C++程序  |  1987行  |  64.23 KB

// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) Marvell International Ltd. and its affiliates
 */

#include "ddr3_init.h"

#define WL_ITERATION_NUM	10

static u32 pup_mask_table[] = {
	0x000000ff,
	0x0000ff00,
	0x00ff0000,
	0xff000000
};

static struct write_supp_result wr_supp_res[MAX_INTERFACE_NUM][MAX_BUS_NUM];

static int ddr3_tip_dynamic_write_leveling_seq(u32 dev_num);
static int ddr3_tip_dynamic_read_leveling_seq(u32 dev_num);
static int ddr3_tip_dynamic_per_bit_read_leveling_seq(u32 dev_num);
static int ddr3_tip_wl_supp_align_phase_shift(u32 dev_num, u32 if_id,
					      u32 bus_id);
static int ddr3_tip_xsb_compare_test(u32 dev_num, u32 if_id, u32 bus_id,
				     u32 edge_offset);

u32 ddr3_tip_max_cs_get(u32 dev_num)
{
	u32 c_cs, if_id, bus_id;
	static u32 max_cs;
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);

	if (!max_cs) {
		CHECK_STATUS(ddr3_tip_get_first_active_if((u8)dev_num,
							  tm->if_act_mask,
							  &if_id));
		for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
			break;
		}

		for (c_cs = 0; c_cs < NUM_OF_CS; c_cs++) {
			VALIDATE_ACTIVE(tm->
					interface_params[if_id].as_bus_params[bus_id].
					cs_bitmask, c_cs);
			max_cs++;
		}
	}

	return max_cs;
}

enum {
	PASS,
	FAIL
};
/*****************************************************************************
Dynamic read leveling
******************************************************************************/
int ddr3_tip_dynamic_read_leveling(u32 dev_num, u32 freq)
{
	u32 data, mask;
	u32 max_cs = ddr3_tip_max_cs_get(dev_num);
	u32 bus_num, if_id, cl_val;
	enum hws_speed_bin speed_bin_index;
	/* save current CS value */
	u32 cs_enable_reg_val[MAX_INTERFACE_NUM] = { 0 };
	int is_any_pup_fail = 0;
	u32 data_read[MAX_INTERFACE_NUM + 1] = { 0 };
	u8 rl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM];
	struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
	u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	for (effective_cs = 0; effective_cs < NUM_OF_CS; effective_cs++)
		for (bus_num = 0; bus_num < MAX_BUS_NUM; bus_num++)
			for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++)
				rl_values[effective_cs][bus_num][if_id] = 0;

	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			training_result[training_stage][if_id] = TEST_SUCCESS;

			/* save current cs enable reg val */
			CHECK_STATUS(ddr3_tip_if_read
				     (dev_num, ACCESS_TYPE_UNICAST, if_id,
				      DUAL_DUNIT_CFG_REG, cs_enable_reg_val,
				      MASK_ALL_BITS));
			/* enable single cs */
			CHECK_STATUS(ddr3_tip_if_write
				     (dev_num, ACCESS_TYPE_UNICAST, if_id,
				      DUAL_DUNIT_CFG_REG, (1 << 3), (1 << 3)));
		}

		ddr3_tip_reset_fifo_ptr(dev_num);

		/*
		 *     Phase 1: Load pattern (using ODPG)
		 *
		 * enter Read Leveling mode
		 * only 27 bits are masked
		 * assuming non multi-CS configuration
		 * write to CS = 0 for the non multi CS configuration, note
		 * that the results shall be read back to the required CS !!!
		 */

		/* BUS count is 0 shifted 26 */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      ODPG_DATA_CTRL_REG, 0x3, 0x3));
		CHECK_STATUS(ddr3_tip_configure_odpg
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0,
			      pattern_table[PATTERN_RL].num_of_phases_tx, 0,
			      pattern_table[PATTERN_RL].num_of_phases_rx, 0, 0,
			      effective_cs, STRESS_NONE, DURATION_SINGLE));

		/* load pattern to ODPG */
		ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
					      PARAM_NOT_CARE, PATTERN_RL,
					      pattern_table[PATTERN_RL].
					      start_addr);

		/*
		 *     Phase 2: ODPG to Read Leveling mode
		 */

		/* General Training Opcode register */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      ODPG_WR_RD_MODE_ENA_REG, 0,
			      MASK_ALL_BITS));

		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      GENERAL_TRAINING_OPCODE_REG,
			      (0x301b01 | effective_cs << 2), 0x3c3fef));

		/* Object1 opcode register 0 & 1 */
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			speed_bin_index =
				tm->interface_params[if_id].speed_bin_index;
			cl_val =
				cas_latency_table[speed_bin_index].cl_val[freq];
			data = (cl_val << 17) | (0x3 << 25);
			mask = (0xff << 9) | (0x1f << 17) | (0x3 << 25);
			CHECK_STATUS(ddr3_tip_if_write
				     (dev_num, ACCESS_TYPE_UNICAST, if_id,
				      OPCODE_REG0_REG(1), data, mask));
		}

		/* Set iteration count to max value */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      OPCODE_REG1_REG(1), 0xd00, 0xd00));

		/*
		 *     Phase 2: Mask config
		 */

		ddr3_tip_dynamic_read_leveling_seq(dev_num);

		/*
		 *     Phase 3: Read Leveling execution
		 */

		/* temporary jira dunit=14751 */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_DBG_1_REG, 0, (u32)(1 << 31)));
		/* configure phy reset value */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_DBG_3_REG, (0x7f << 24),
			      (u32)(0xff << 24)));
		/* data pup rd reset enable  */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      SDRAM_CFG_REG, 0, (1 << 30)));
		/* data pup rd reset disable */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      SDRAM_CFG_REG, (1 << 30), (1 << 30)));
		/* training SW override & training RL mode */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_SW_2_REG, 0x1, 0x9));
		/* training enable */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_REG, (1 << 24) | (1 << 20),
			      (1 << 24) | (1 << 20)));
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_REG, (u32)(1 << 31), (u32)(1 << 31)));

		/* trigger training */
		mv_ddr_training_enable();

		/* check for training done */
		if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, &data) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("training done failed\n"));
			return MV_FAIL;
		}
		/* check for training pass */
		if (data != PASS)
			DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("training result failed\n"));

		/* disable odpg; switch back to functional mode */
		mv_ddr_odpg_disable();

		if (mv_ddr_is_odpg_done(MAX_POLLING_ITERATIONS) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("odpg disable failed\n"));
			return MV_FAIL;
		}

		ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
				  ODPG_DATA_CTRL_REG, 0, MASK_ALL_BITS);

		/* double loop on bus, pup */
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			/* check training done */
			is_any_pup_fail = 0;
			for (bus_num = 0;
			     bus_num < octets_per_if_num;
			     bus_num++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
				if (ddr3_tip_if_polling
				    (dev_num, ACCESS_TYPE_UNICAST,
				     if_id, (1 << 25), (1 << 25),
				     mask_results_pup_reg_map[bus_num],
				     MAX_POLLING_ITERATIONS) != MV_OK) {
					DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
						       ("\n_r_l: DDR3 poll failed(2) for IF %d CS %d bus %d",
							if_id, effective_cs, bus_num));
					is_any_pup_fail = 1;
				} else {
					/* read result per pup */
					CHECK_STATUS(ddr3_tip_if_read
						     (dev_num,
						      ACCESS_TYPE_UNICAST,
						      if_id,
						      mask_results_pup_reg_map
						      [bus_num], data_read,
						      0xff));
					rl_values[effective_cs][bus_num]
						[if_id] = (u8)data_read[if_id];
				}
			}

			if (is_any_pup_fail == 1) {
				training_result[training_stage][if_id] =
					TEST_FAILED;
				if (debug_mode == 0)
					return MV_FAIL;
			}
		}

		DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("RL exit read leveling\n"));

		/*
		 *     Phase 3: Exit Read Leveling
		 */

		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_SW_2_REG, (1 << 3), (1 << 3)));
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_SW_1_REG, (1 << 16), (1 << 16)));
		/* set ODPG to functional */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));

		/*
		 * Copy the result from the effective CS search to the
		 * real Functional CS
		 */
		/*ddr3_tip_write_cs_result(dev_num, RL_PHY_REG(0); */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));
	}

	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		/* double loop on bus, pup */
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			for (bus_num = 0;
			     bus_num < octets_per_if_num;
			     bus_num++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
				/* read result per pup from arry */
				data = rl_values[effective_cs][bus_num][if_id];
				data = (data & 0x1f) |
					(((data & 0xe0) >> 5) << 6);
				ddr3_tip_bus_write(dev_num,
						   ACCESS_TYPE_UNICAST,
						   if_id,
						   ACCESS_TYPE_UNICAST,
						   bus_num, DDR_PHY_DATA,
						   RL_PHY_REG(effective_cs),
						   data);
			}
		}
	}
	/* Set to 0 after each loop to avoid illegal value may be used */
	effective_cs = 0;

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		/* restore cs enable value */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      DUAL_DUNIT_CFG_REG, cs_enable_reg_val[if_id],
			      MASK_ALL_BITS));
		if (odt_config != 0) {
			CHECK_STATUS(ddr3_tip_write_additional_odt_setting
				     (dev_num, if_id));
		}
	}

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (training_result[training_stage][if_id] == TEST_FAILED)
			return MV_FAIL;
	}

	return MV_OK;
}

/*
 * Legacy Dynamic write leveling
 */
int ddr3_tip_legacy_dynamic_write_leveling(u32 dev_num)
{
	u32 c_cs, if_id, cs_mask = 0;
	u32 max_cs = ddr3_tip_max_cs_get(dev_num);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	/*
	 * In TRAINIUNG reg (0x15b0) write 0x80000008 | cs_mask:
	 * Trn_start
	 * cs_mask = 0x1 <<20 Trn_CS0 - CS0 is included in the DDR3 training
	 * cs_mask = 0x1 <<21 Trn_CS1 - CS1 is included in the DDR3 training
	 * cs_mask = 0x1 <<22 Trn_CS2 - CS2 is included in the DDR3 training
	 * cs_mask = 0x1 <<23 Trn_CS3 - CS3 is included in the DDR3 training
	 * Trn_auto_seq =  write leveling
	 */
	for (c_cs = 0; c_cs < max_cs; c_cs++)
		cs_mask = cs_mask | 1 << (20 + c_cs);

	for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, 0,
			      TRAINING_REG, (0x80000008 | cs_mask),
			      0xffffffff));
		mdelay(20);
		if (ddr3_tip_if_polling
		    (dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
		     (u32)0x80000000, TRAINING_REG,
		     MAX_POLLING_ITERATIONS) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
				       ("polling failed for Old WL result\n"));
			return MV_FAIL;
		}
	}

	return MV_OK;
}

/*
 * Legacy Dynamic read leveling
 */
int ddr3_tip_legacy_dynamic_read_leveling(u32 dev_num)
{
	u32 c_cs, if_id, cs_mask = 0;
	u32 max_cs = ddr3_tip_max_cs_get(dev_num);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	/*
	 * In TRAINIUNG reg (0x15b0) write 0x80000040 | cs_mask:
	 * Trn_start
	 * cs_mask = 0x1 <<20 Trn_CS0 - CS0 is included in the DDR3 training
	 * cs_mask = 0x1 <<21 Trn_CS1 - CS1 is included in the DDR3 training
	 * cs_mask = 0x1 <<22 Trn_CS2 - CS2 is included in the DDR3 training
	 * cs_mask = 0x1 <<23 Trn_CS3 - CS3 is included in the DDR3 training
	 * Trn_auto_seq =  Read Leveling using training pattern
	 */
	for (c_cs = 0; c_cs < max_cs; c_cs++)
		cs_mask = cs_mask | 1 << (20 + c_cs);

	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, 0, TRAINING_REG,
		      (0x80000040 | cs_mask), 0xffffffff));
	mdelay(100);

	for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (ddr3_tip_if_polling
		    (dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
		     (u32)0x80000000, TRAINING_REG,
		     MAX_POLLING_ITERATIONS) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
				       ("polling failed for Old RL result\n"));
			return MV_FAIL;
		}
	}

	return MV_OK;
}

/*
 * Dynamic per bit read leveling
 */
int ddr3_tip_dynamic_per_bit_read_leveling(u32 dev_num, u32 freq)
{
	u32 data, mask;
	u32 bus_num, if_id, cl_val, bit_num;
	u32 curr_numb, curr_min_delay;
	int adll_array[3] = { 0, -0xa, 0x14 };
	u32 phyreg3_arr[MAX_INTERFACE_NUM][MAX_BUS_NUM];
	enum hws_speed_bin speed_bin_index;
	int is_any_pup_fail = 0;
	int break_loop = 0;
	u32 cs_enable_reg_val[MAX_INTERFACE_NUM]; /* save current CS value */
	u32 data_read[MAX_INTERFACE_NUM];
	int per_bit_rl_pup_status[MAX_INTERFACE_NUM][MAX_BUS_NUM];
	u32 data2_write[MAX_INTERFACE_NUM][MAX_BUS_NUM];
	struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
	u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		for (bus_num = 0;
		     bus_num <= octets_per_if_num; bus_num++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
			per_bit_rl_pup_status[if_id][bus_num] = 0;
			data2_write[if_id][bus_num] = 0;
			/* read current value of phy register 0x3 */
			CHECK_STATUS(ddr3_tip_bus_read
				     (dev_num, if_id, ACCESS_TYPE_UNICAST,
				      bus_num, DDR_PHY_DATA,
				      CRX_PHY_REG(0),
				      &phyreg3_arr[if_id][bus_num]));
		}
	}

	/* NEW RL machine */
	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		training_result[training_stage][if_id] = TEST_SUCCESS;

		/* save current cs enable reg val */
		CHECK_STATUS(ddr3_tip_if_read
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      DUAL_DUNIT_CFG_REG, &cs_enable_reg_val[if_id],
			      MASK_ALL_BITS));
		/* enable single cs */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      DUAL_DUNIT_CFG_REG, (1 << 3), (1 << 3)));
	}

	ddr3_tip_reset_fifo_ptr(dev_num);
	for (curr_numb = 0; curr_numb < 3; curr_numb++) {
		/*
		 *     Phase 1: Load pattern (using ODPG)
		 *
		 * enter Read Leveling mode
		 * only 27 bits are masked
		 * assuming non multi-CS configuration
		 * write to CS = 0 for the non multi CS configuration, note that
		 * the results shall be read back to the required CS !!!
		 */

