRITE")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_WRITE | ilen);
} else if (!strcmp(tok, "ANDC")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_ANDC | ilen);
} else if (!strcmp(tok, "ORR")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_ORR | ilen);
} else if (!strcmp(tok, "EQZ")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_CHK_EQZ | ilen);
} else if (!strcmp(tok, "EQ")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_CHK_EQ | ilen);
} else if (!strcmp(tok, "NEQ")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_CHK_NEQ | ilen);
} else if (!strcmp(tok, "NEZ")) {
ret = sb_build_dcd_block(ictx, cmd,
SB_DCD_CHK_NEZ | ilen);
} else if (!strcmp(tok, "NOOP")) {
ret = sb_build_dcd_block(ictx, cmd, SB_DCD_NOOP);
} else {
fprintf(stderr,
"#%i ERR: Unsupported instruction '%s'!\n",
cmd->lineno, tok);
return -ENOTSUP;
}
} else {
fprintf(stderr, "#%i ERR: Unsupported instruction '%s'!\n",
cmd->lineno, tok);
return -ENOTSUP;
}
/*
* Here we have at least one section with one command, otherwise we
* would have failed already higher above.
*
* FIXME -- should the updating happen here ?
*/
if (ictx->in_section && !ret) {
ictx->sect_tail->size += ictx->sect_tail->cmd_tail->size;
ictx->sect_tail->payload.section_size =
ictx->sect_tail->size / SB_BLOCK_SIZE;
}
return ret;
}
static int sb_load_cmdfile(struct sb_image_ctx *ictx)
{
struct sb_cmd_list cmd;
int lineno = 1;
FILE *fp;
char *line = NULL;
ssize_t rlen;
size_t len;
fp = fopen(ictx->cfg_filename, "r");
if (!fp)
goto err_file;
while ((rlen = getline(&line, &len, fp)) > 0) {
memset(&cmd, 0, sizeof(cmd));
/* Strip the trailing newline. */
line[rlen - 1] = '\0';
cmd.cmd = line;
cmd.len = rlen;
cmd.lineno = lineno++;
sb_parse_line(ictx, &cmd);
}
free(line);
fclose(fp);
return 0;
err_file:
fclose(fp);
fprintf(stderr, "ERR: Failed to load file \"%s\"\n",
ictx->cfg_filename);
return -EINVAL;
}
static int sb_build_tree_from_cfg(struct sb_image_ctx *ictx)
{
int ret;
ret = sb_load_cmdfile(ictx);
if (ret)
return ret;
ret = sb_prefill_image_header(ictx);
if (ret)
return ret;
ret = sb_postfill_image_header(ictx);
if (ret)
return ret;
ret = sb_fixup_sections_and_tags(ictx);
if (ret)
return ret;
return 0;
}
static int sb_verify_image_header(struct sb_image_ctx *ictx,
FILE *fp, long fsize)
{
/* Verify static fields in the image header. */
struct sb_boot_image_header *hdr = &ictx->payload;
const char *stat[2] = { "[PASS]", "[FAIL]" };
struct tm tm;
int sz, ret = 0;
unsigned char digest[20];
EVP_MD_CTX *md_ctx;
unsigned long size;
/* Start image-wide crypto. */
ictx->md_ctx = EVP_MD_CTX_new();
EVP_DigestInit(ictx->md_ctx, EVP_sha1());
soprintf(ictx, "---------- Verifying SB Image Header ----------\n");
size = fread(&ictx->payload, 1, sizeof(ictx->payload), fp);
if (size != sizeof(ictx->payload)) {
fprintf(stderr, "ERR: SB image header too short!\n");
return -EINVAL;
}
/* Compute header digest. */
md_ctx = EVP_MD_CTX_new();
EVP_DigestInit(md_ctx, EVP_sha1());
EVP_DigestUpdate(md_ctx, hdr->signature1,
sizeof(struct sb_boot_image_header) -
sizeof(hdr->digest));
EVP_DigestFinal(md_ctx, digest, NULL);
