// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include "ddr3_init.h"
#include "mv_ddr_sys_env_lib.h"
#define DDR_INTERFACES_NUM 1
#define DDR_INTERFACE_OCTETS_NUM 5
/*
* 1. L2 filter should be set at binary header to 0xD000000,
* to avoid conflict with internal register IO.
* 2. U-Boot modifies internal registers base to 0xf100000,
* and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
*/
#define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
#define ADDRESS_FILTERING_END_REGISTER 0x8c04
#define DYNAMIC_CS_SIZE_CONFIG
#define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
/* Termal Sensor Registers */
#define TSEN_CONTROL_LSB_REG 0xE4070
#define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0
#define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
#define TSEN_CONTROL_MSB_REG 0xE4074
#define TSEN_CONTROL_MSB_RST_OFFSET 8
#define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
#define TSEN_STATUS_REG 0xe4078
#define TSEN_STATUS_READOUT_VALID_OFFSET 10
#define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \
TSEN_STATUS_READOUT_VALID_OFFSET)
#define TSEN_STATUS_TEMP_OUT_OFFSET 0
#define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
static struct dlb_config ddr3_dlb_config_table[] = {
{DLB_CTRL_REG, 0x2000005c},
{DLB_BUS_OPT_WT_REG, 0x00880000},
{DLB_AGING_REG, 0x0f7f007f},
{DLB_EVICTION_CTRL_REG, 0x0000129f},
{DLB_EVICTION_TIMERS_REG, 0x00ff0000},
{DLB_WTS_DIFF_CS_REG, 0x04030802},
{DLB_WTS_DIFF_BG_REG, 0x00000a02},
{DLB_WTS_SAME_BG_REG, 0x09000a01},
{DLB_WTS_CMDS_REG, 0x00020005},
{DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
{DLB_QUEUE_MAP_REG, 0x00000543},
{DLB_SPLIT_REG, 0x00000000},
{DLB_USER_CMD_REG, 0x00000000},
{0x0, 0x0}
};
static struct dlb_config *sys_env_dlb_config_ptr_get(void)
{
return &ddr3_dlb_config_table[0];
}
static u8 a38x_bw_per_freq[DDR_FREQ_LAST] = {
0x3, /* DDR_FREQ_100 */
0x4, /* DDR_FREQ_400 */
0x4, /* DDR_FREQ_533 */
0x5, /* DDR_FREQ_667 */
0x5, /* DDR_FREQ_800 */
0x5, /* DDR_FREQ_933 */
0x5, /* DDR_FREQ_1066 */
0x3, /* DDR_FREQ_311 */
0x3, /* DDR_FREQ_333 */
0x4, /* DDR_FREQ_467 */
0x5, /* DDR_FREQ_850 */
0x5, /* DDR_FREQ_600 */
0x3, /* DDR_FREQ_300 */
0x5, /* DDR_FREQ_900 */
0x3, /* DDR_FREQ_360 */
0x5 /* DDR_FREQ_1000 */
};
static u8 a38x_rate_per_freq[DDR_FREQ_LAST] = {
0x1, /* DDR_FREQ_100 */
0x2, /* DDR_FREQ_400 */
0x2, /* DDR_FREQ_533 */
0x2, /* DDR_FREQ_667 */
0x2, /* DDR_FREQ_800 */
0x3, /* DDR_FREQ_933 */
0x3, /* DDR_FREQ_1066 */
0x1, /* DDR_FREQ_311 */
0x1, /* DDR_FREQ_333 */
0x2, /* DDR_FREQ_467 */
0x2, /* DDR_FREQ_850 */
0x2, /* DDR_FREQ_600 */
0x1, /* DDR_FREQ_300 */
0x2, /* DDR_FREQ_900 */
0x1, /* DDR_FREQ_360 */
0x2 /* DDR_FREQ_1000 */
};
static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
666, /* 0 */
1332,
800,
1600,
1066,
2132,
1200,
2400,
1332,
1332,
1500,
1500,
1600, /* 12 */
1600,
1700,
1700,
1866,
1866,
1800, /* 18 */
2000,
2000,
4000,
2132,
2132,
2300,
2300,
2400,
2400,
2500,
2500,
800
};
static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
666, /* 0 */
1332,
800,
800, /* 0x3 */
1066,
1066, /* 0x5 */
1200,
2400,
1332,
1332,
1500, /* 10 */
1600, /* 0xB */
1600,
1600,
1700,
1560, /* 0xF */
1866,
1866,
1800,
2000,
2000, /* 20 */
4000,
2132,
2132,
2300,
2300,
2400,
2400,
2500,
2500,
1800 /* 30 - 0x1E */
};
static u32 async_mode_at_tf;
static u32 dq_bit_map_2_phy_pin[] = {
1, 0, 2, 6, 9, 8, 3, 7, /* 0 */
8, 9, 1, 7, 2, 6, 3, 0, /* 1 */
3, 9, 7, 8, 1, 0, 2, 6, /* 2 */
1, 0, 6, 2, 8, 3, 7, 9, /* 3 */
0, 1, 2, 9, 7, 8, 3, 6, /* 4 */
};
void mv_ddr_mem_scrubbing(void)
{
}
static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