		/* BUS count is 0 shifted 26 */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      ODPG_DATA_CTRL_REG, 0x3, 0x3));
		CHECK_STATUS(ddr3_tip_configure_odpg
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0,
			      pattern_table[PATTERN_TEST].num_of_phases_tx, 0,
			      pattern_table[PATTERN_TEST].num_of_phases_rx, 0,
			      0, 0, STRESS_NONE, DURATION_SINGLE));

		/* load pattern to ODPG */
		ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
					      PARAM_NOT_CARE, PATTERN_TEST,
					      pattern_table[PATTERN_TEST].
					      start_addr);

		/*
		 *     Phase 2: ODPG to Read Leveling mode
		 */

		/* General Training Opcode register */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      ODPG_WR_RD_MODE_ENA_REG, 0,
			      MASK_ALL_BITS));
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      GENERAL_TRAINING_OPCODE_REG, 0x301b01, 0x3c3fef));

		/* Object1 opcode register 0 & 1 */
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			speed_bin_index =
				tm->interface_params[if_id].speed_bin_index;
			cl_val =
				cas_latency_table[speed_bin_index].cl_val[freq];
			data = (cl_val << 17) | (0x3 << 25);
			mask = (0xff << 9) | (0x1f << 17) | (0x3 << 25);
			CHECK_STATUS(ddr3_tip_if_write
				     (dev_num, ACCESS_TYPE_UNICAST, if_id,
				      OPCODE_REG0_REG(1), data, mask));
		}

		/* Set iteration count to max value */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      OPCODE_REG1_REG(1), 0xd00, 0xd00));

		/*
		 *     Phase 2: Mask config
		 */

		ddr3_tip_dynamic_per_bit_read_leveling_seq(dev_num);

		/*
		 *     Phase 3: Read Leveling execution
		 */

		/* temporary jira dunit=14751 */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_DBG_1_REG, 0, (u32)(1 << 31)));
		/* configure phy reset value */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_DBG_3_REG, (0x7f << 24),
			      (u32)(0xff << 24)));
		/* data pup rd reset enable  */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      SDRAM_CFG_REG, 0, (1 << 30)));
		/* data pup rd reset disable */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      SDRAM_CFG_REG, (1 << 30), (1 << 30)));
		/* training SW override & training RL mode */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_SW_2_REG, 0x1, 0x9));
		/* training enable */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_REG, (1 << 24) | (1 << 20),
			      (1 << 24) | (1 << 20)));
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_REG, (u32)(1 << 31), (u32)(1 << 31)));

		/* trigger training */
		mv_ddr_training_enable();

		/* check for training done */
		if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, &data) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("training done failed\n"));
			return MV_FAIL;
		}
		/* check for training pass */
		if (data != PASS)
			DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("training result failed\n"));

		/* disable odpg; switch back to functional mode */
		mv_ddr_odpg_disable();

		if (mv_ddr_is_odpg_done(MAX_POLLING_ITERATIONS) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("odpg disable failed\n"));
			return MV_FAIL;
		}

		ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
				  ODPG_DATA_CTRL_REG, 0, MASK_ALL_BITS);

		/* double loop on bus, pup */
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			/* check training done */
			for (bus_num = 0;
			     bus_num < octets_per_if_num;
			     bus_num++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);

				if (per_bit_rl_pup_status[if_id][bus_num]
				    == 0) {
					curr_min_delay = 0;
					for (bit_num = 0; bit_num < 8;
					     bit_num++) {
						if (ddr3_tip_if_polling
						    (dev_num,
						     ACCESS_TYPE_UNICAST,
						     if_id, (1 << 25),
						     (1 << 25),
						     mask_results_dq_reg_map
						     [bus_num * 8 + bit_num],
						     MAX_POLLING_ITERATIONS) !=
						    MV_OK) {
							DEBUG_LEVELING
								(DEBUG_LEVEL_ERROR,
								 ("\n_r_l: DDR3 poll failed(2) for bus %d bit %d\n",
								  bus_num,
								  bit_num));
						} else {
							/* read result per pup */
							CHECK_STATUS
								(ddr3_tip_if_read
								 (dev_num,
								  ACCESS_TYPE_UNICAST,
								  if_id,
								  mask_results_dq_reg_map
								  [bus_num * 8 +
								   bit_num],
								  data_read,
								  MASK_ALL_BITS));
							data =
								(data_read
								 [if_id] &
								 0x1f) |
								((data_read
								  [if_id] &
								  0xe0) << 1);
							if (curr_min_delay == 0)
								curr_min_delay =
									data;
							else if (data <
								 curr_min_delay)
								curr_min_delay =
									data;
							if (data > data2_write[if_id][bus_num])
								data2_write
									[if_id]
									[bus_num] =
									data;
						}
					}

					if (data2_write[if_id][bus_num] <=
					    (curr_min_delay +
					     MAX_DQ_READ_LEVELING_DELAY)) {
						per_bit_rl_pup_status[if_id]
							[bus_num] = 1;
					}
				}
			}
		}

		/* check if there is need to search new phyreg3 value */
		if (curr_numb < 2) {
			/* if there is DLL that is not checked yet */
			for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1;
			     if_id++) {
				VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
				for (bus_num = 0;
				     bus_num < octets_per_if_num;
				     bus_num++) {
					VALIDATE_BUS_ACTIVE(tm->bus_act_mask,
							bus_num);
					if (per_bit_rl_pup_status[if_id]
					    [bus_num] != 1) {
						/* go to next ADLL value */
						CHECK_STATUS
							(ddr3_tip_bus_write
							 (dev_num,
							  ACCESS_TYPE_UNICAST,
							  if_id,
							  ACCESS_TYPE_UNICAST,
							  bus_num, DDR_PHY_DATA,
							  CRX_PHY_REG(0),
							  (phyreg3_arr[if_id]
							   [bus_num] +
							   adll_array[curr_numb])));
						break_loop = 1;
						break;
					}
				}
				if (break_loop)
					break;
			}
		}		/* if (curr_numb < 2) */
		if (!break_loop)
			break;
	}		/* for ( curr_numb = 0; curr_numb <3; curr_numb++) */

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		for (bus_num = 0; bus_num < octets_per_if_num;
		     bus_num++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
			if (per_bit_rl_pup_status[if_id][bus_num] == 1)
				ddr3_tip_bus_write(dev_num,
						   ACCESS_TYPE_UNICAST,
						   if_id,
						   ACCESS_TYPE_UNICAST,
						   bus_num, DDR_PHY_DATA,
						   RL_PHY_REG(effective_cs),
						   data2_write[if_id]
						   [bus_num]);
			else
				is_any_pup_fail = 1;
		}

		/* TBD flow does not support multi CS */
		/*
		 * cs_bitmask = tm->interface_params[if_id].
		 * as_bus_params[bus_num].cs_bitmask;
		 */
		/* divide by 4 is used for retrieving the CS number */
		/*
		 * TBD BC2 - what is the PHY address for other
		 * CS ddr3_tip_write_cs_result() ???
		 */
		/*
		 * find what should be written to PHY
		 * - max delay that is less than threshold
		 */
		if (is_any_pup_fail == 1) {
			training_result[training_stage][if_id] = TEST_FAILED;
			if (debug_mode == 0)
				return MV_FAIL;
		}
	}
	DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("RL exit read leveling\n"));

