// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include <common.h>
#include <i2c.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "ddr3_init.h"
#if defined(MV88F78X60)
#include "ddr3_axp_config.h"
#elif defined(MV88F67XX)
#include "ddr3_a370_config.h"
#endif
#if defined(MV88F672X)
#include "ddr3_a375_config.h"
#endif
#ifdef DUNIT_SPD
/* DIMM SPD offsets */
#define SPD_DEV_TYPE_BYTE 2
#define SPD_MODULE_TYPE_BYTE 3
#define SPD_MODULE_MASK 0xf
#define SPD_MODULE_TYPE_RDIMM 1
#define SPD_MODULE_TYPE_UDIMM 2
#define SPD_DEV_DENSITY_BYTE 4
#define SPD_DEV_DENSITY_MASK 0xf
#define SPD_ROW_NUM_BYTE 5
#define SPD_ROW_NUM_MIN 12
#define SPD_ROW_NUM_OFF 3
#define SPD_ROW_NUM_MASK (7 << SPD_ROW_NUM_OFF)
#define SPD_COL_NUM_BYTE 5
#define SPD_COL_NUM_MIN 9
#define SPD_COL_NUM_OFF 0
#define SPD_COL_NUM_MASK (7 << SPD_COL_NUM_OFF)
#define SPD_MODULE_ORG_BYTE 7
#define SPD_MODULE_SDRAM_DEV_WIDTH_OFF 0
#define SPD_MODULE_SDRAM_DEV_WIDTH_MASK (7 << SPD_MODULE_SDRAM_DEV_WIDTH_OFF)
#define SPD_MODULE_BANK_NUM_MIN 1
#define SPD_MODULE_BANK_NUM_OFF 3
#define SPD_MODULE_BANK_NUM_MASK (7 << SPD_MODULE_BANK_NUM_OFF)
#define SPD_BUS_WIDTH_BYTE 8
#define SPD_BUS_WIDTH_OFF 0
#define SPD_BUS_WIDTH_MASK (7 << SPD_BUS_WIDTH_OFF)
#define SPD_BUS_ECC_OFF 3
#define SPD_BUS_ECC_MASK (3 << SPD_BUS_ECC_OFF)
#define SPD_MTB_DIVIDEND_BYTE 10
#define SPD_MTB_DIVISOR_BYTE 11
#define SPD_TCK_BYTE 12
#define SPD_SUP_CAS_LAT_LSB_BYTE 14
#define SPD_SUP_CAS_LAT_MSB_BYTE 15
#define SPD_TAA_BYTE 16
#define SPD_TWR_BYTE 17
#define SPD_TRCD_BYTE 18
#define SPD_TRRD_BYTE 19
#define SPD_TRP_BYTE 20
#define SPD_TRAS_MSB_BYTE 21
#define SPD_TRAS_MSB_MASK 0xf
#define SPD_TRC_MSB_BYTE 21
#define SPD_TRC_MSB_MASK 0xf0
#define SPD_TRAS_LSB_BYTE 22
#define SPD_TRC_LSB_BYTE 23
#define SPD_TRFC_LSB_BYTE 24
#define SPD_TRFC_MSB_BYTE 25
#define SPD_TWTR_BYTE 26
#define SPD_TRTP_BYTE 27
#define SPD_TFAW_MSB_BYTE 28
#define SPD_TFAW_MSB_MASK 0xf
#define SPD_TFAW_LSB_BYTE 29
#define SPD_OPT_FEATURES_BYTE 30
#define SPD_THERMAL_REFRESH_OPT_BYTE 31
#define SPD_ADDR_MAP_BYTE 63
#define SPD_ADDR_MAP_MIRROR_OFFS 0
#define SPD_RDIMM_RC_BYTE 69
#define SPD_RDIMM_RC_NIBBLE_MASK 0xF
#define SPD_RDIMM_RC_NUM 16
/* Dimm Memory Type values */
#define SPD_MEM_TYPE_SDRAM 0x4
#define SPD_MEM_TYPE_DDR1 0x7
#define SPD_MEM_TYPE_DDR2 0x8
#define SPD_MEM_TYPE_DDR3 0xB
#define DIMM_MODULE_MANU_OFFS 64
#define DIMM_MODULE_MANU_SIZE 8
#define DIMM_MODULE_VEN_OFFS 73
#define DIMM_MODULE_VEN_SIZE 25
#define DIMM_MODULE_ID_OFFS 99
#define DIMM_MODULE_ID_SIZE 18
/* enumeration for voltage levels. */
enum dimm_volt_if {
TTL_5V_TOLERANT,
LVTTL,
HSTL_1_5V,
SSTL_3_3V,
SSTL_2_5V,
VOLTAGE_UNKNOWN,
};
/* enumaration for SDRAM CAS Latencies. */
enum dimm_sdram_cas {
SD_CL_1 = 1,
SD_CL_2,
SD_CL_3,
SD_CL_4,
SD_CL_5,
SD_CL_6,
SD_CL_7,
SD_FAULT
};
/* enumeration for memory types */
enum memory_type {
MEM_TYPE_SDRAM,
MEM_TYPE_DDR1,
MEM_TYPE_DDR2,
MEM_TYPE_DDR3
};
/* DIMM information structure */
typedef struct dimm_info {
/* DIMM dimensions */
u32 num_of_module_ranks;
u32 data_width;
u32 rank_capacity;
u32 num_of_devices;
u32 sdram_width;
u32 num_of_banks_on_each_device;
u32 sdram_capacity;
u32 num_of_row_addr;
u32 num_of_col_addr;
u32 addr_mirroring;
u32 err_check_type; /* ECC , PARITY.. */
u32 type_info; /* DDR2 only */
/* DIMM timing parameters */
u32 supported_cas_latencies;
u32 refresh_interval;
u32 min_cycle_time;
u32 min_row_precharge_time;
u32 min_row_active_to_row_active;
u32 min_ras_to_cas_delay;
u32 min_write_recovery_time; /* DDR3/2 only */
u32 min_write_to_read_cmd_delay; /* DDR3/2 only */
u32 min_read_to_prech_cmd_delay; /* DDR3/2 only */
u32 min_active_to_precharge;
u32 min_refresh_recovery; /* DDR3/2 only */
u32 min_cas_lat_time;
u32 min_four_active_win_delay;
u8 dimm_rc[SPD_RDIMM_RC_NUM];
/* DIMM vendor ID */
u32 vendor;
} MV_DIMM_INFO;
static int ddr3_spd_sum_init(MV_DIMM_INFO *info, MV_DIMM_INFO *sum_info,
u32 dimm);
static u32 ddr3_get_max_val(u32 spd_val, u32 dimm_num, u32 static_val);
static u32 ddr3_get_min_val(u32 spd_val, u32 dimm_num, u32 static_val);
static int ddr3_spd_init(MV_DIMM_INFO *info, u32 dimm_addr, u32 dimm_width);
static u32 ddr3_div(u32 val, u32 divider, u32 sub);
extern u8 spd_data[SPD_SIZE];
extern u32 odt_config[ODT_OPT];
extern u16 odt_static[ODT_OPT][MAX_CS];
extern u16 odt_dynamic[ODT_OPT][MAX_CS];
#if !(defined(DB_88F6710) || defined(DB_88F6710_PCAC) || defined(RD_88F6710))
/*
* Name: ddr3_get_dimm_num - Find number of dimms and their addresses
* Desc:
* Args: dimm_addr - array of dimm addresses
* Notes:
* Returns: None.