enum hws_ddr_freq freq);
/*
* Read temperature TJ value
*/
static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
{
int reg = 0;
/* Initiates TSEN hardware reset once */
if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
/* set Tsen Tc Trim to correct default value (errata #132698) */
reg = reg_read(TSEN_CONTROL_LSB_REG);
reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
reg_write(TSEN_CONTROL_LSB_REG, reg);
}
mdelay(10);
/* Check if the readout field is valid */
if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
printf("%s: TSEN not ready\n", __func__);
return 0;
}
reg = reg_read(TSEN_STATUS_REG);
reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
}
/*
* Name: ddr3_tip_a38x_get_freq_config.
* Desc:
* Args:
* Notes:
* Returns: MV_OK if success, other error code if fail.
*/
static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum hws_ddr_freq freq,
struct hws_tip_freq_config_info
*freq_config_info)
{
if (a38x_bw_per_freq[freq] == 0xff)
return MV_NOT_SUPPORTED;
if (freq_config_info == NULL)
return MV_BAD_PARAM;
freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
freq_config_info->is_supported = 1;
return MV_OK;
}
static void dunit_read(u32 addr, u32 mask, u32 *data)
{
*data = reg_read(addr) & mask;
}
static void dunit_write(u32 addr, u32 mask, u32 data)
{
u32 reg_val = data;
if (mask != MASK_ALL_BITS) {
dunit_read(addr, MASK_ALL_BITS, ®_val);
reg_val &= (~mask);
reg_val |= (data & mask);
}
reg_write(addr, reg_val);
}
#define ODPG_ENABLE_REG 0x186d4
#define ODPG_EN_OFFS 0
#define ODPG_EN_MASK 0x1
#define ODPG_EN_ENA 1
#define ODPG_EN_DONE 0
#define ODPG_DIS_OFFS 8
#define ODPG_DIS_MASK 0x1
#define ODPG_DIS_DIS 1
void mv_ddr_odpg_enable(void)
{
dunit_write(ODPG_ENABLE_REG,
ODPG_EN_MASK << ODPG_EN_OFFS,
ODPG_EN_ENA << ODPG_EN_OFFS);
}
void mv_ddr_odpg_disable(void)
{
dunit_write(ODPG_ENABLE_REG,
ODPG_DIS_MASK << ODPG_DIS_OFFS,
ODPG_DIS_DIS << ODPG_DIS_OFFS);
}
void mv_ddr_odpg_done_clr(void)
{
return;
}
int mv_ddr_is_odpg_done(u32 count)
{
u32 i, data;
for (i = 0; i < count; i++) {
dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
ODPG_EN_DONE)
break;
}
if (i >= count) {
printf("%s: timeout\n", __func__);
return MV_FAIL;
}
return MV_OK;
}
void mv_ddr_training_enable(void)
{
dunit_write(GLOB_CTRL_STATUS_REG,
TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
}
#define DRAM_INIT_CTRL_STATUS_REG 0x18488
#define TRAINING_TRIGGER_OFFS 0
#define TRAINING_TRIGGER_MASK 0x1
#define TRAINING_TRIGGER_ENA 1
#define TRAINING_DONE_OFFS 1
#define TRAINING_DONE_MASK 0x1
#define TRAINING_DONE_DONE 1
#define TRAINING_DONE_NOT_DONE 0
#define TRAINING_RESULT_OFFS 2
#define TRAINING_RESULT_MASK 0x1
#define TRAINING_RESULT_PASS 0
#define TRAINING_RESULT_FAIL 1
int mv_ddr_is_training_done(u32 count, u32 *result)
{
u32 i, data;
if (result == NULL) {
printf("%s: NULL result pointer found\n", __func__);
return MV_FAIL;
}
for (i = 0; i < count; i++) {
dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
TRAINING_DONE_DONE)
break;
}
if (i >= count) {
printf("%s: timeout\n", __func__);
return MV_FAIL;
}
*result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
return MV_OK;
}
#define DM_PAD 10
u32 mv_ddr_dm_pad_get(void)
{
return DM_PAD;
}
/*
* Name: ddr3_tip_a38x_select_ddr_controller.
* Desc: Enable/Disable access to Marvell's server.
* Args: dev_num - device number
* enable - whether to enable or disable the server
* Notes:
* Returns: MV_OK if success, other error code if fail.
*/
static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
{
u32 reg;
reg = reg_read(DUAL_DUNIT_CFG_REG);