	/*
	 *     Phase 3: Exit Read Leveling
	 */

	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      TRAINING_SW_2_REG, (1 << 3), (1 << 3)));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      TRAINING_SW_1_REG, (1 << 16), (1 << 16)));
	/* set ODPG to functional */
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));
	/*
	 * Copy the result from the effective CS search to the real
	 * Functional CS
	 */
	ddr3_tip_write_cs_result(dev_num, RL_PHY_REG(0));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		/* restore cs enable value */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      DUAL_DUNIT_CFG_REG, cs_enable_reg_val[if_id],
			      MASK_ALL_BITS));
		if (odt_config != 0) {
			CHECK_STATUS(ddr3_tip_write_additional_odt_setting
				     (dev_num, if_id));
		}
	}

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (training_result[training_stage][if_id] == TEST_FAILED)
			return MV_FAIL;
	}

	return MV_OK;
}

int ddr3_tip_calc_cs_mask(u32 dev_num, u32 if_id, u32 effective_cs,
			  u32 *cs_mask)
{
	u32 all_bus_cs = 0, same_bus_cs;
	u32 bus_cnt;
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	*cs_mask = same_bus_cs = CS_BIT_MASK;

	/*
	 * In some of the devices (such as BC2), the CS is per pup and there
	 * for mixed mode is valid on like other devices where CS configuration
	 * is per interface.
	 * In order to know that, we do 'Or' and 'And' operation between all
	 * CS (of the pups).
	 * If they are they are not the same then it's mixed mode so all CS
	 * should be configured (when configuring the MRS)
	 */
	for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
		VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);

		all_bus_cs |= tm->interface_params[if_id].
			as_bus_params[bus_cnt].cs_bitmask;
		same_bus_cs &= tm->interface_params[if_id].
			as_bus_params[bus_cnt].cs_bitmask;

		/* cs enable is active low */
		*cs_mask &= ~tm->interface_params[if_id].
			as_bus_params[bus_cnt].cs_bitmask;
	}

	if (all_bus_cs == same_bus_cs)
		*cs_mask = (*cs_mask | (~(1 << effective_cs))) & CS_BIT_MASK;

	return MV_OK;
}

/*
 * Dynamic write leveling
 */
int ddr3_tip_dynamic_write_leveling(u32 dev_num, int phase_remove)
{
	u32 reg_data = 0, temp = 0, iter, if_id, bus_cnt;
	u32 cs_enable_reg_val[MAX_INTERFACE_NUM] = { 0 };
	u32 cs_mask[MAX_INTERFACE_NUM];
	u32 read_data_sample_delay_vals[MAX_INTERFACE_NUM] = { 0 };
	u32 read_data_ready_delay_vals[MAX_INTERFACE_NUM] = { 0 };
	/* 0 for failure */
	u32 res_values[MAX_INTERFACE_NUM * MAX_BUS_NUM] = { 0 };
	u32 test_res = 0;	/* 0 - success for all pup */
	u32 data_read[MAX_INTERFACE_NUM];
	u8 wl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM];
	u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
	u32 cs_mask0[MAX_INTERFACE_NUM] = { 0 };
	u32 max_cs = ddr3_tip_max_cs_get(dev_num);
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);

		training_result[training_stage][if_id] = TEST_SUCCESS;

		/* save Read Data Sample Delay */
		CHECK_STATUS(ddr3_tip_if_read
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      RD_DATA_SMPL_DLYS_REG,
			      read_data_sample_delay_vals, MASK_ALL_BITS));
		/* save Read Data Ready Delay */
		CHECK_STATUS(ddr3_tip_if_read
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      RD_DATA_RDY_DLYS_REG, read_data_ready_delay_vals,
			      MASK_ALL_BITS));
		/* save current cs reg val */
		CHECK_STATUS(ddr3_tip_if_read
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      DUAL_DUNIT_CFG_REG, cs_enable_reg_val, MASK_ALL_BITS));
	}

	if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) < MV_TIP_REV_3) {
		/* Enable multi-CS */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			     DUAL_DUNIT_CFG_REG, 0, (1 << 3)));
	}

	/*
	 *     Phase 1: DRAM 2 Write Leveling mode
	 */

	/*Assert 10 refresh commands to DRAM to all CS */
	for (iter = 0; iter < WL_ITERATION_NUM; iter++) {
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			CHECK_STATUS(ddr3_tip_if_write
				     (dev_num, ACCESS_TYPE_UNICAST,
				      if_id, SDRAM_OP_REG,
				      (u32)((~(0xf) << 8) | 0x2), 0xf1f));
		}
	}
	/* check controller back to normal */
	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (ddr3_tip_if_polling
		    (dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f,
		     SDRAM_OP_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
				       ("WL: DDR3 poll failed(3)"));
		}
	}

	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		/*enable write leveling to all cs  - Q off , WL n */
		/* calculate interface cs mask */
		CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MR_CMD1,
						    0x1000, 0x1080));

		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			/* cs enable is active low */
			ddr3_tip_calc_cs_mask(dev_num, if_id, effective_cs,
					      &cs_mask[if_id]);
		}

		if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
			/* Enable Output buffer to relevant CS - Q on , WL on */
			CHECK_STATUS(ddr3_tip_write_mrs_cmd
				     (dev_num, cs_mask, MR_CMD1, 0x80, 0x1080));

			/*enable odt for relevant CS */
			CHECK_STATUS(ddr3_tip_if_write
				     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
				      0x1498, (0x3 << (effective_cs * 2)), 0xf));
		} else {
			/* FIXME: should be the same as _CPU case */
			CHECK_STATUS(ddr3_tip_write_mrs_cmd
				     (dev_num, cs_mask, MR_CMD1, 0xc0, 0x12c4));
		}

		/*
		 *     Phase 2: Set training IP to write leveling mode
		 */

		CHECK_STATUS(ddr3_tip_dynamic_write_leveling_seq(dev_num));

		/* phase 3: trigger training */
		mv_ddr_training_enable();

		/* check for training done */
		if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, data_read) != MV_OK) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("training done failed\n"));
		} else { /* check for training pass */
			reg_data = data_read[0];
#if defined(CONFIG_ARMADA_38X) /* JIRA #1498 for 16 bit with ECC */
			if (tm->bus_act_mask == 0xb) /* set to data to 0 to skip the check */
				reg_data = 0;
#endif
			if (reg_data != PASS)
				DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("training result failed\n"));

			/* check for training completion per bus */
			for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
				/* training status */
				ddr3_tip_if_read(0, ACCESS_TYPE_UNICAST, 0,
					      mask_results_pup_reg_map[bus_cnt],
					      data_read, MASK_ALL_BITS);
				reg_data = data_read[0];
				DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("WL: IF %d BUS %d reg 0x%x\n",
								   0, bus_cnt, reg_data));
				if ((reg_data & (1 << 25)) == 0)
					res_values[bus_cnt] = 1;
				ddr3_tip_if_read(0, ACCESS_TYPE_UNICAST, 0,
					      mask_results_pup_reg_map[bus_cnt],
					      data_read, 0xff);
				/*
				 * Save the read value that should be
				 * write to PHY register
				 */
				wl_values[effective_cs][bus_cnt][0] = (u8)data_read[0];
			}
		}