*/
static u32 ddr3_get_dimm_num(u32 *dimm_addr)
{
u32 dimm_cur_addr;
u8 data[3];
u32 dimm_num = 0;
int ret;
/* Read the dimm eeprom */
for (dimm_cur_addr = MAX_DIMM_ADDR; dimm_cur_addr > MIN_DIMM_ADDR;
dimm_cur_addr--) {
data[SPD_DEV_TYPE_BYTE] = 0;
/* Far-End DIMM must be connected */
if ((dimm_num == 0) && (dimm_cur_addr < FAR_END_DIMM_ADDR))
return 0;
ret = i2c_read(dimm_cur_addr, 0, 1, (uchar *)data, 3);
if (!ret) {
if (data[SPD_DEV_TYPE_BYTE] == SPD_MEM_TYPE_DDR3) {
dimm_addr[dimm_num] = dimm_cur_addr;
dimm_num++;
}
}
}
return dimm_num;
}
#endif
/*
* Name: dimmSpdInit - Get the SPD parameters.
* Desc: Read the DIMM SPD parameters into given struct parameter.
* Args: dimmNum - DIMM number. See MV_BOARD_DIMM_NUM enumerator.
* info - DIMM information structure.
* Notes:
* Returns: MV_OK if function could read DIMM parameters, 0 otherwise.
*/
int ddr3_spd_init(MV_DIMM_INFO *info, u32 dimm_addr, u32 dimm_width)
{
u32 tmp;
u32 time_base;
int ret;
__maybe_unused u32 rc;
__maybe_unused u8 vendor_high, vendor_low;
if (dimm_addr != 0) {
memset(spd_data, 0, SPD_SIZE * sizeof(u8));
ret = i2c_read(dimm_addr, 0, 1, (uchar *)spd_data, SPD_SIZE);
if (ret)
return MV_DDR3_TRAINING_ERR_TWSI_FAIL;
}
/* Check if DDR3 */
if (spd_data[SPD_DEV_TYPE_BYTE] != SPD_MEM_TYPE_DDR3)
return MV_DDR3_TRAINING_ERR_TWSI_BAD_TYPE;
/* Error Check Type */
/* No byte for error check in DDR3 SPD, use DDR2 convention */
info->err_check_type = 0;
/* Check if ECC */
if ((spd_data[SPD_BUS_WIDTH_BYTE] & 0x18) >> 3)
info->err_check_type = 1;
DEBUG_INIT_FULL_C("DRAM err_check_type ", info->err_check_type, 1);
switch (spd_data[SPD_MODULE_TYPE_BYTE]) {
case 1:
/* support RDIMM */
info->type_info = SPD_MODULE_TYPE_RDIMM;
break;
case 2:
/* support UDIMM */
info->type_info = SPD_MODULE_TYPE_UDIMM;
break;
case 11: /* LRDIMM current not supported */
default:
info->type_info = (spd_data[SPD_MODULE_TYPE_BYTE]);
break;
}
/* Size Calculations: */
/* Number Of Row Addresses - 12/13/14/15/16 */
info->num_of_row_addr =
(spd_data[SPD_ROW_NUM_BYTE] & SPD_ROW_NUM_MASK) >>
SPD_ROW_NUM_OFF;
info->num_of_row_addr += SPD_ROW_NUM_MIN;
DEBUG_INIT_FULL_C("DRAM num_of_row_addr ", info->num_of_row_addr, 2);
/* Number Of Column Addresses - 9/10/11/12 */
info->num_of_col_addr =
(spd_data[SPD_COL_NUM_BYTE] & SPD_COL_NUM_MASK) >>
SPD_COL_NUM_OFF;
info->num_of_col_addr += SPD_COL_NUM_MIN;
DEBUG_INIT_FULL_C("DRAM num_of_col_addr ", info->num_of_col_addr, 1);
/* Number Of Ranks = number of CS on Dimm - 1/2/3/4 Ranks */
info->num_of_module_ranks =
(spd_data[SPD_MODULE_ORG_BYTE] & SPD_MODULE_BANK_NUM_MASK) >>
SPD_MODULE_BANK_NUM_OFF;
info->num_of_module_ranks += SPD_MODULE_BANK_NUM_MIN;
DEBUG_INIT_FULL_C("DRAM numOfModuleBanks ", info->num_of_module_ranks,
1);
/* Data Width - 8/16/32/64 bits */
info->data_width =
1 << (3 + (spd_data[SPD_BUS_WIDTH_BYTE] & SPD_BUS_WIDTH_MASK));
DEBUG_INIT_FULL_C("DRAM data_width ", info->data_width, 1);
/* Number Of Banks On Each Device - 8/16/32/64 banks */
info->num_of_banks_on_each_device =
1 << (3 + ((spd_data[SPD_DEV_DENSITY_BYTE] >> 4) & 0x7));
DEBUG_INIT_FULL_C("DRAM num_of_banks_on_each_device ",
info->num_of_banks_on_each_device, 1);
/* Total SDRAM capacity - 256Mb/512Mb/1Gb/2Gb/4Gb/8Gb/16Gb - MegaBits */
info->sdram_capacity =
spd_data[SPD_DEV_DENSITY_BYTE] & SPD_DEV_DENSITY_MASK;
/* Sdram Width - 4/8/16/32 bits */
info->sdram_width = 1 << (2 + (spd_data[SPD_MODULE_ORG_BYTE] &
SPD_MODULE_SDRAM_DEV_WIDTH_MASK));
DEBUG_INIT_FULL_C("DRAM sdram_width ", info->sdram_width, 1);
/* CS (Rank) Capacity - MB */
/*
* DDR3 device uiDensity val are: (device capacity/8) *
* (Module_width/Device_width)
*/
/* Jedec SPD DDR3 - page 7, Save spd_data in Mb - 2048=2GB */
if (dimm_width == 32) {
info->rank_capacity =
((1 << info->sdram_capacity) * 256 *
(info->data_width / info->sdram_width)) << 16;
/* CS size = CS size / 2 */
} else {
info->rank_capacity =
((1 << info->sdram_capacity) * 256 *