if (enable)
reg |= (1 << 6);
else
reg &= ~(1 << 6);
reg_write(DUAL_DUNIT_CFG_REG, reg);
return MV_OK;
}
static u8 ddr3_tip_clock_mode(u32 frequency)
{
if ((frequency == DDR_FREQ_LOW_FREQ) || (freq_val[frequency] <= 400))
return 1;
return 2;
}
static int mv_ddr_sar_freq_get(int dev_num, enum hws_ddr_freq *freq)
{
u32 reg, ref_clk_satr;
/* Read sample at reset setting */
reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
switch (reg) {
case 0x1:
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
reg));
/* fallthrough */
case 0x0:
*freq = DDR_FREQ_333;
break;
case 0x3:
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
reg));
/* fallthrough */
case 0x2:
*freq = DDR_FREQ_400;
break;
case 0xd:
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
reg));
/* fallthrough */
case 0x4:
*freq = DDR_FREQ_533;
break;
case 0x6:
*freq = DDR_FREQ_600;
break;
case 0x11:
case 0x14:
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
reg));
/* fallthrough */
case 0x8:
*freq = DDR_FREQ_667;
break;
case 0x15:
case 0x1b:
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
reg));
/* fallthrough */
case 0xc:
*freq = DDR_FREQ_800;
break;
case 0x10:
*freq = DDR_FREQ_933;
break;
case 0x12:
*freq = DDR_FREQ_900;
break;
case 0x13:
*freq = DDR_FREQ_933;
break;
default:
*freq = 0;
return MV_NOT_SUPPORTED;
}
} else { /* REFCLK 40MHz case */
switch (reg) {
case 0x3:
*freq = DDR_FREQ_400;
break;
case 0x5:
*freq = DDR_FREQ_533;
break;
case 0xb:
*freq = DDR_FREQ_800;
break;
case 0x1e:
*freq = DDR_FREQ_900;
break;
default:
*freq = 0;
return MV_NOT_SUPPORTED;
}
}
return MV_OK;
}
static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum hws_ddr_freq *freq)
{
u32 reg, ref_clk_satr;
/* Read sample at reset setting */
reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
switch (reg) {
case 0x0:
case 0x1:
/* Medium is same as TF to run PBS in this freq */
*freq = DDR_FREQ_333;
break;
case 0x2:
case 0x3:
/* Medium is same as TF to run PBS in this freq */
*freq = DDR_FREQ_400;
break;
case 0x4:
case 0xd:
/* Medium is same as TF to run PBS in this freq */
*freq = DDR_FREQ_533;
break;
case 0x8:
case 0x10:
case 0x11:
case 0x14:
*freq = DDR_FREQ_333;
break;
case 0xc:
case 0x15:
case 0x1b:
*freq = DDR_FREQ_400;
break;
case 0x6:
*freq = DDR_FREQ_300;
break;
case 0x12:
*freq = DDR_FREQ_360;
break;
case 0x13:
*freq = DDR_FREQ_400;
break;
default:
*freq = 0;
return MV_NOT_SUPPORTED;
}
} else { /* REFCLK 40MHz case */
switch (reg) {
case 0x3:
/* Medium is same as TF to run PBS in this freq */
*freq = DDR_FREQ_400;
break;
case 0x5:
/* Medium is same as TF to run PBS in this freq */
*freq = DDR_FREQ_533;
break;
case 0xb:
*freq = DDR_FREQ_400;
break;
case 0x1e:
*freq = DDR_FREQ_360;
break;
default:
*freq = 0;
return MV_NOT_SUPPORTED;
}
}
return MV_OK;
}
static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
{
#if defined(CONFIG_ARMADA_39X)
info_ptr->device_id = 0x6900;
#else
info_ptr->device_id = 0x6800;
#endif
info_ptr->ck_delay = ck_delay;
return MV_OK;
}
/* check indirect access to phy register file completed */
static int is_prfa_done(void)
{
u32 reg_val;
u32 iter = 0;
do {
if (iter++ > MAX_POLLING_ITERATIONS) {
printf("error: %s: polling timeout\n", __func__);
return MV_FAIL;
}
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
reg_val >>= PRFA_REQ_OFFS;
reg_val &= PRFA_REQ_MASK;
} while (reg_val == PRFA_REQ_ENA); /* request pending */
return MV_OK;
}
/* write to phy register thru indirect access */
static int prfa_write(enum hws_access_type phy_access, u32 phy,
enum hws_ddr_phy phy_type, u32 addr,
u32 data, enum hws_operation op_type)