		/*
		 *     Phase 3.5: Validate result
		 */
		for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
				/*
				 * Read result control register according to subphy
				 * "16" below is for a half-phase
				 */
				reg_data = wl_values[effective_cs][bus_cnt][if_id] + 16;
				/*
				 * Write to WL register: ADLL [4:0], Phase [8:6],
				 * Centralization ADLL [15:10] + 0x10
				 */
				reg_data = (reg_data & 0x1f) |
					   (((reg_data & 0xe0) >> 5) << 6) |
					   (((reg_data & 0x1f) + phy_reg1_val) << 10);
				/* Search with WL CS0 subphy reg */
				ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
						   ACCESS_TYPE_UNICAST, bus_cnt,
						   DDR_PHY_DATA, WL_PHY_REG(0), reg_data);
				/*
				 * Check for change in data read from DRAM.
				 * If changed, fix the result
				 */
				CHECK_STATUS(ddr3_tip_if_read
					     (dev_num,
					      ACCESS_TYPE_UNICAST,
					      if_id,
					      TRAINING_WL_REG,
					      data_read, MASK_ALL_BITS));
				if (((data_read[if_id] & (1 << (bus_cnt + 20))) >>
				     (bus_cnt + 20)) == 0) {
					DEBUG_LEVELING(
						DEBUG_LEVEL_ERROR,
						("WLValues was changed from 0x%X",
						 wl_values[effective_cs]
						 [bus_cnt][if_id]));
					wl_values[effective_cs]
					[bus_cnt][if_id] += 32;
					DEBUG_LEVELING(
						DEBUG_LEVEL_ERROR,
						("to 0x%X",
						 wl_values[effective_cs]
						 [bus_cnt][if_id]));
				}
			}
		}

		/*
		 *     Phase 4: Exit write leveling mode
		 */

		/* disable DQs toggling */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      WL_DQS_PATTERN_REG, 0x0, 0x1));

		/* Update MRS 1 (WL off) */
		if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
			CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MR_CMD1,
							    0x1000, 0x1080));
		} else {
			/* FIXME: should be same as _CPU case */
			CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MR_CMD1,
							    0x1000, 0x12c4));
		}

		/* Update MRS 1 (return to functional mode - Q on , WL off) */
		CHECK_STATUS(ddr3_tip_write_mrs_cmd
			     (dev_num, cs_mask0, MR_CMD1, 0x0, 0x1080));

		/* set phy to normal mode */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_SW_2_REG, 0x5, 0x7));

		/* exit sw override mode  */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      TRAINING_SW_2_REG, 0x4, 0x7));
	}

	/*
	 *     Phase 5: Load WL values to each PHY
	 */

	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			test_res = 0;
			for (bus_cnt = 0;
			     bus_cnt < octets_per_if_num;
			     bus_cnt++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
				/* check if result == pass */
				if (res_values
				    [(if_id *
				      octets_per_if_num) +
				     bus_cnt] == 0) {
					/*
					 * read result control register
					 * according to pup
					 */
					reg_data =
						wl_values[effective_cs][bus_cnt]
						[if_id];
					/*
					 * Write into write leveling register
					 * ([4:0] ADLL, [8:6] Phase, [15:10]
					 * (centralization) ADLL + 0x10)
					 */
					reg_data =
						(reg_data & 0x1f) |
						(((reg_data & 0xe0) >> 5) << 6) |
						(((reg_data & 0x1f) +
						  phy_reg1_val) << 10);
					/*
					 * in case phase remove should be executed
					 * need to remove more than one phase.
					 * this will take place only in low frequency,
					 * where there could be more than one phase between sub-phys
					 */
					if (phase_remove == 1) {
						temp = (reg_data >> WR_LVL_PH_SEL_OFFS) & WR_LVL_PH_SEL_PHASE1;
						reg_data &= ~(WR_LVL_PH_SEL_MASK << WR_LVL_PH_SEL_OFFS);
						reg_data |= (temp << WR_LVL_PH_SEL_OFFS);
					}

					ddr3_tip_bus_write(
						dev_num,
						ACCESS_TYPE_UNICAST,
						if_id,
						ACCESS_TYPE_UNICAST,
						bus_cnt,
						DDR_PHY_DATA,
						WL_PHY_REG(effective_cs),
						reg_data);
				} else {
					test_res = 1;
					/*
					 * read result control register
					 * according to pup
					 */
					CHECK_STATUS(ddr3_tip_if_read
						     (dev_num,
						      ACCESS_TYPE_UNICAST,
						      if_id,
						      mask_results_pup_reg_map
						      [bus_cnt], data_read,
						      0xff));
					reg_data = data_read[if_id];
					DEBUG_LEVELING(
						DEBUG_LEVEL_ERROR,
						("WL: IF %d BUS %d failed, reg 0x%x\n",
						 if_id, bus_cnt, reg_data));
				}
			}

			if (test_res != 0) {
				training_result[training_stage][if_id] =
					TEST_FAILED;
			}
		}
	}
	/* Set to 0 after each loop to avoid illegal value may be used */
	effective_cs = 0;

	/*
	 * Copy the result from the effective CS search to the real
	 * Functional CS
	 */
	/* ddr3_tip_write_cs_result(dev_num, WL_PHY_REG(0); */
	/* restore saved values */
	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		/* restore Read Data Sample Delay */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      RD_DATA_SMPL_DLYS_REG,
			      read_data_sample_delay_vals[if_id],
			      MASK_ALL_BITS));

		/* restore Read Data Ready Delay */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      RD_DATA_RDY_DLYS_REG,
			      read_data_ready_delay_vals[if_id],
			      MASK_ALL_BITS));

		/* enable multi cs */
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_UNICAST, if_id,
			      DUAL_DUNIT_CFG_REG, cs_enable_reg_val[if_id],
			      MASK_ALL_BITS));
	}

	if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
		/* Disable modt0 for CS0 training - need to adjust for multi-CS
		 * in case of ddr4 set 0xf else 0
		 */
		if (odt_config != 0) {
			CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
						       SDRAM_ODT_CTRL_HIGH_REG, 0x0, 0xf));
		}
		else {
			CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
						       SDRAM_ODT_CTRL_HIGH_REG, 0xf, 0xf));
		}

	}

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (training_result[training_stage][if_id] == TEST_FAILED)
			return MV_FAIL;
	}

	return MV_OK;
}

/*
 * Dynamic write leveling supplementary
 */
int ddr3_tip_dynamic_write_leveling_supp(u32 dev_num)
{
	int adll_offset;
	u32 if_id, bus_id, data, data_tmp;
	int is_if_fail = 0;
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		is_if_fail = 0;

		for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
			wr_supp_res[if_id][bus_id].is_pup_fail = 1;
			CHECK_STATUS(ddr3_tip_bus_read
				     (dev_num, if_id, ACCESS_TYPE_UNICAST,
				      bus_id, DDR_PHY_DATA,
				      CTX_PHY_REG(effective_cs),
				      &data));
			DEBUG_LEVELING(
				DEBUG_LEVEL_TRACE,
				("WL Supp: adll_offset=0 data delay = %d\n",
				 data));
			if (ddr3_tip_wl_supp_align_phase_shift
			    (dev_num, if_id, bus_id) == MV_OK) {
				DEBUG_LEVELING(
					DEBUG_LEVEL_TRACE,
					("WL Supp: IF %d bus_id %d adll_offset=0 Success !\n",
					 if_id, bus_id));
				continue;
			}