(info->data_width / info->sdram_width) * 0x2) << 16;
/* 0x2 => 0x100000-1Mbit / 8-bit->byte / 0x10000 */
}
DEBUG_INIT_FULL_C("DRAM rank_capacity[31] ", info->rank_capacity, 1);
/* Number of devices includeing Error correction */
info->num_of_devices =
((info->data_width / info->sdram_width) *
info->num_of_module_ranks) + info->err_check_type;
DEBUG_INIT_FULL_C("DRAM num_of_devices ", info->num_of_devices, 1);
/* Address Mapping from Edge connector to DRAM - mirroring option */
info->addr_mirroring =
spd_data[SPD_ADDR_MAP_BYTE] & (1 << SPD_ADDR_MAP_MIRROR_OFFS);
/* Timings - All in ps */
time_base = (1000 * spd_data[SPD_MTB_DIVIDEND_BYTE]) /
spd_data[SPD_MTB_DIVISOR_BYTE];
/* Minimum Cycle Time At Max CasLatancy */
info->min_cycle_time = spd_data[SPD_TCK_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM tCKmin ", info->min_cycle_time, 1);
/* Refresh Interval */
/* No byte for refresh interval in DDR3 SPD, use DDR2 convention */
/*
* JEDEC param are 0 <= Tcase <= 85: 7.8uSec, 85 <= Tcase
* <= 95: 3.9uSec
*/
info->refresh_interval = 7800000; /* Set to 7.8uSec */
DEBUG_INIT_FULL_C("DRAM refresh_interval ", info->refresh_interval, 1);
/* Suported Cas Latencies - DDR 3: */
/*
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******-*******
CAS = 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 *
*********************************************************-*******
*******-******-******-******-******-******-******-*******-*******
* bit15 |bit14 |bit13 |bit12 |bit11 |bit10 | bit9 | bit8 *
*******-******-******-******-******-******-******-*******-*******
CAS = TBD | 18 | 17 | 16 | 15 | 14 | 13 | 12 *
*/
/* DDR3 include 2 byte of CAS support */
info->supported_cas_latencies =
(spd_data[SPD_SUP_CAS_LAT_MSB_BYTE] << 8) |
spd_data[SPD_SUP_CAS_LAT_LSB_BYTE];
DEBUG_INIT_FULL_C("DRAM supported_cas_latencies ",
info->supported_cas_latencies, 1);
/* Minimum Cycle Time At Max CasLatancy */
info->min_cas_lat_time = (spd_data[SPD_TAA_BYTE] * time_base);
/*
* This field divided by the cycleTime will give us the CAS latency
* to config
*/
/*
* For DDR3 and DDR2 includes Write Recovery Time field.
* Other SDRAM ignore
*/
info->min_write_recovery_time = spd_data[SPD_TWR_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM min_write_recovery_time ",
info->min_write_recovery_time, 1);
/* Mininmum Ras to Cas Delay */
info->min_ras_to_cas_delay = spd_data[SPD_TRCD_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM min_ras_to_cas_delay ",
info->min_ras_to_cas_delay, 1);
/* Minimum Row Active to Row Active Time */
info->min_row_active_to_row_active =
spd_data[SPD_TRRD_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM min_row_active_to_row_active ",
info->min_row_active_to_row_active, 1);
/* Minimum Row Precharge Delay Time */
info->min_row_precharge_time = spd_data[SPD_TRP_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM min_row_precharge_time ",
info->min_row_precharge_time, 1);
/* Minimum Active to Precharge Delay Time - tRAS ps */
info->min_active_to_precharge =
(spd_data[SPD_TRAS_MSB_BYTE] & SPD_TRAS_MSB_MASK) << 8;
info->min_active_to_precharge |= spd_data[SPD_TRAS_LSB_BYTE];
info->min_active_to_precharge *= time_base;
DEBUG_INIT_FULL_C("DRAM min_active_to_precharge ",
info->min_active_to_precharge, 1);
/* Minimum Refresh Recovery Delay Time - tRFC ps */
info->min_refresh_recovery = spd_data[SPD_TRFC_MSB_BYTE] << 8;
info->min_refresh_recovery |= spd_data[SPD_TRFC_LSB_BYTE];
info->min_refresh_recovery *= time_base;
DEBUG_INIT_FULL_C("DRAM min_refresh_recovery ",
info->min_refresh_recovery, 1);
/*
* For DDR3 and DDR2 includes Internal Write To Read Command Delay
* field.
*/
info->min_write_to_read_cmd_delay = spd_data[SPD_TWTR_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM min_write_to_read_cmd_delay ",
info->min_write_to_read_cmd_delay, 1);
/*
* For DDR3 and DDR2 includes Internal Read To Precharge Command Delay
* field.