{
u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
(((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
/* polling for prfa request completion */
if (is_prfa_done() != MV_OK)
return MV_FAIL;
return MV_OK;
}
/* read from phy register thru indirect access */
static int prfa_read(enum hws_access_type phy_access, u32 phy,
enum hws_ddr_phy phy_type, u32 addr, u32 *data)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
u32 i, reg_val;
if (phy_access == ACCESS_TYPE_MULTICAST) {
for (i = 0; i < max_phy; i++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
return MV_FAIL;
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
}
} else {
if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
return MV_FAIL;
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
*data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
}
return MV_OK;
}
static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
{
struct hws_tip_config_func_db config_func;
/* new read leveling version */
config_func.mv_ddr_dunit_read = dunit_read;
config_func.mv_ddr_dunit_write = dunit_write;
config_func.tip_dunit_mux_select_func =
ddr3_tip_a38x_select_ddr_controller;
config_func.tip_get_freq_config_info_func =
ddr3_tip_a38x_get_freq_config;
config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
config_func.tip_external_read = ddr3_tip_ext_read;
config_func.tip_external_write = ddr3_tip_ext_write;
config_func.mv_ddr_phy_read = prfa_read;
config_func.mv_ddr_phy_write = prfa_write;
ddr3_tip_init_config_func(dev_num, &config_func);
ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
/* set device attributes*/
ddr3_tip_dev_attr_init(dev_num);
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
#ifdef CONFIG_ARMADA_39X
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 1);
#else
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
#endif
ca_delay = 0;
delay_enable = 1;
dfs_low_freq = DFS_LOW_FREQ_VALUE;
calibration_update_control = 1;
ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
return MV_OK;
}
static int mv_ddr_training_mask_set(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum hws_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
LOAD_PATTERN_MASK_BIT |
SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
WRITE_LEVELING_SUPP_MASK_BIT |
READ_LEVELING_MASK_BIT |
PBS_RX_MASK_BIT |
PBS_TX_MASK_BIT |
SET_TARGET_FREQ_MASK_BIT |
WRITE_LEVELING_TF_MASK_BIT |
WRITE_LEVELING_SUPP_TF_MASK_BIT |
READ_LEVELING_TF_MASK_BIT |
CENTRALIZATION_RX_MASK_BIT |
CENTRALIZATION_TX_MASK_BIT);
rl_mid_freq_wa = 1;
if ((ddr_freq == DDR_FREQ_333) || (ddr_freq == DDR_FREQ_400)) {
mask_tune_func = (WRITE_LEVELING_MASK_BIT |
LOAD_PATTERN_2_MASK_BIT |
WRITE_LEVELING_SUPP_MASK_BIT |
READ_LEVELING_MASK_BIT |
PBS_RX_MASK_BIT |
PBS_TX_MASK_BIT |
CENTRALIZATION_RX_MASK_BIT |
CENTRALIZATION_TX_MASK_BIT);
rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
}
/* Supplementary not supported for ECC modes */
if (1 == ddr3_if_ecc_enabled()) {
mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
mask_tune_func &= ~PBS_TX_MASK_BIT;
mask_tune_func &= ~PBS_RX_MASK_BIT;
}
return MV_OK;
}
/* function: mv_ddr_set_calib_controller
* this function sets the controller which will control
* the calibration cycle in the end of the training.
* 1 - internal controller
* 2 - external controller
*/
void mv_ddr_set_calib_controller(void)
{
calibration_update_control = CAL_UPDATE_CTRL_INT;
}
static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
enum hws_ddr_freq frequency)
{
u32 divider = 0;
u32 sar_val, ref_clk_satr;
u32 async_val;
if (if_id != 0) {