EVP_MD_CTX_free(md_ctx);
sb_aes_init(ictx, NULL, 1);
sb_encrypt_sb_header(ictx);
if (memcmp(digest, hdr->digest, 20))
ret = -EINVAL;
soprintf(ictx, "%s Image header checksum: %s\n", stat[!!ret],
ret ? "BAD" : "OK");
if (ret)
return ret;
if (memcmp(hdr->signature1, "STMP", 4) ||
memcmp(hdr->signature2, "sgtl", 4))
ret = -EINVAL;
soprintf(ictx, "%s Signatures: '%.4s' '%.4s'\n",
stat[!!ret], hdr->signature1, hdr->signature2);
if (ret)
return ret;
if ((hdr->major_version != SB_VERSION_MAJOR) ||
((hdr->minor_version != 1) && (hdr->minor_version != 2)))
ret = -EINVAL;
soprintf(ictx, "%s Image version: v%i.%i\n", stat[!!ret],
hdr->major_version, hdr->minor_version);
if (ret)
return ret;
ret = sb_get_time(hdr->timestamp_us / 1000000, &tm);
soprintf(ictx,
"%s Creation time: %02i:%02i:%02i %02i/%02i/%04i\n",
stat[!!ret], tm.tm_hour, tm.tm_min, tm.tm_sec,
tm.tm_mday, tm.tm_mon, tm.tm_year + 2000);
if (ret)
return ret;
soprintf(ictx, "%s Product version: %x.%x.%x\n", stat[0],
ntohs(hdr->product_version.major),
ntohs(hdr->product_version.minor),
ntohs(hdr->product_version.revision));
soprintf(ictx, "%s Component version: %x.%x.%x\n", stat[0],
ntohs(hdr->component_version.major),
ntohs(hdr->component_version.minor),
ntohs(hdr->component_version.revision));
if (hdr->flags & ~SB_IMAGE_FLAGS_MASK)
ret = -EINVAL;
soprintf(ictx, "%s Image flags: %s\n", stat[!!ret],
hdr->flags & SB_IMAGE_FLAG_DISPLAY_PROGRESS ?
"Display_progress" : "");
if (ret)
return ret;
if (hdr->drive_tag != 0)
ret = -EINVAL;
soprintf(ictx, "%s Drive tag: %i\n", stat[!!ret],
hdr->drive_tag);
if (ret)
return ret;
sz = sizeof(struct sb_boot_image_header) / SB_BLOCK_SIZE;
if (hdr->header_blocks != sz)
ret = -EINVAL;
soprintf(ictx, "%s Image header size (blocks): %i\n", stat[!!ret],
hdr->header_blocks);
if (ret)
return ret;
sz = sizeof(struct sb_sections_header) / SB_BLOCK_SIZE;
if (hdr->section_header_size != sz)
ret = -EINVAL;
soprintf(ictx, "%s Section header size (blocks): %i\n", stat[!!ret],
hdr->section_header_size);
if (ret)
return ret;
soprintf(ictx, "%s Sections count: %i\n", stat[!!ret],
hdr->section_count);
soprintf(ictx, "%s First bootable section %i\n", stat[!!ret],
hdr->first_boot_section_id);
if (hdr->image_blocks != fsize / SB_BLOCK_SIZE)
ret = -EINVAL;
soprintf(ictx, "%s Image size (blocks): %i\n", stat[!!ret],
hdr->image_blocks);
if (ret)
return ret;
sz = hdr->header_blocks + hdr->section_header_size * hdr->section_count;
if (hdr->key_dictionary_block != sz)
ret = -EINVAL;
soprintf(ictx, "%s Key dict offset (blocks): %i\n", stat[!!ret],
hdr->key_dictionary_block);
if (ret)
return ret;
if (hdr->key_count != 1)
ret = -EINVAL;
soprintf(ictx, "%s Number of encryption keys: %i\n", stat[!!ret],
hdr->key_count);
if (ret)
return ret;
sz = hdr->header_blocks + hdr->section_header_size * hdr->section_count;
sz += hdr->key_count *
sizeof(struct sb_key_dictionary_key) / SB_BLOCK_SIZE;
if (hdr->first_boot_tag_block != (unsigned)sz)
ret = -EINVAL;
soprintf(ictx, "%s First TAG block (blocks): %i\n", stat[!!ret],
hdr->first_boot_tag_block);
if (ret)
return ret;
return 0;
}
static void sb_decrypt_tag(struct sb_image_ctx *ictx,