*/
info->min_read_to_prech_cmd_delay = spd_data[SPD_TRTP_BYTE] * time_base;
DEBUG_INIT_FULL_C("DRAM min_read_to_prech_cmd_delay ",
info->min_read_to_prech_cmd_delay, 1);
/*
* For DDR3 includes Minimum Activate to Activate/Refresh Command
* field
*/
tmp = ((spd_data[SPD_TFAW_MSB_BYTE] & SPD_TFAW_MSB_MASK) << 8) |
spd_data[SPD_TFAW_LSB_BYTE];
info->min_four_active_win_delay = tmp * time_base;
DEBUG_INIT_FULL_C("DRAM min_four_active_win_delay ",
info->min_four_active_win_delay, 1);
#if defined(MV88F78X60) || defined(MV88F672X)
/* Registered DIMM support */
if (info->type_info == SPD_MODULE_TYPE_RDIMM) {
for (rc = 2; rc < 6; rc += 2) {
tmp = spd_data[SPD_RDIMM_RC_BYTE + rc / 2];
info->dimm_rc[rc] =
spd_data[SPD_RDIMM_RC_BYTE + rc / 2] &
SPD_RDIMM_RC_NIBBLE_MASK;
info->dimm_rc[rc + 1] =
(spd_data[SPD_RDIMM_RC_BYTE + rc / 2] >> 4) &
SPD_RDIMM_RC_NIBBLE_MASK;
}
vendor_low = spd_data[66];
vendor_high = spd_data[65];
info->vendor = (vendor_high << 8) + vendor_low;
DEBUG_INIT_C("DDR3 Training Sequence - Registered DIMM vendor ID 0x",
info->vendor, 4);
info->dimm_rc[0] = RDIMM_RC0;
info->dimm_rc[1] = RDIMM_RC1;
info->dimm_rc[2] = RDIMM_RC2;
info->dimm_rc[8] = RDIMM_RC8;
info->dimm_rc[9] = RDIMM_RC9;
info->dimm_rc[10] = RDIMM_RC10;
info->dimm_rc[11] = RDIMM_RC11;
}
#endif
return MV_OK;
}
/*
* Name: ddr3_spd_sum_init - Get the SPD parameters.
* Desc: Read the DIMM SPD parameters into given struct parameter.
* Args: dimmNum - DIMM number. See MV_BOARD_DIMM_NUM enumerator.
* info - DIMM information structure.
* Notes:
* Returns: MV_OK if function could read DIMM parameters, 0 otherwise.
*/
int ddr3_spd_sum_init(MV_DIMM_INFO *info, MV_DIMM_INFO *sum_info, u32 dimm)
{
if (dimm == 0) {
memcpy(sum_info, info, sizeof(MV_DIMM_INFO));
return MV_OK;
}
if (sum_info->type_info != info->type_info) {
DEBUG_INIT_S("DDR3 Dimm Compare - DIMM type does not match - FAIL\n");
return MV_DDR3_TRAINING_ERR_DIMM_TYPE_NO_MATCH;
}
if (sum_info->err_check_type > info->err_check_type) {
sum_info->err_check_type = info->err_check_type;
DEBUG_INIT_S("DDR3 Dimm Compare - ECC does not match. ECC is disabled\n");
}
if (sum_info->data_width != info->data_width) {
DEBUG_INIT_S("DDR3 Dimm Compare - DRAM bus width does not match - FAIL\n");
return MV_DDR3_TRAINING_ERR_BUS_WIDTH_NOT_MATCH;
}
if (sum_info->min_cycle_time < info->min_cycle_time)
sum_info->min_cycle_time = info->min_cycle_time;
if (sum_info->refresh_interval < info->refresh_interval)
sum_info->refresh_interval = info->refresh_interval;
sum_info->supported_cas_latencies &= info->supported_cas_latencies;
if (sum_info->min_cas_lat_time < info->min_cas_lat_time)
sum_info->min_cas_lat_time = info->min_cas_lat_time;
if (sum_info->min_write_recovery_time < info->min_write_recovery_time)
sum_info->min_write_recovery_time =
info->min_write_recovery_time;
if (sum_info->min_ras_to_cas_delay < info->min_ras_to_cas_delay)
sum_info->min_ras_to_cas_delay = info->min_ras_to_cas_delay;
if (sum_info->min_row_active_to_row_active <
info->min_row_active_to_row_active)
sum_info->min_row_active_to_row_active =
info->min_row_active_to_row_active;
if (sum_info->min_row_precharge_time < info->min_row_precharge_time)
sum_info->min_row_precharge_time = info->min_row_precharge_time;
if (sum_info->min_active_to_precharge < info->min_active_to_precharge)
sum_info->min_active_to_precharge =
info->min_active_to_precharge;
if (sum_info->min_refresh_recovery < info->min_refresh_recovery)
sum_info->min_refresh_recovery = info->min_refresh_recovery;
if (sum_info->min_write_to_read_cmd_delay <
info->min_write_to_read_cmd_delay)
sum_info->min_write_to_read_cmd_delay =
info->min_write_to_read_cmd_delay;
if (sum_info->min_read_to_prech_cmd_delay <
info->min_read_to_prech_cmd_delay)
sum_info->min_read_to_prech_cmd_delay =
info->min_read_to_prech_cmd_delay;
if (sum_info->min_four_active_win_delay <
info->min_four_active_win_delay)
sum_info->min_four_active_win_delay =
info->min_four_active_win_delay;
if (sum_info->min_write_to_read_cmd_delay <
info->min_write_to_read_cmd_delay)
sum_info->min_write_to_read_cmd_delay =
info->min_write_to_read_cmd_delay;
return MV_OK;
}
/*
* Name: ddr3_dunit_setup
* Desc: Set the controller with the timing values.