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
("A38x does not support interface 0x%x\n",
if_id));
return MV_BAD_PARAM;
}
/* get VCO freq index */
sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq_val[frequency];
else
divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq_val[frequency];
if ((async_mode_at_tf == 1) && (freq_val[frequency] > 400)) {
/* Set async mode */
dunit_write(0x20220, 0x1000, 0x1000);
dunit_write(0xe42f4, 0x200, 0x200);
/* Wait for async mode setup */
mdelay(5);
/* Set KNL values */
switch (frequency) {
#ifdef CONFIG_DDR3
case DDR_FREQ_467:
async_val = 0x806f012;
break;
case DDR_FREQ_533:
async_val = 0x807f012;
break;
case DDR_FREQ_600:
async_val = 0x805f00a;
break;
#endif
case DDR_FREQ_667:
async_val = 0x809f012;
break;
case DDR_FREQ_800:
async_val = 0x807f00a;
break;
#ifdef CONFIG_DDR3
case DDR_FREQ_850:
async_val = 0x80cb012;
break;
#endif
case DDR_FREQ_900:
async_val = 0x80d7012;
break;
case DDR_FREQ_933:
async_val = 0x80df012;
break;
case DDR_FREQ_1000:
async_val = 0x80ef012;
break;
case DDR_FREQ_1066:
async_val = 0x80ff012;
break;
default:
/* set DDR_FREQ_667 as default */
async_val = 0x809f012;
}
dunit_write(0xe42f0, 0xffffffff, async_val);
} else {
/* Set sync mode */
dunit_write(0x20220, 0x1000, 0x0);
dunit_write(0xe42f4, 0x200, 0x0);
/* cpupll_clkdiv_reset_mask */
dunit_write(0xe4264, 0xff, 0x1f);
/* cpupll_clkdiv_reload_smooth */
dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
/* cpupll_clkdiv_relax_en */
dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
/* write the divider */
dunit_write(0xe4268, (0x3f << 8), (divider << 8));
/* set cpupll_clkdiv_reload_ratio */
dunit_write(0xe4264, (1 << 8), (1 << 8));
/* undet cpupll_clkdiv_reload_ratio */
dunit_write(0xe4264, (1 << 8), 0x0);
/* clear cpupll_clkdiv_reload_force */
dunit_write(0xe4260, (0xff << 8), 0x0);
/* clear cpupll_clkdiv_relax_en */
dunit_write(0xe4260, (0xff << 24), 0x0);
/* clear cpupll_clkdiv_reset_mask */
dunit_write(0xe4264, 0xff, 0x0);
}
/* Dunit training clock + 1:1/2:1 mode */
dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
return MV_OK;
}
/*
* external read from memory
*/
int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
u32 num_of_bursts, u32 *data)
{
u32 burst_num;
for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
data[burst_num] = readl(reg_addr + 4 * burst_num);
return MV_OK;
}
/*
* external write to memory
*/
int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
u32 num_of_bursts, u32 *data) {
u32 burst_num;
for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
writel(data[burst_num], reg_addr + 4 * burst_num);
return MV_OK;
}
int mv_ddr_early_init(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* FIXME: change this configuration per ddr type
* configure a380 and a390 to work with receiver odt timing
* the odt_config is defined:
* '1' in ddr4
* '0' in ddr3
* here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
* to configure the odt to work with timing restrictions
*/
mv_ddr_sw_db_init(0, 0);
if (tm->interface_params[0].memory_freq != DDR_FREQ_SAR)
async_mode_at_tf = 1;
return MV_OK;
}
int mv_ddr_early_init2(void)
{
mv_ddr_training_mask_set();
return MV_OK;
}
int mv_ddr_pre_training_fixup(void)
{
return 0;
}
int mv_ddr_post_training_fixup(void)
{
return 0;
}
int ddr3_post_run_alg(void)
{
return MV_OK;
}
int ddr3_silicon_post_init(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Set half bus width */
if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0x0, 0x8000));
}
return MV_OK;
}
u32 mv_ddr_init_freq_get(void)
{
enum hws_ddr_freq freq;
mv_ddr_sar_freq_get(0, &freq);