			/* change adll */
			adll_offset = 5;
			CHECK_STATUS(ddr3_tip_bus_write
				     (dev_num, ACCESS_TYPE_UNICAST, if_id,
				      ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
				      CTX_PHY_REG(effective_cs),
				      data + adll_offset));
			CHECK_STATUS(ddr3_tip_bus_read
				     (dev_num, if_id, ACCESS_TYPE_UNICAST,
				      bus_id, DDR_PHY_DATA,
				      CTX_PHY_REG(effective_cs),
				      &data_tmp));
			DEBUG_LEVELING(
				DEBUG_LEVEL_TRACE,
				("WL Supp: adll_offset= %d data delay = %d\n",
				 adll_offset, data_tmp));

			if (ddr3_tip_wl_supp_align_phase_shift
			    (dev_num, if_id, bus_id) == MV_OK) {
				DEBUG_LEVELING(
					DEBUG_LEVEL_TRACE,
					("WL Supp: IF %d bus_id %d adll_offset= %d Success !\n",
					 if_id, bus_id, adll_offset));
				continue;
			}

			/* change adll */
			adll_offset = -5;
			CHECK_STATUS(ddr3_tip_bus_write
				     (dev_num, ACCESS_TYPE_UNICAST, if_id,
				      ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
				      CTX_PHY_REG(effective_cs),
				      data + adll_offset));
			CHECK_STATUS(ddr3_tip_bus_read
				     (dev_num, if_id, ACCESS_TYPE_UNICAST,
				      bus_id, DDR_PHY_DATA,
				      CTX_PHY_REG(effective_cs),
				      &data_tmp));
			DEBUG_LEVELING(
				DEBUG_LEVEL_TRACE,
				("WL Supp: adll_offset= %d data delay = %d\n",
				 adll_offset, data_tmp));
			if (ddr3_tip_wl_supp_align_phase_shift
			    (dev_num, if_id, bus_id) == MV_OK) {
				DEBUG_LEVELING(
					DEBUG_LEVEL_TRACE,
					("WL Supp: IF %d bus_id %d adll_offset= %d Success !\n",
					 if_id, bus_id, adll_offset));
				continue;
			} else {
				DEBUG_LEVELING(
					DEBUG_LEVEL_ERROR,
					("WL Supp: IF %d bus_id %d Failed !\n",
					 if_id, bus_id));
				is_if_fail = 1;
			}
		}

		if (is_if_fail == 1) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
				       ("WL Supp: CS# %d: IF %d failed\n",
					effective_cs, if_id));
			training_result[training_stage][if_id] = TEST_FAILED;
		} else {
			training_result[training_stage][if_id] = TEST_SUCCESS;
		}
	}

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (training_result[training_stage][if_id] == TEST_FAILED)
			return MV_FAIL;
	}

	return MV_OK;
}

/*
 * Phase Shift
 */
static int ddr3_tip_wl_supp_align_phase_shift(u32 dev_num, u32 if_id,
					      u32 bus_id)
{
	u32 original_phase;
	u32 data, write_data;

	wr_supp_res[if_id][bus_id].stage = PHASE_SHIFT;
	if (ddr3_tip_xsb_compare_test
	    (dev_num, if_id, bus_id, 0) == MV_OK)
		return MV_OK;

	/* Read current phase */
	CHECK_STATUS(ddr3_tip_bus_read
		     (dev_num, if_id, ACCESS_TYPE_UNICAST, bus_id,
		      DDR_PHY_DATA, WL_PHY_REG(effective_cs), &data));
	original_phase = (data >> 6) & 0x7;

	/* Set phase (0x0[6-8]) -2 */
	if (original_phase >= 1) {
		if (original_phase == 1)
			write_data = data & ~0x1df;
		else
			write_data = (data & ~0x1c0) |
				     ((original_phase - 2) << 6);
		ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
				   ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
				   WL_PHY_REG(effective_cs), write_data);
		if (ddr3_tip_xsb_compare_test
		    (dev_num, if_id, bus_id, -2) == MV_OK)
			return MV_OK;
	}

	/* Set phase (0x0[6-8]) +2 */
	if (original_phase <= 5) {
		write_data = (data & ~0x1c0) |
			     ((original_phase + 2) << 6);
		ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
				   ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
				   WL_PHY_REG(effective_cs), write_data);
		if (ddr3_tip_xsb_compare_test
		    (dev_num, if_id, bus_id, 2) == MV_OK)
			return MV_OK;
	}

	/* Set phase (0x0[6-8]) +4 */
	if (original_phase <= 3) {
		write_data = (data & ~0x1c0) |
			     ((original_phase + 4) << 6);
		ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
				   ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
				   WL_PHY_REG(effective_cs), write_data);
		if (ddr3_tip_xsb_compare_test
		    (dev_num, if_id, bus_id, 4) == MV_OK)
			return MV_OK;
	}

	/* Set phase (0x0[6-8]) +6 */
	if (original_phase <= 1) {
		write_data = (data & ~0x1c0) |
			     ((original_phase + 6) << 6);
		ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
				   ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
				   WL_PHY_REG(effective_cs), write_data);
		if (ddr3_tip_xsb_compare_test
		    (dev_num, if_id, bus_id, 6) == MV_OK)
			return MV_OK;
	}

	/* Write original WL result back */
	ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
			   ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
			   WL_PHY_REG(effective_cs), data);
	wr_supp_res[if_id][bus_id].is_pup_fail = 1;

	return MV_FAIL;
}

/*
 * Compare Test
 */
static int ddr3_tip_xsb_compare_test(u32 dev_num, u32 if_id, u32 bus_id,
				     u32 edge_offset)
{
	u32 num_of_succ_byte_compare, word_in_pattern;
	u32 word_offset, i, num_of_word_mult;
	u32 read_pattern[TEST_PATTERN_LENGTH * 2];
	struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
	u32 pattern_test_pattern_table[8];
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	/* 3 below for INTERFACE_BUS_MASK_16BIT */
	num_of_word_mult = (tm->bus_act_mask == 3) ? 1 : 2;

	for (i = 0; i < 8; i++) {
		pattern_test_pattern_table[i] =
			pattern_table_get_word(dev_num, PATTERN_TEST, (u8)i);
	}

	/* External write, read and compare */
	CHECK_STATUS(ddr3_tip_load_pattern_to_mem(dev_num, PATTERN_TEST));

	CHECK_STATUS(ddr3_tip_reset_fifo_ptr(dev_num));

	CHECK_STATUS(ddr3_tip_ext_read
		     (dev_num, if_id,
		      ((pattern_table[PATTERN_TEST].start_addr << 3) +
		       ((SDRAM_CS_SIZE + 1) * effective_cs)), 1, read_pattern));

	DEBUG_LEVELING(
		DEBUG_LEVEL_TRACE,
		("XSB-compt CS#%d: IF %d bus_id %d 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
		 effective_cs, if_id, bus_id,
		 read_pattern[0], read_pattern[1],
		 read_pattern[2], read_pattern[3],
		 read_pattern[4], read_pattern[5],
		 read_pattern[6], read_pattern[7]));

	/* compare byte per pup */
	num_of_succ_byte_compare = 0;
	for (word_in_pattern = start_xsb_offset;
	     word_in_pattern < (TEST_PATTERN_LENGTH * num_of_word_mult);
	     word_in_pattern++) {
		word_offset = word_in_pattern;
		if ((word_offset > (TEST_PATTERN_LENGTH * 2 - 1)))
			continue;

		if ((read_pattern[word_in_pattern] & pup_mask_table[bus_id]) ==
		    (pattern_test_pattern_table[word_offset] &
		     pup_mask_table[bus_id]))
			num_of_succ_byte_compare++;
	}

	if ((TEST_PATTERN_LENGTH * num_of_word_mult - start_xsb_offset) ==
	    num_of_succ_byte_compare) {
		wr_supp_res[if_id][bus_id].stage = edge_offset;
		DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
			       ("supplementary: shift to %d for if %d pup %d success\n",
				edge_offset, if_id, bus_id));
		wr_supp_res[if_id][bus_id].is_pup_fail = 0;

		return MV_OK;
	} else {
		DEBUG_LEVELING(
			DEBUG_LEVEL_TRACE,
			("XSB-compt CS#%d: IF %d bus_id %d num_of_succ_byte_compare %d - Fail!\n",
			 effective_cs, if_id, bus_id, num_of_succ_byte_compare));