* Args: ecc_ena - User ECC setup
* Notes:
* Returns:
*/
int ddr3_dunit_setup(u32 ecc_ena, u32 hclk_time, u32 *ddr_width)
{
u32 reg, tmp, cwl;
u32 ddr_clk_time;
MV_DIMM_INFO dimm_info[2];
MV_DIMM_INFO sum_info;
u32 stat_val, spd_val;
u32 cs, cl, cs_num, cs_ena;
u32 dimm_num = 0;
int status;
u32 rc;
__maybe_unused u32 dimm_cnt, cs_count, dimm;
__maybe_unused u32 dimm_addr[2] = { 0, 0 };
#if defined(DB_88F6710) || defined(DB_88F6710_PCAC) || defined(RD_88F6710)
/* Armada 370 - SPD is not available on DIMM */
/*
* Set MC registers according to Static SPD values Values -
* must be set manually
*/
/*
* We only have one optional DIMM for the DB and we already got the
* SPD matching values
*/
status = ddr3_spd_init(&dimm_info[0], 0, *ddr_width);
if (MV_OK != status)
return status;
dimm_num = 1;
/* Use JP8 to enable multiCS support for Armada 370 DB */
if (!ddr3_check_config(EEPROM_MODULE_ADDR, CONFIG_MULTI_CS))
dimm_info[0].num_of_module_ranks = 1;
status = ddr3_spd_sum_init(&dimm_info[0], &sum_info, 0);
if (MV_OK != status)
return status;
#else
/* Dynamic D-Unit Setup - Read SPD values */
#ifdef DUNIT_SPD
dimm_num = ddr3_get_dimm_num(dimm_addr);
if (dimm_num == 0) {
#ifdef MIXED_DIMM_STATIC
DEBUG_INIT_S("DDR3 Training Sequence - No DIMMs detected\n");
#else
DEBUG_INIT_S("DDR3 Training Sequence - FAILED (Wrong DIMMs Setup)\n");
return MV_DDR3_TRAINING_ERR_BAD_DIMM_SETUP;
#endif
} else {
DEBUG_INIT_C("DDR3 Training Sequence - Number of DIMMs detected: ",
dimm_num, 1);
}
for (dimm = 0; dimm < dimm_num; dimm++) {
status = ddr3_spd_init(&dimm_info[dimm], dimm_addr[dimm],
*ddr_width);
if (MV_OK != status)
return status;
status = ddr3_spd_sum_init(&dimm_info[dimm], &sum_info, dimm);
if (MV_OK != status)
return status;
}
#endif
#endif
/* Set number of enabled CS */
cs_num = 0;
#ifdef DUNIT_STATIC
cs_num = ddr3_get_cs_num_from_reg();
#endif
#ifdef DUNIT_SPD
for (dimm = 0; dimm < dimm_num; dimm++)
cs_num += dimm_info[dimm].num_of_module_ranks;
#endif
if (cs_num > MAX_CS) {
DEBUG_INIT_C("DDR3 Training Sequence - Number of CS exceed limit - ",
MAX_CS, 1);
return MV_DDR3_TRAINING_ERR_MAX_CS_LIMIT;
}
/* Set bitmap of enabled CS */
cs_ena = 0;
#ifdef DUNIT_STATIC
cs_ena = ddr3_get_cs_ena_from_reg();
#endif
#ifdef DUNIT_SPD
dimm = 0;
if (dimm_num) {
for (cs = 0; cs < MAX_CS; cs += 2) {
if (((1 << cs) & DIMM_CS_BITMAP) &&
!(cs_ena & (1 << cs))) {
if (dimm_info[dimm].num_of_module_ranks == 1)
cs_ena |= (0x1 << cs);
else if (dimm_info[dimm].num_of_module_ranks == 2)
cs_ena |= (0x3 << cs);
else if (dimm_info[dimm].num_of_module_ranks == 3)
cs_ena |= (0x7 << cs);
else if (dimm_info[dimm].num_of_module_ranks == 4)
cs_ena |= (0xF << cs);
dimm++;
if (dimm == dimm_num)
break;
}
}
}
#endif
if (cs_ena > 0xF) {
DEBUG_INIT_C("DDR3 Training Sequence - Number of enabled CS exceed limit - ",
MAX_CS, 1);
return MV_DDR3_TRAINING_ERR_MAX_ENA_CS_LIMIT;
}
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - Number of CS = ", cs_num, 1);
/* Check Ratio - '1' - 2:1, '0' - 1:1 */
if (reg_read(REG_DDR_IO_ADDR) & (1 << REG_DDR_IO_CLK_RATIO_OFFS))
ddr_clk_time = hclk_time / 2;
else
ddr_clk_time = hclk_time;
#ifdef DUNIT_STATIC
/* Get target CL value from set register */
reg = (reg_read(REG_DDR3_MR0_ADDR) >> 2);
reg = ((((reg >> 1) & 0xE)) | (reg & 0x1)) & 0xF;
cl = ddr3_get_max_val(ddr3_div(sum_info.min_cas_lat_time,
ddr_clk_time, 0),
dimm_num, ddr3_valid_cl_to_cl(reg));
#else
cl = ddr3_div(sum_info.min_cas_lat_time, ddr_clk_time, 0);
#endif
if (cl < 5)
cl = 5;
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - Cas Latency = ", cl, 1);
/* {0x00001400} - DDR SDRAM Configuration Register */
reg = 0x73004000;
stat_val = ddr3_get_static_mc_value(
REG_SDRAM_CONFIG_ADDR, REG_SDRAM_CONFIG_ECC_OFFS, 0x1, 0, 0);
if (ecc_ena && ddr3_get_min_val(sum_info.err_check_type, dimm_num,
stat_val)) {
reg |= (1 << REG_SDRAM_CONFIG_ECC_OFFS);
reg |= (1 << REG_SDRAM_CONFIG_IERR_OFFS);
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - ECC Enabled\n");
} else {
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - ECC Disabled\n");
}
if (sum_info.type_info == SPD_MODULE_TYPE_RDIMM) {
#ifdef DUNIT_STATIC
DEBUG_INIT_S("DDR3 Training Sequence - FAIL - Illegal R-DIMM setup\n");
return MV_DDR3_TRAINING_ERR_BAD_R_DIMM_SETUP;
#endif
reg |= (1 << REG_SDRAM_CONFIG_REGDIMM_OFFS);
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - R-DIMM\n");
} else {
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - U-DIMM\n");
}
#ifndef MV88F67XX
#ifdef DUNIT_STATIC
if (ddr3_get_min_val(sum_info.data_width, dimm_num, BUS_WIDTH) == 64) {
#else
if (*ddr_width == 64) {
#endif
reg |= (1 << REG_SDRAM_CONFIG_WIDTH_OFFS);
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - Datawidth - 64Bits\n");