return freq;
}
static u32 ddr3_get_bus_width(void)
{
u32 bus_width;
bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
BUS_IN_USE_OFFS;
return (bus_width == 0) ? 16 : 32;
}
static u32 ddr3_get_device_width(u32 cs)
{
u32 device_width;
device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
(CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
CS_STRUCT_OFFS(cs);
return (device_width == 0) ? 8 : 16;
}
static u32 ddr3_get_device_size(u32 cs)
{
u32 device_size_low, device_size_high, device_size;
u32 data, cs_low_offset, cs_high_offset;
cs_low_offset = CS_SIZE_OFFS(cs);
cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
data = reg_read(SDRAM_ADDR_CTRL_REG);
device_size_low = (data >> cs_low_offset) & 0x3;
device_size_high = (data >> cs_high_offset) & 0x1;
device_size = device_size_low | (device_size_high << 2);
switch (device_size) {
case 0:
return 2048;
case 2:
return 512;
case 3:
return 1024;
case 4:
return 4096;
case 5:
return 8192;
case 1:
default:
DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
/* zeroes mem size in ddr3_calc_mem_cs_size */
return 0;
}
}
int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
{
u32 cs_mem_size;
/* Calculate in MiB */
cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
ddr3_get_device_size(cs)) / 8;
/*
* Multiple controller bus width, 2x for 64 bit
* (SoC controller may be 32 or 64 bit,
* so bit 15 in 0x1400, that means if whole bus used or only half,
* have a differnt meaning
*/
cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
return MV_BAD_VALUE;
}
*cs_size = cs_mem_size << 20; /* write cs size in bytes */
return MV_OK;
}
static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
{
u32 reg, cs;
uint64_t mem_total_size = 0;
uint64_t cs_mem_size = 0;
uint64_t mem_total_size_c, cs_mem_size_c;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
u32 physical_mem_size;
u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
#endif
/* Open fast path windows */
for (cs = 0; cs < MAX_CS_NUM; cs++) {
if (cs_ena & (1 << cs)) {
/* get CS size */
if (ddr3_calc_mem_cs_size(cs, &cs_mem_size) != MV_OK)
return MV_FAIL;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
/*
* if number of address pins doesn't allow to use max
* mem size that is defined in topology
* mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
*/
physical_mem_size = mem_size
[tm->interface_params[0].memory_size];
if (ddr3_get_device_width(cs) == 16) {
/*
* 16bit mem device can be twice more - no need
* in less significant pin
*/
max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
}
if (physical_mem_size > max_mem_size) {
cs_mem_size = max_mem_size *
(ddr3_get_bus_width() /
ddr3_get_device_width(cs));
printf("Updated Physical Mem size is from 0x%x to %x\n",
physical_mem_size,
DEVICE_MAX_DRAM_ADDRESS_SIZE);
}
#endif
/* set fast path window control for the cs */
reg = 0xffffe1;
reg |= (cs << 2);
reg |= (cs_mem_size - 1) & 0xffff0000;
/*Open fast path Window */
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
/* Set fast path window base address for the cs */
reg = ((cs_mem_size) * cs) & 0xffff0000;
/* Set base address */
reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
/*
* Since memory size may be bigger than 4G the summ may
* be more than 32 bit word,
* so to estimate the result divide mem_total_size and
* cs_mem_size by 0x10000 (it is equal to >> 16)
*/
mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
/* if the sum less than 2 G - calculate the value */
if (mem_total_size_c + cs_mem_size_c < 0x10000)
mem_total_size += cs_mem_size;
else /* put max possible size */
mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
}
}
/* Set L2 filtering to Max Memory size */
reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
return MV_OK;
}
static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
{
u32 win_ctrl_reg, num_of_win_regs;
u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
u32 ui;
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
num_of_win_regs = 16;
/* Return XBAR windows 4-7 or 16-19 init configuration */
for (ui = 0; ui < num_of_win_regs; ui++)
reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
ddr_type);
#if defined DYNAMIC_CS_SIZE_CONFIG
if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
#else
u32 reg, cs;
reg = 0x1fffffe1;
for (cs = 0; cs < MAX_CS_NUM; cs++) {
if (cs_ena & (1 << cs)) {
reg |= (cs << 2);
break;
}
}
/* Open fast path Window to - 0.5G */
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
#endif
return MV_OK;
}
static int ddr3_save_and_set_training_windows(u32 *win)
{
u32 cs_ena;
u32 reg, tmp_count, cs, ui;
u32 win_ctrl_reg, win_base_reg, win_remap_reg;
u32 num_of_win_regs, win_jump_index;
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
win_jump_index = 0x10;
num_of_win_regs = 16;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
#ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
/*
* Disable L2 filtering during DDR training
* (when Cross Bar window is open)
*/
reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
#endif
cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
/* Close XBAR Window 19 - Not needed */
/* {0x000200e8} - Open Mbus Window - 2G */
reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
/* Save XBAR Windows 4-19 init configurations */
for (ui = 0; ui < num_of_win_regs; ui++)
win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
/* Open XBAR Windows 4-7 or 16-19 for other CS */
reg = 0;
tmp_count = 0;
for (cs = 0; cs < MAX_CS_NUM; cs++) {
if (cs_ena & (1 << cs)) {
switch (cs) {
case 0:
reg = 0x0e00;
break;
case 1:
reg = 0x0d00;
break;
case 2:
reg = 0x0b00;
break;
case 3:
reg = 0x0700;
break;
}
reg |= (1 << 0);
reg |= (SDRAM_CS_SIZE & 0xffff0000);
reg_write(win_ctrl_reg + win_jump_index * tmp_count,
reg);
reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
0xffff0000);
reg_write(win_base_reg + win_jump_index * tmp_count,
reg);
if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
reg_write(win_remap_reg +
win_jump_index * tmp_count, 0);
tmp_count++;
}
}
return MV_OK;
}
static u32 win[16];
int mv_ddr_pre_training_soc_config(const char *ddr_type)
{
u32 soc_num;
u32 reg_val;
/* Switching CPU to MRVL ID */
soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
SAR1_CPU_CORE_OFFSET;
switch (soc_num) {
case 0x3:
reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
/* fallthrough */
case 0x1:
reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
/* fallthrough */
case 0x0:
reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
/* fallthrough */
default:
break;
}
/*
* Set DRAM Reset Mask in case detected GPIO indication of wakeup from
* suspend i.e the DRAM values will not be overwritten / reset when
* waking from suspend
*/
if (mv_ddr_sys_env_suspend_wakeup_check() ==
SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
reg_bit_set(SDRAM_INIT_CTRL_REG,
DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
}
/* Check if DRAM is already initialized */
if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
(1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
return MV_OK;
}
/* Fix read ready phases for all SOC in reg 0x15c8 */
reg_val = reg_read(TRAINING_DBG_3_REG);