struct sb_cmd_ctx *cctx)
{
EVP_MD_CTX *md_ctx = ictx->md_ctx;
struct sb_command *cmd = &cctx->payload;
sb_aes_crypt(ictx, (uint8_t *)&cctx->c_payload,
(uint8_t *)&cctx->payload, sizeof(*cmd));
EVP_DigestUpdate(md_ctx, &cctx->c_payload, sizeof(*cmd));
}
static int sb_verify_command(struct sb_image_ctx *ictx,
struct sb_cmd_ctx *cctx, FILE *fp,
unsigned long *tsize)
{
struct sb_command *ccmd = &cctx->payload;
unsigned long size, asize;
char *csum, *flag = "";
int ret;
unsigned int i;
uint8_t csn, csc = ccmd->header.checksum;
ccmd->header.checksum = 0x5a;
csn = sb_command_checksum(ccmd);
ccmd->header.checksum = csc;
if (csc == csn)
ret = 0;
else
ret = -EINVAL;
csum = ret ? "checksum BAD" : "checksum OK";
switch (ccmd->header.tag) {
case ROM_NOP_CMD:
soprintf(ictx, " NOOP # %s\n", csum);
return ret;
case ROM_TAG_CMD:
if (ccmd->header.flags & ROM_TAG_CMD_FLAG_ROM_LAST_TAG)
flag = "LAST";
soprintf(ictx, " TAG %s # %s\n", flag, csum);
sb_aes_reinit(ictx, 0);
return ret;
case ROM_LOAD_CMD:
soprintf(ictx, " LOAD addr=0x%08x length=0x%08x # %s\n",
ccmd->load.address, ccmd->load.count, csum);
cctx->length = ccmd->load.count;
asize = roundup(cctx->length, SB_BLOCK_SIZE);
cctx->data = malloc(asize);
if (!cctx->data)
return -ENOMEM;
size = fread(cctx->data, 1, asize, fp);
if (size != asize) {
fprintf(stderr,
"ERR: SB LOAD command payload too short!\n");
return -EINVAL;
}
*tsize += size;
EVP_DigestUpdate(ictx->md_ctx, cctx->data, asize);
sb_aes_crypt(ictx, cctx->data, cctx->data, asize);
if (ccmd->load.crc32 != pbl_crc32(0,
(const char *)cctx->data,
asize)) {
fprintf(stderr,
"ERR: SB LOAD command payload CRC32 invalid!\n");
return -EINVAL;
}
return 0;
case ROM_FILL_CMD:
soprintf(ictx,
" FILL addr=0x%08x length=0x%08x pattern=0x%08x # %s\n",
ccmd->fill.address, ccmd->fill.count,
ccmd->fill.pattern, csum);
return 0;
case ROM_JUMP_CMD:
if (ccmd->header.flags & ROM_JUMP_CMD_FLAG_HAB)
flag = " HAB";
soprintf(ictx,
" JUMP%s addr=0x%08x r0_arg=0x%08x # %s\n",
flag, ccmd->fill.address, ccmd->jump.argument, csum);
return 0;
case ROM_CALL_CMD:
if (ccmd->header.flags & ROM_CALL_CMD_FLAG_HAB)
flag = " HAB";
soprintf(ictx,
" CALL%s addr=0x%08x r0_arg=0x%08x # %s\n",
flag, ccmd->fill.address, ccmd->jump.argument, csum);
return 0;
case ROM_MODE_CMD:
for (i = 0; i < ARRAY_SIZE(modetable); i++) {
if (ccmd->mode.mode == modetable[i].mode) {
soprintf(ictx, " MODE %s # %s\n",
modetable[i].name, csum);
break;
}
}
fprintf(stderr, " MODE !INVALID! # %s\n", csum);
return 0;
}
return ret;
}
static int sb_verify_commands(struct sb_image_ctx *ictx,
struct sb_section_ctx *sctx, FILE *fp)
{
unsigned long size, tsize = 0;
struct sb_cmd_ctx *cctx;
int ret;
sb_aes_reinit(ictx, 0);
while (tsize < sctx->size) {
cctx = calloc(1, sizeof(*cctx));
if (!cctx)
return -ENOMEM;
if (!sctx->cmd_head) {
sctx->cmd_head = cctx;
sctx->cmd_tail = cctx;
} else {
sctx->cmd_tail->cmd = cctx;
sctx->cmd_tail = cctx;
}
size = fread(&cctx->c_payload, 1, sizeof(cctx->c_payload), fp);
if (size != sizeof(cctx->c_payload)) {
fprintf(stderr, "ERR: SB command header too short!\n");
return -EINVAL;
}
tsize += size;