} else {
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - Datawidth - 32Bits\n");
}
#else
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - Datawidth - 16Bits\n");
#endif
#if defined(MV88F672X)
if (*ddr_width == 32) {
reg |= (1 << REG_SDRAM_CONFIG_WIDTH_OFFS);
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - Datawidth - 32Bits\n");
} else {
DEBUG_INIT_FULL_S("DDR3 - DUNIT-SET - Datawidth - 16Bits\n");
}
#endif
stat_val = ddr3_get_static_mc_value(REG_SDRAM_CONFIG_ADDR, 0,
REG_SDRAM_CONFIG_RFRS_MASK, 0, 0);
tmp = ddr3_get_min_val(sum_info.refresh_interval / hclk_time,
dimm_num, stat_val);
#ifdef TREFI_USER_EN
tmp = min(TREFI_USER / hclk_time, tmp);
#endif
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - RefreshInterval/Hclk = ", tmp, 4);
reg |= tmp;
if (cl != 3)
reg |= (1 << 16); /* If 2:1 need to set P2DWr */
#if defined(MV88F672X)
reg |= (1 << 27); /* PhyRfRST = Disable */
#endif
reg_write(REG_SDRAM_CONFIG_ADDR, reg);
/*{0x00001404} - DDR SDRAM Configuration Register */
reg = 0x3630B800;
#ifdef DUNIT_SPD
reg |= (DRAM_2T << REG_DUNIT_CTRL_LOW_2T_OFFS);
#endif
reg_write(REG_DUNIT_CTRL_LOW_ADDR, reg);
/* {0x00001408} - DDR SDRAM Timing (Low) Register */
reg = 0x0;
/* tRAS - (0:3,20) */
spd_val = ddr3_div(sum_info.min_active_to_precharge,
ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
0, 0xF, 16, 0x10);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tRAS-1 = ", tmp, 1);
reg |= (tmp & 0xF);
reg |= ((tmp & 0x10) << 16); /* to bit 20 */
/* tRCD - (4:7) */
spd_val = ddr3_div(sum_info.min_ras_to_cas_delay, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
4, 0xF, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tRCD-1 = ", tmp, 1);
reg |= ((tmp & 0xF) << 4);
/* tRP - (8:11) */
spd_val = ddr3_div(sum_info.min_row_precharge_time, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
8, 0xF, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tRP-1 = ", tmp, 1);
reg |= ((tmp & 0xF) << 8);
/* tWR - (12:15) */
spd_val = ddr3_div(sum_info.min_write_recovery_time, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
12, 0xF, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tWR-1 = ", tmp, 1);
reg |= ((tmp & 0xF) << 12);
/* tWTR - (16:19) */
spd_val = ddr3_div(sum_info.min_write_to_read_cmd_delay, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
16, 0xF, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tWTR-1 = ", tmp, 1);
reg |= ((tmp & 0xF) << 16);
/* tRRD - (24:27) */
spd_val = ddr3_div(sum_info.min_row_active_to_row_active, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
24, 0xF, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tRRD-1 = ", tmp, 1);
reg |= ((tmp & 0xF) << 24);
/* tRTP - (28:31) */
spd_val = ddr3_div(sum_info.min_read_to_prech_cmd_delay, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_LOW_ADDR,
28, 0xF, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tRTP-1 = ", tmp, 1);
reg |= ((tmp & 0xF) << 28);
if (cl < 7)
reg = 0x33137663;
reg_write(REG_SDRAM_TIMING_LOW_ADDR, reg);
/*{0x0000140C} - DDR SDRAM Timing (High) Register */
/* Add cycles to R2R W2W */
reg = 0x39F8FF80;
/* tRFC - (0:6,16:18) */
spd_val = ddr3_div(sum_info.min_refresh_recovery, ddr_clk_time, 1);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_TIMING_HIGH_ADDR,
0, 0x7F, 9, 0x380);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tRFC-1 = ", tmp, 1);
reg |= (tmp & 0x7F);
reg |= ((tmp & 0x380) << 9); /* to bit 16 */
reg_write(REG_SDRAM_TIMING_HIGH_ADDR, reg);
/*{0x00001410} - DDR SDRAM Address Control Register */
reg = 0x000F0000;
/* tFAW - (24:28) */
#if (defined(MV88F78X60) || defined(MV88F672X))
tmp = sum_info.min_four_active_win_delay;
spd_val = ddr3_div(tmp, ddr_clk_time, 0);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_ADDRESS_CTRL_ADDR,
24, 0x3F, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tFAW = ", tmp, 1);
reg |= ((tmp & 0x3F) << 24);
#else
tmp = sum_info.min_four_active_win_delay -
4 * (sum_info.min_row_active_to_row_active);
spd_val = ddr3_div(tmp, ddr_clk_time, 0);
stat_val = ddr3_get_static_mc_value(REG_SDRAM_ADDRESS_CTRL_ADDR,
24, 0x1F, 0, 0);
tmp = ddr3_get_max_val(spd_val, dimm_num, stat_val);
DEBUG_INIT_FULL_C("DDR3 - DUNIT-SET - tFAW-4*tRRD = ", tmp, 1);
reg |= ((tmp & 0x1F) << 24);
#endif
/* SDRAM device capacity */
#ifdef DUNIT_STATIC
reg |= (reg_read(REG_SDRAM_ADDRESS_CTRL_ADDR) & 0xF0FFFF);
#endif
#ifdef DUNIT_SPD
cs_count = 0;
dimm_cnt = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs) & DIMM_CS_BITMAP) {
if (dimm_info[dimm_cnt].num_of_module_ranks == cs_count) {
dimm_cnt++;
cs_count = 0;
}
cs_count++;
if (dimm_info[dimm_cnt].sdram_capacity < 0x3) {
reg |= ((dimm_info[dimm_cnt].sdram_capacity + 1) <<