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */
reg_write(TRAINING_DBG_3_REG, reg_val);
/*
* Axi_bresp_mode[8] = Compliant,
* Axi_addr_decode_cntrl[11] = Internal,
* Axi_data_bus_width[0] = 128bit
* */
/* 0x14a8 - AXI Control Register */
reg_write(AXI_CTRL_REG, 0);
/*
* Stage 2 - Training Values Setup
*/
/* Set X-BAR windows for the training sequence */
ddr3_save_and_set_training_windows(win);
return MV_OK;
}
static int ddr3_new_tip_dlb_config(void)
{
u32 reg, i = 0;
struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
/* Write the configuration */
while (config_table_ptr[i].reg_addr != 0) {
reg_write(config_table_ptr[i].reg_addr,
config_table_ptr[i].reg_data);
i++;
}
/* Enable DLB */
reg = reg_read(DLB_CTRL_REG);
reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
(WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
(AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
(MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
(PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
reg_write(DLB_CTRL_REG, reg);
return MV_OK;
}
int mv_ddr_post_training_soc_config(const char *ddr_type)
{
u32 reg_val;
/* Restore and set windows */
ddr3_restore_and_set_final_windows(win, ddr_type);
/* Update DRAM init indication in bootROM register */
reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
reg_write(REG_BOOTROM_ROUTINE_ADDR,
reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
/* DLB config */
ddr3_new_tip_dlb_config();
return MV_OK;
}
void mv_ddr_mc_config(void)
{
/* Memory controller initializations */
struct init_cntr_param init_param;
int status;
init_param.do_mrs_phy = 1;
init_param.is_ctrl64_bit = 0;
init_param.init_phy = 1;
init_param.msys_init = 1;
status = hws_ddr3_tip_init_controller(0, &init_param);
if (status != MV_OK)
printf("DDR3 init controller - FAILED 0x%x\n", status);
status = mv_ddr_mc_init();
if (status != MV_OK)
printf("DDR3 init_sequence - FAILED 0x%x\n", status);
}
/* function: mv_ddr_mc_init
* this function enables the dunit after init controller configuration
*/
int mv_ddr_mc_init(void)
{
CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
return MV_OK;
}
/* function: ddr3_tip_configure_phy
* configures phy and electrical parameters
*/
int ddr3_tip_configure_phy(u32 dev_num)
{
u32 if_id, phy_id;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
PAD_ZRI_CAL_PHY_REG,
((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
PAD_ZRI_CAL_PHY_REG,
((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
PAD_ODT_CAL_PHY_REG,
((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
PAD_ODT_CAL_PHY_REG,
((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
PAD_PRE_DISABLE_PHY_REG, 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
CMOS_CONFIG_PHY_REG, 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
CMOS_CONFIG_PHY_REG, 0));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
/* check if the interface is enabled */
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (phy_id = 0;
phy_id < octets_per_if_num;
phy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
/* Vref & clamp */
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, phy_id, DDR_PHY_DATA,
PAD_CFG_PHY_REG,
((clamp_tbl[if_id] << 4) | vref_init_val),
((0x7 << 4) | 0x7)));
/* clamp not relevant for control */
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, phy_id, DDR_PHY_CONTROL,
PAD_CFG_PHY_REG, 0x4, 0x7));
}
}
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
MV_DDR_PHY_EDGE_POSITIVE)
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, 0x90, 0x6002));
return MV_OK;
}
int mv_ddr_manual_cal_do(void)
{
return 0;
}