sb_decrypt_tag(ictx, cctx);
ret = sb_verify_command(ictx, cctx, fp, &tsize);
if (ret)
return -EINVAL;
}
return 0;
}
static int sb_verify_sections_cmds(struct sb_image_ctx *ictx, FILE *fp)
{
struct sb_boot_image_header *hdr = &ictx->payload;
struct sb_sections_header *shdr;
unsigned int i;
int ret;
struct sb_section_ctx *sctx;
unsigned long size;
char *bootable = "";
soprintf(ictx, "----- Verifying SB Sections and Commands -----\n");
for (i = 0; i < hdr->section_count; i++) {
sctx = calloc(1, sizeof(*sctx));
if (!sctx)
return -ENOMEM;
if (!ictx->sect_head) {
ictx->sect_head = sctx;
ictx->sect_tail = sctx;
} else {
ictx->sect_tail->sect = sctx;
ictx->sect_tail = sctx;
}
size = fread(&sctx->payload, 1, sizeof(sctx->payload), fp);
if (size != sizeof(sctx->payload)) {
fprintf(stderr, "ERR: SB section header too short!\n");
return -EINVAL;
}
}
size = fread(&ictx->sb_dict_key, 1, sizeof(ictx->sb_dict_key), fp);
if (size != sizeof(ictx->sb_dict_key)) {
fprintf(stderr, "ERR: SB key dictionary too short!\n");
return -EINVAL;
}
sb_encrypt_sb_sections_header(ictx);
sb_aes_reinit(ictx, 0);
sb_decrypt_key_dictionary_key(ictx);
sb_aes_reinit(ictx, 0);
sctx = ictx->sect_head;
while (sctx) {
shdr = &sctx->payload;
if (shdr->section_flags & SB_SECTION_FLAG_BOOTABLE) {
sctx->boot = 1;
bootable = " BOOTABLE";
}
sctx->size = (shdr->section_size * SB_BLOCK_SIZE) +
sizeof(struct sb_command);
soprintf(ictx, "SECTION 0x%x%s # size = %i bytes\n",
shdr->section_number, bootable, sctx->size);
if (shdr->section_flags & ~SB_SECTION_FLAG_BOOTABLE)
fprintf(stderr, " WARN: Unknown section flag(s) %08x\n",
shdr->section_flags);
if ((shdr->section_flags & SB_SECTION_FLAG_BOOTABLE) &&
(hdr->first_boot_section_id != shdr->section_number)) {
fprintf(stderr,
" WARN: Bootable section does ID not match image header ID!\n");
}
ret = sb_verify_commands(ictx, sctx, fp);
if (ret)
return ret;
sctx = sctx->sect;
}
/*
* FIXME IDEA:
* check if the first TAG command is at sctx->section_offset
*/
return 0;
}
static int sb_verify_image_end(struct sb_image_ctx *ictx,
FILE *fp, off_t filesz)
{
uint8_t digest[32];
unsigned long size;
off_t pos;
int ret;
soprintf(ictx, "------------- Verifying image end -------------\n");
size = fread(digest, 1, sizeof(digest), fp);
if (size != sizeof(digest)) {
fprintf(stderr, "ERR: SB key dictionary too short!\n");
return -EINVAL;
}
pos = ftell(fp);
if (pos != filesz) {
fprintf(stderr, "ERR: Trailing data past the image!\n");
return -EINVAL;
}
/* Check the image digest. */
EVP_DigestFinal(ictx->md_ctx, ictx->digest, NULL);
EVP_MD_CTX_free(ictx->md_ctx);
/* Decrypt the image digest from the input image. */
sb_aes_reinit(ictx, 0);
sb_aes_crypt(ictx, digest, digest, sizeof(digest));
/* Check all of 20 bytes of the SHA1 hash. */
ret = memcmp(digest, ictx->digest, 20) ? -EINVAL : 0;
if (ret)
soprintf(ictx, "[FAIL] Full-image checksum: BAD\n");
else
soprintf(ictx, "[PASS] Full-image checksum: OK\n");
return ret;
}
static int sb_build_tree_from_img(struct sb_image_ctx *ictx)
{
long filesize;
int ret;
FILE *fp;
if (!ictx->input_filename) {
fprintf(stderr, "ERR: Missing filename!\n");
return -EINVAL;