(REG_SDRAM_ADDRESS_SIZE_OFFS +
(REG_SDRAM_ADDRESS_CTRL_STRUCT_OFFS * cs)));
} else if (dimm_info[dimm_cnt].sdram_capacity > 0x3) {
reg |= ((dimm_info[dimm_cnt].sdram_capacity & 0x3) <<
(REG_SDRAM_ADDRESS_SIZE_OFFS +
(REG_SDRAM_ADDRESS_CTRL_STRUCT_OFFS * cs)));
reg |= ((dimm_info[dimm_cnt].sdram_capacity & 0x4) <<
(REG_SDRAM_ADDRESS_SIZE_HIGH_OFFS + cs));
}
}
}
/* SDRAM device structure */
cs_count = 0;
dimm_cnt = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs) & DIMM_CS_BITMAP) {
if (dimm_info[dimm_cnt].num_of_module_ranks == cs_count) {
dimm_cnt++;
cs_count = 0;
}
cs_count++;
if (dimm_info[dimm_cnt].sdram_width == 16)
reg |= (1 << (REG_SDRAM_ADDRESS_CTRL_STRUCT_OFFS * cs));
}
}
#endif
reg_write(REG_SDRAM_ADDRESS_CTRL_ADDR, reg);
/*{0x00001418} - DDR SDRAM Operation Register */
reg = 0xF00;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs))
reg &= ~(1 << (cs + REG_SDRAM_OPERATION_CS_OFFS));
}
reg_write(REG_SDRAM_OPERATION_ADDR, reg);
/*{0x00001420} - DDR SDRAM Extended Mode Register */
reg = 0x00000004;
reg_write(REG_SDRAM_EXT_MODE_ADDR, reg);
/*{0x00001424} - DDR Controller Control (High) Register */
#if (defined(MV88F78X60) || defined(MV88F672X))
reg = 0x0000D3FF;
#else
reg = 0x0100D1FF;
#endif
reg_write(REG_DDR_CONT_HIGH_ADDR, reg);
/*{0x0000142C} - DDR3 Timing Register */
reg = 0x014C2F38;
#if defined(MV88F78X60) || defined(MV88F672X)
reg = 0x1FEC2F38;
#endif
reg_write(0x142C, reg);
/*{0x00001484} - MBus CPU Block Register */
#ifdef MV88F67XX
if (reg_read(REG_DDR_IO_ADDR) & (1 << REG_DDR_IO_CLK_RATIO_OFFS))
reg_write(REG_MBUS_CPU_BLOCK_ADDR, 0x0000E907);
#endif
/*
* In case of mixed dimm and on-board devices setup paramters will
* be taken statically
*/
/*{0x00001494} - DDR SDRAM ODT Control (Low) Register */
reg = odt_config[cs_ena];
reg_write(REG_SDRAM_ODT_CTRL_LOW_ADDR, reg);
/*{0x00001498} - DDR SDRAM ODT Control (High) Register */
reg = 0x00000000;
reg_write(REG_SDRAM_ODT_CTRL_HIGH_ADDR, reg);
/*{0x0000149C} - DDR Dunit ODT Control Register */
reg = cs_ena;
reg_write(REG_DUNIT_ODT_CTRL_ADDR, reg);
/*{0x000014A0} - DDR Dunit ODT Control Register */
#if defined(MV88F672X)
reg = 0x000006A9;
reg_write(REG_DRAM_FIFO_CTRL_ADDR, reg);
#endif
/*{0x000014C0} - DRAM address and Control Driving Strenght */
reg_write(REG_DRAM_ADDR_CTRL_DRIVE_STRENGTH_ADDR, 0x192435e9);
/*{0x000014C4} - DRAM Data and DQS Driving Strenght */
reg_write(REG_DRAM_DATA_DQS_DRIVE_STRENGTH_ADDR, 0xB2C35E9);
#if (defined(MV88F78X60) || defined(MV88F672X))
/*{0x000014CC} - DRAM Main Pads Calibration Machine Control Register */
reg = reg_read(REG_DRAM_MAIN_PADS_CAL_ADDR);
reg_write(REG_DRAM_MAIN_PADS_CAL_ADDR, reg | (1 << 0));
#endif
#if defined(MV88F672X)
/* DRAM Main Pads Calibration Machine Control Register */
/* 0x14CC[4:3] - CalUpdateControl = IntOnly */
reg = reg_read(REG_DRAM_MAIN_PADS_CAL_ADDR);
reg &= 0xFFFFFFE7;
reg |= (1 << 3);
reg_write(REG_DRAM_MAIN_PADS_CAL_ADDR, reg);
#endif
#ifdef DUNIT_SPD
cs_count = 0;
dimm_cnt = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if ((1 << cs) & DIMM_CS_BITMAP) {
if ((1 << cs) & cs_ena) {
if (dimm_info[dimm_cnt].num_of_module_ranks ==
cs_count) {
dimm_cnt++;
cs_count = 0;
}
cs_count++;
reg_write(REG_CS_SIZE_SCRATCH_ADDR + (cs * 0x8),
dimm_info[dimm_cnt].rank_capacity - 1);
} else {
reg_write(REG_CS_SIZE_SCRATCH_ADDR + (cs * 0x8), 0);
}
}
}
#endif
/*{0x00020184} - Close FastPath - 2G */
reg_write(REG_FASTPATH_WIN_0_CTRL_ADDR, 0);
/*{0x00001538} - Read Data Sample Delays Register */
reg = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs))
reg |= (cl << (REG_READ_DATA_SAMPLE_DELAYS_OFFS * cs));
}
reg_write(REG_READ_DATA_SAMPLE_DELAYS_ADDR, reg);
DEBUG_INIT_FULL_C("DDR3 - SPD-SET - Read Data Sample Delays = ", reg,
1);
/*{0x0000153C} - Read Data Ready Delay Register */
reg = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
reg |= ((cl + 2) <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
}
}
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, reg);
DEBUG_INIT_FULL_C("DDR3 - SPD-SET - Read Data Ready Delays = ", reg, 1);
/* Set MR registers */
/* MR0 */
reg = 0x00000600;
tmp = ddr3_cl_to_valid_cl(cl);
reg |= ((tmp & 0x1) << 2);
reg |= ((tmp & 0xE) << 3); /* to bit 4 */
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
reg_write(REG_DDR3_MR0_CS_ADDR +
(cs << MR_CS_ADDR_OFFS), reg);
}
}
/* MR1 */
reg = 0x00000044 & REG_DDR3_MR1_ODT_MASK;
if (cs_num > 1)
reg = 0x00000046 & REG_DDR3_MR1_ODT_MASK;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
reg |= odt_static[cs_ena][cs];
reg_write(REG_DDR3_MR1_CS_ADDR +
(cs << MR_CS_ADDR_OFFS), reg);
}
}
/* MR2 */
if (reg_read(REG_DDR_IO_ADDR) & (1 << REG_DDR_IO_CLK_RATIO_OFFS))
tmp = hclk_time / 2;
else