		DEBUG_LEVELING(
			DEBUG_LEVEL_TRACE,
			("XSB-compt: expected 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
			 pattern_test_pattern_table[0],
			 pattern_test_pattern_table[1],
			 pattern_test_pattern_table[2],
			 pattern_test_pattern_table[3],
			 pattern_test_pattern_table[4],
			 pattern_test_pattern_table[5],
			 pattern_test_pattern_table[6],
			 pattern_test_pattern_table[7]));
		DEBUG_LEVELING(
			DEBUG_LEVEL_TRACE,
			("XSB-compt: recieved 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
			 read_pattern[0], read_pattern[1],
			 read_pattern[2], read_pattern[3],
			 read_pattern[4], read_pattern[5],
			 read_pattern[6], read_pattern[7]));

		return MV_FAIL;
	}
}

/*
 * Dynamic write leveling sequence
 */
static int ddr3_tip_dynamic_write_leveling_seq(u32 dev_num)
{
	u32 bus_id, dq_id;
	u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
	u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      TRAINING_SW_2_REG, 0x1, 0x5));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      TRAINING_WL_REG, 0x50, 0xff));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      TRAINING_WL_REG, 0x5c, 0xff));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      GENERAL_TRAINING_OPCODE_REG, 0x381b82, 0x3c3faf));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      OPCODE_REG0_REG(1), (0x3 << 25), (0x3ffff << 9)));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      OPCODE_REG1_REG(1), 0x80, 0xffff));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      WL_DONE_CNTR_REF_REG, 0x14, 0xff));
	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      TRAINING_WL_REG, 0xff5c, 0xffff));

	/* mask PBS */
	for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_dq_reg_map[dq_id], 0x1 << 24,
			      0x1 << 24));
	}

	/* Mask all results */
	for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_pup_reg_map[bus_id], 0x1 << 24,
			      0x1 << 24));
	}

	/* Unmask only wanted */
	for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
		VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_pup_reg_map[bus_id], 0, 0x1 << 24));
	}

	CHECK_STATUS(ddr3_tip_if_write
		     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
		      WL_DQS_PATTERN_REG, 0x1, 0x1));

	return MV_OK;
}

/*
 * Dynamic read leveling sequence
 */
static int ddr3_tip_dynamic_read_leveling_seq(u32 dev_num)
{
	u32 bus_id, dq_id;
	u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
	u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	/* mask PBS */
	for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_dq_reg_map[dq_id], 0x1 << 24,
			      0x1 << 24));
	}

	/* Mask all results */
	for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_pup_reg_map[bus_id], 0x1 << 24,
			      0x1 << 24));
	}

	/* Unmask only wanted */
	for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
		VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_pup_reg_map[bus_id], 0, 0x1 << 24));
	}

	return MV_OK;
}

/*
 * Dynamic read leveling sequence
 */
static int ddr3_tip_dynamic_per_bit_read_leveling_seq(u32 dev_num)
{
	u32 bus_id, dq_id;
	u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
	u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	/* mask PBS */
	for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_dq_reg_map[dq_id], 0x1 << 24,
			      0x1 << 24));
	}

	/* Mask all results */
	for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_pup_reg_map[bus_id], 0x1 << 24,
			      0x1 << 24));
	}

	/* Unmask only wanted */
	for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
		VALIDATE_BUS_ACTIVE(tm->bus_act_mask, dq_id / 8);
		CHECK_STATUS(ddr3_tip_if_write
			     (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
			      mask_results_dq_reg_map[dq_id], 0x0 << 24,
			      0x1 << 24));
	}

	return MV_OK;
}

/*
 * Print write leveling supplementary results
 */
int ddr3_tip_print_wl_supp_result(u32 dev_num)
{
	u32 bus_id = 0, if_id = 0;
	u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();

	DEBUG_LEVELING(DEBUG_LEVEL_INFO,
		       ("I/F0 PUP0 Result[0 - success, 1-fail] ...\n"));

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		for (bus_id = 0; bus_id < octets_per_if_num;
		     bus_id++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
			DEBUG_LEVELING(DEBUG_LEVEL_INFO,
				       ("%d ,", wr_supp_res[if_id]
					[bus_id].is_pup_fail));
		}
	}
	DEBUG_LEVELING(
		DEBUG_LEVEL_INFO,
		("I/F0 PUP0 Stage[0-phase_shift, 1-clock_shift, 2-align_shift] ...\n"));

	for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		for (bus_id = 0; bus_id < octets_per_if_num;
		     bus_id++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
			DEBUG_LEVELING(DEBUG_LEVEL_INFO,
				       ("%d ,", wr_supp_res[if_id]
					[bus_id].stage));
		}
	}

	return MV_OK;
}

#define RD_FIFO_PTR_LOW_STAT_INDIR_ADDR		0x9a
#define RD_FIFO_PTR_HIGH_STAT_INDIR_ADDR	0x9b
/* position of falling dqs edge in fifo; walking 1 */
#define RD_FIFO_DQS_FALL_EDGE_POS_0		0x1
#define RD_FIFO_DQS_FALL_EDGE_POS_1		0x2
#define RD_FIFO_DQS_FALL_EDGE_POS_2		0x4
#define RD_FIFO_DQS_FALL_EDGE_POS_3		0x8
#define RD_FIFO_DQS_FALL_EDGE_POS_4		0x10 /* lock */
/* position of rising dqs edge in fifo; walking 0 */
#define RD_FIFO_DQS_RISE_EDGE_POS_0		0x1fff
#define RD_FIFO_DQS_RISE_EDGE_POS_1		0x3ffe
#define RD_FIFO_DQS_RISE_EDGE_POS_2		0x3ffd
#define RD_FIFO_DQS_RISE_EDGE_POS_3		0x3ffb
#define RD_FIFO_DQS_RISE_EDGE_POS_4		0x3ff7 /* lock */
#define TEST_ADDR		0x8
#define TAPS_PER_UI		32
#define UI_PER_RD_SAMPLE	4
#define TAPS_PER_RD_SAMPLE	((UI_PER_RD_SAMPLE) * (TAPS_PER_UI))
#define MAX_RD_SAMPLES		32
#define MAX_RL_VALUE		((MAX_RD_SAMPLES) * (TAPS_PER_RD_SAMPLE))
#define RD_FIFO_DLY		8
#define STEP_SIZE		64
#define RL_JITTER_WIDTH_LMT	20
#define ADLL_TAPS_IN_CYCLE	64

enum rl_dqs_burst_state {
	RL_AHEAD = 0,
	RL_INSIDE,
	RL_BEHIND
};
int mv_ddr_rl_dqs_burst(u32 dev_num, u32 if_id, u32 freq)
{
	enum rl_dqs_burst_state rl_state[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
	enum hws_ddr_phy subphy_type = DDR_PHY_DATA;
	struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
	int cl_val = tm->interface_params[0].cas_l;
	int rl_adll_val, rl_phase_val, sdr_cycle_incr, rd_sample, rd_ready;
	int final_rd_sample, final_rd_ready;
	int i, subphy_id, step;
	int pass_lock_num = 0;
	int init_pass_lock_num;
	int phase_delta;
	int min_phase, max_phase;
	u32 max_cs = ddr3_tip_max_cs_get(dev_num);
	u32 rl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
	u32 rl_min_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
	u32 rl_max_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
	u32 rl_val, rl_min_val[NUM_OF_CS], rl_max_val[NUM_OF_CS];
	u32 reg_val_low, reg_val_high;
	u32 reg_val,  reg_mask;
	uintptr_t test_addr = TEST_ADDR;