}
fp = fopen(ictx->input_filename, "r");
if (!fp)
goto err_open;
ret = fseek(fp, 0, SEEK_END);
if (ret < 0)
goto err_file;
filesize = ftell(fp);
if (filesize < 0)
goto err_file;
ret = fseek(fp, 0, SEEK_SET);
if (ret < 0)
goto err_file;
if (filesize < (signed)sizeof(ictx->payload)) {
fprintf(stderr, "ERR: File too short!\n");
goto err_file;
}
if (filesize & (SB_BLOCK_SIZE - 1)) {
fprintf(stderr, "ERR: The file is not aligned!\n");
goto err_file;
}
/* Load and verify image header */
ret = sb_verify_image_header(ictx, fp, filesize);
if (ret)
goto err_verify;
/* Load and verify sections and commands */
ret = sb_verify_sections_cmds(ictx, fp);
if (ret)
goto err_verify;
ret = sb_verify_image_end(ictx, fp, filesize);
if (ret)
goto err_verify;
ret = 0;
err_verify:
soprintf(ictx, "-------------------- Result -------------------\n");
soprintf(ictx, "Verification %s\n", ret ? "FAILED" : "PASSED");
/* Stop the encryption session. */
sb_aes_deinit(ictx->cipher_ctx);
fclose(fp);
return ret;
err_file:
fclose(fp);
err_open:
fprintf(stderr, "ERR: Failed to load file \"%s\"\n",
ictx->input_filename);
return -EINVAL;
}
static void sb_free_image(struct sb_image_ctx *ictx)
{
struct sb_section_ctx *sctx = ictx->sect_head, *s_head;
struct sb_dcd_ctx *dctx = ictx->dcd_head, *d_head;
struct sb_cmd_ctx *cctx, *c_head;
while (sctx) {
s_head = sctx;
c_head = sctx->cmd_head;
while (c_head) {
cctx = c_head;
c_head = c_head->cmd;
if (cctx->data)
free(cctx->data);
free(cctx);
}
sctx = sctx->sect;
free(s_head);
}
while (dctx) {
d_head = dctx;
dctx = dctx->dcd;
free(d_head->payload);
free(d_head);
}
}
/*
* MXSSB-MKIMAGE glue code.
*/
static int mxsimage_check_image_types(uint8_t type)
{
if (type == IH_TYPE_MXSIMAGE)
return EXIT_SUCCESS;
else
return EXIT_FAILURE;
}
static void mxsimage_set_header(void *ptr, struct stat *sbuf, int ifd,
struct image_tool_params *params)
{
}
int mxsimage_check_params(struct image_tool_params *params)
{
if (!params)
return -1;
if (!strlen(params->imagename)) {
fprintf(stderr,
"Error: %s - Configuration file not specified, it is needed for mxsimage generation\n",
params->cmdname);
return -1;
}
/*
* Check parameters:
* XIP is not allowed and verify that incompatible
* parameters are not sent at the same time
* For example, if list is required a data image must not be provided
*/
return (params->dflag && (params->fflag || params->lflag)) ||
(params->fflag && (params->dflag || params->lflag)) ||
(params->lflag && (params->dflag || params->fflag)) ||
(params->xflag) || !(strlen(params->imagename));
}
static int mxsimage_verify_print_header(char *file, int silent)
{
int ret;
struct sb_image_ctx ctx;
memset(&ctx, 0, sizeof(ctx));
ctx.input_filename = file;
ctx.silent_dump = silent;
ret = sb_build_tree_from_img(&ctx);
sb_free_image(&ctx);
return ret;
}
char *imagefile;
static int mxsimage_verify_header(unsigned char *ptr, int image_size,
struct image_tool_params *params)
{
struct sb_boot_image_header *hdr;
if (!ptr)
return -EINVAL;
hdr = (struct sb_boot_image_header *)ptr;
/*
* Check if the header contains the MXS image signatures,
* if so, do a full-image verification.