tmp = hclk_time;
if (tmp >= 2500)
cwl = 5; /* CWL = 5 */
else if (tmp >= 1875 && tmp < 2500)
cwl = 6; /* CWL = 6 */
else if (tmp >= 1500 && tmp < 1875)
cwl = 7; /* CWL = 7 */
else if (tmp >= 1250 && tmp < 1500)
cwl = 8; /* CWL = 8 */
else if (tmp >= 1070 && tmp < 1250)
cwl = 9; /* CWL = 9 */
else if (tmp >= 935 && tmp < 1070)
cwl = 10; /* CWL = 10 */
else if (tmp >= 833 && tmp < 935)
cwl = 11; /* CWL = 11 */
else if (tmp >= 750 && tmp < 833)
cwl = 12; /* CWL = 12 */
else {
cwl = 12; /* CWL = 12 */
printf("Unsupported hclk %d MHz\n", tmp);
}
reg = ((cwl - 5) << REG_DDR3_MR2_CWL_OFFS);
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
reg &= REG_DDR3_MR2_ODT_MASK;
reg |= odt_dynamic[cs_ena][cs];
reg_write(REG_DDR3_MR2_CS_ADDR +
(cs << MR_CS_ADDR_OFFS), reg);
}
}
/* MR3 */
reg = 0x00000000;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
reg_write(REG_DDR3_MR3_CS_ADDR +
(cs << MR_CS_ADDR_OFFS), reg);
}
}
/* {0x00001428} - DDR ODT Timing (Low) Register */
reg = 0;
reg |= (((cl - cwl + 1) & 0xF) << 4);
reg |= (((cl - cwl + 6) & 0xF) << 8);
reg |= ((((cl - cwl + 6) >> 4) & 0x1) << 21);
reg |= (((cl - 1) & 0xF) << 12);
reg |= (((cl + 6) & 0x1F) << 16);
reg_write(REG_ODT_TIME_LOW_ADDR, reg);
/* {0x0000147C} - DDR ODT Timing (High) Register */
reg = 0x00000071;
reg |= ((cwl - 1) << 8);
reg |= ((cwl + 5) << 12);
reg_write(REG_ODT_TIME_HIGH_ADDR, reg);
#ifdef DUNIT_SPD
/*{0x000015E0} - DDR3 Rank Control Register */
reg = cs_ena;
cs_count = 0;
dimm_cnt = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs) & DIMM_CS_BITMAP) {
if (dimm_info[dimm_cnt].num_of_module_ranks == cs_count) {
dimm_cnt++;
cs_count = 0;
}
cs_count++;
if (dimm_info[dimm_cnt].addr_mirroring &&
(cs == 1 || cs == 3) &&
(sum_info.type_info != SPD_MODULE_TYPE_RDIMM)) {
reg |= (1 << (REG_DDR3_RANK_CTRL_MIRROR_OFFS + cs));
DEBUG_INIT_FULL_C("DDR3 - SPD-SET - Setting Address Mirroring for CS = ",
cs, 1);
}
}
}
reg_write(REG_DDR3_RANK_CTRL_ADDR, reg);
#endif
/*{0xD00015E4} - ZQDS Configuration Register */
reg = 0x00203c18;
reg_write(REG_ZQC_CONF_ADDR, reg);
/* {0x00015EC} - DDR PHY */
#if defined(MV88F78X60)
reg = 0xF800AAA5;
if (mv_ctrl_rev_get() == MV_78XX0_B0_REV)
reg = 0xF800A225;
#else
reg = 0xDE000025;
#if defined(MV88F672X)
reg = 0xF800A225;
#endif
#endif
reg_write(REG_DRAM_PHY_CONFIG_ADDR, reg);
#if (defined(MV88F78X60) || defined(MV88F672X))
/* Registered DIMM support - supported only in AXP A0 devices */
/* Currently supported for SPD detection only */
/*
* Flow is according to the Registered DIMM chapter in the
* Functional Spec
*/
if (sum_info.type_info == SPD_MODULE_TYPE_RDIMM) {
DEBUG_INIT_S("DDR3 Training Sequence - Registered DIMM detected\n");
/* Set commands parity completion */
reg = reg_read(REG_REGISTERED_DRAM_CTRL_ADDR);
reg &= ~REG_REGISTERED_DRAM_CTRL_PARITY_MASK;
reg |= 0x8;
reg_write(REG_REGISTERED_DRAM_CTRL_ADDR, reg);
/* De-assert M_RESETn and assert M_CKE */
reg_write(REG_SDRAM_INIT_CTRL_ADDR,
1 << REG_SDRAM_INIT_CKE_ASSERT_OFFS);
do {
reg = (reg_read(REG_SDRAM_INIT_CTRL_ADDR)) &
(1 << REG_SDRAM_INIT_CKE_ASSERT_OFFS);
} while (reg);
for (rc = 0; rc < SPD_RDIMM_RC_NUM; rc++) {
if (rc != 6 && rc != 7) {
/* Set CWA Command */
reg = (REG_SDRAM_OPERATION_CMD_CWA &
~(0xF << REG_SDRAM_OPERATION_CS_OFFS));
reg |= ((dimm_info[0].dimm_rc[rc] &
REG_SDRAM_OPERATION_CWA_DATA_MASK) <<
REG_SDRAM_OPERATION_CWA_DATA_OFFS);
reg |= rc << REG_SDRAM_OPERATION_CWA_RC_OFFS;
/* Configure - Set Delay - tSTAB/tMRD */
if (rc == 2 || rc == 10)
reg |= (0x1 << REG_SDRAM_OPERATION_CWA_DELAY_SEL_OFFS);
/* 0x1418 - SDRAM Operation Register */
reg_write(REG_SDRAM_OPERATION_ADDR, reg);
/*
* Poll the "cmd" field in the SDRAM OP
* register for 0x0
*/
do {
reg = reg_read(REG_SDRAM_OPERATION_ADDR) &
(REG_SDRAM_OPERATION_CMD_MASK);
} while (reg);
}
}
}
#endif
return MV_OK;
}
/*
* Name: ddr3_div - this function divides integers
* Desc:
* Args: val - the value
* divider - the divider
* sub - substruction value
* Notes:
* Returns: required value
*/
u32 ddr3_div(u32 val, u32 divider, u32 sub)
{
return val / divider + (val % divider > 0 ? 1 : 0) - sub;
}
/*
* Name: ddr3_get_max_val
* Desc:
* Args:
* Notes:
* Returns:
*/
u32 ddr3_get_max_val(u32 spd_val, u32 dimm_num, u32 static_val)
{
#ifdef DUNIT_STATIC
if (dimm_num > 0) {
if (spd_val >= static_val)
return spd_val;
else
return static_val;
} else {
return static_val;
}
#else
return spd_val;
#endif
}
/*
* Name: ddr3_get_min_val
* Desc:
* Args:
* Notes:
* Returns:
*/
u32 ddr3_get_min_val(u32 spd_val, u32 dimm_num, u32 static_val)
{
#ifdef DUNIT_STATIC
if (dimm_num > 0) {
if (spd_val <= static_val)
return spd_val;
else
return static_val;
} else
return static_val;
#else
return spd_val;
#endif
}
#endif