*/
if (memcmp(hdr->signature1, "STMP", 4) ||
memcmp(hdr->signature2, "sgtl", 4))
return -EINVAL;
imagefile = params->imagefile;
return mxsimage_verify_print_header(params->imagefile, 1);
}
static void mxsimage_print_header(const void *hdr)
{
if (imagefile)
mxsimage_verify_print_header(imagefile, 0);
}
static int sb_build_image(struct sb_image_ctx *ictx,
struct image_type_params *tparams)
{
struct sb_boot_image_header *sb_header = &ictx->payload;
struct sb_section_ctx *sctx;
struct sb_cmd_ctx *cctx;
struct sb_command *ccmd;
struct sb_key_dictionary_key *sb_dict_key = &ictx->sb_dict_key;
uint8_t *image, *iptr;
/* Calculate image size. */
uint32_t size = sizeof(*sb_header) +
ictx->sect_count * sizeof(struct sb_sections_header) +
sizeof(*sb_dict_key) + sizeof(ictx->digest);
sctx = ictx->sect_head;
while (sctx) {
size += sctx->size;
sctx = sctx->sect;
};
image = malloc(size);
if (!image)
return -ENOMEM;
iptr = image;
memcpy(iptr, sb_header, sizeof(*sb_header));
iptr += sizeof(*sb_header);
sctx = ictx->sect_head;
while (sctx) {
memcpy(iptr, &sctx->payload, sizeof(struct sb_sections_header));
iptr += sizeof(struct sb_sections_header);
sctx = sctx->sect;
};
memcpy(iptr, sb_dict_key, sizeof(*sb_dict_key));
iptr += sizeof(*sb_dict_key);
sctx = ictx->sect_head;
while (sctx) {
cctx = sctx->cmd_head;
while (cctx) {
ccmd = &cctx->payload;
memcpy(iptr, &cctx->c_payload, sizeof(cctx->payload));
iptr += sizeof(cctx->payload);
if (ccmd->header.tag == ROM_LOAD_CMD) {
memcpy(iptr, cctx->data, cctx->length);
iptr += cctx->length;
}
cctx = cctx->cmd;
}
sctx = sctx->sect;
};
memcpy(iptr, ictx->digest, sizeof(ictx->digest));
iptr += sizeof(ictx->digest);
/* Configure the mkimage */
tparams->hdr = image;
tparams->header_size = size;
return 0;
}
static int mxsimage_generate(struct image_tool_params *params,
struct image_type_params *tparams)
{
int ret;
struct sb_image_ctx ctx;
/* Do not copy the U-Boot image! */
params->skipcpy = 1;
memset(&ctx, 0, sizeof(ctx));
ctx.cfg_filename = params->imagename;
ctx.output_filename = params->imagefile;
ret = sb_build_tree_from_cfg(&ctx);
if (ret)
goto fail;
ret = sb_encrypt_image(&ctx);
if (!ret)
ret = sb_build_image(&ctx, tparams);
fail:
sb_free_image(&ctx);
return ret;
}
/*
* mxsimage parameters
*/
U_BOOT_IMAGE_TYPE(
mxsimage,
"Freescale MXS Boot Image support",
0,
NULL,
mxsimage_check_params,
mxsimage_verify_header,
mxsimage_print_header,
mxsimage_set_header,
NULL,
mxsimage_check_image_types,
NULL,
mxsimage_generate
);
#endif