	/* initialization */
	if (ddr3_if_ecc_enabled()) {
		ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST, if_id, TRAINING_SW_2_REG,
				 &reg_val, MASK_ALL_BITS);
		reg_mask = (TRAINING_ECC_MUX_MASK << TRAINING_ECC_MUX_OFFS) |
			   (TRAINING_SW_OVRD_MASK << TRAINING_SW_OVRD_OFFS);
		reg_val &= ~reg_mask;
		reg_val |= (TRAINING_ECC_MUX_DIS << TRAINING_ECC_MUX_OFFS) |
			   (TRAINING_SW_OVRD_ENA << TRAINING_SW_OVRD_OFFS);
		ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, TRAINING_SW_2_REG,
				  reg_val, MASK_ALL_BITS);
		ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST, if_id, TRAINING_REG,
				 &reg_val, MASK_ALL_BITS);
		reg_mask = (TRN_START_MASK << TRN_START_OFFS);
		reg_val &= ~reg_mask;
		reg_val |= TRN_START_ENA << TRN_START_OFFS;
		ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, TRAINING_REG,
				  reg_val, MASK_ALL_BITS);
	}

	for (effective_cs = 0; effective_cs < max_cs; effective_cs++)
		for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++)
			for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++)
				if (IS_BUS_ACTIVE(tm->bus_act_mask, subphy_id) == 0)
					pass_lock_num++; /* increment on inactive subphys */

	init_pass_lock_num = pass_lock_num / max_cs;
	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
			VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
			training_result[training_stage][if_id] = TEST_SUCCESS;
		}
	}

	/* search for dqs edges per subphy */
	if_id = 0;
	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		pass_lock_num = init_pass_lock_num;
		ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_DATA_CTRL_REG,
				  effective_cs << ODPG_DATA_CS_OFFS,
				  ODPG_DATA_CS_MASK << ODPG_DATA_CS_OFFS);
		rl_min_val[effective_cs] = MAX_RL_VALUE;
		rl_max_val[effective_cs] = 0;
		step = STEP_SIZE;
		for (i = 0; i < MAX_RL_VALUE; i += step) {
			rl_val = 0;
			sdr_cycle_incr = i / TAPS_PER_RD_SAMPLE; /* sdr cycle increment */
			rd_sample = cl_val + 2 * sdr_cycle_incr;
			/* fifo out to in delay in search is constant */
			rd_ready = rd_sample + RD_FIFO_DLY;

			ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_SMPL_DLYS_REG,
					  rd_sample << RD_SMPL_DLY_CS_OFFS(effective_cs),
					  RD_SMPL_DLY_CS_MASK << RD_SMPL_DLY_CS_OFFS(effective_cs));
			ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_RDY_DLYS_REG,
					  rd_ready << RD_RDY_DLY_CS_OFFS(effective_cs),
					  RD_RDY_DLY_CS_MASK << RD_RDY_DLY_CS_OFFS(effective_cs));

			/* one sdr (single data rate) cycle incremented on every four phases of ddr clock */
			sdr_cycle_incr = i % TAPS_PER_RD_SAMPLE;
			rl_adll_val = sdr_cycle_incr % MAX_RD_SAMPLES;
			rl_phase_val = sdr_cycle_incr / MAX_RD_SAMPLES;
			rl_val = ((rl_adll_val & RL_REF_DLY_MASK) << RL_REF_DLY_OFFS) |
				 ((rl_phase_val & RL_PH_SEL_MASK) << RL_PH_SEL_OFFS);

			/* write to all subphys (even to not connected or locked) */
			ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST,
					   0, DDR_PHY_DATA, RL_PHY_REG(effective_cs), rl_val);

			/* reset read fifo assertion */
			ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
					  DATA_PUP_RD_RESET_ENA << DATA_PUP_RD_RESET_OFFS,
					  DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);

			/* reset read fifo deassertion */
			ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
					  DATA_PUP_RD_RESET_DIS << DATA_PUP_RD_RESET_OFFS,
					  DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);

			/* perform one read burst */
			if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask))
				readq(test_addr);
			else
				readl(test_addr);

			/* progress read ptr; decide on rl state per byte */
			for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++) {
				if (rl_state[effective_cs][subphy_id][if_id] == RL_BEHIND)
					continue; /* skip locked subphys */
				ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_id, DDR_PHY_DATA,
						  RD_FIFO_PTR_LOW_STAT_INDIR_ADDR, &reg_val_low);
				ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_id, DDR_PHY_DATA,
						  RD_FIFO_PTR_HIGH_STAT_INDIR_ADDR, &reg_val_high);
				DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
					       ("%s: cs %d, step %d, subphy %d, state %d, low 0x%04x, high 0x%04x; move to ",
						__func__, effective_cs, i, subphy_id,
						rl_state[effective_cs][subphy_id][if_id],
						reg_val_low, reg_val_high));

				switch (rl_state[effective_cs][subphy_id][if_id]) {
				case RL_AHEAD:
					/* improve search resolution getting closer to the window */
					if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_4 &&
					    reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_4) {
						rl_state[effective_cs][subphy_id][if_id] = RL_INSIDE;
						rl_values[effective_cs][subphy_id][if_id] = i;
						rl_min_values[effective_cs][subphy_id][if_id] = i;
						DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
							       ("new state %d\n",
								rl_state[effective_cs][subphy_id][if_id]));
					} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_3 &&
						   reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_3) {
						step = (step < 2) ? step : 2;
					} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_2 &&
						   reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_2) {
						step = (step < 16) ? step : 16;
					} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_1 &&
						   reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_1) {
						step = (step < 32) ? step : 32;
					} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_0 &&
						   reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_0) {
						step = (step < 64) ? step : 64;
					} else {
						/* otherwise, step is unchanged */
					}
					break;
				case RL_INSIDE:
					if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_4 &&
					    reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_4) {
						rl_max_values[effective_cs][subphy_id][if_id] = i;
						if ((rl_max_values[effective_cs][subphy_id][if_id] -
						     rl_min_values[effective_cs][subphy_id][if_id]) >
						    ADLL_TAPS_IN_CYCLE) {
							rl_state[effective_cs][subphy_id][if_id] = RL_BEHIND;
							rl_values[effective_cs][subphy_id][if_id] =
								(i + rl_values[effective_cs][subphy_id][if_id]) / 2;
							pass_lock_num++;
							DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
								       ("new lock %d\n", pass_lock_num));
							if (rl_min_val[effective_cs] >
							    rl_values[effective_cs][subphy_id][if_id])
								rl_min_val[effective_cs] =
									rl_values[effective_cs][subphy_id][if_id];
							if (rl_max_val[effective_cs] <
							    rl_values[effective_cs][subphy_id][if_id])
								rl_max_val[effective_cs] =
									rl_values[effective_cs][subphy_id][if_id];
							step = 2;
						}
					}
					if (reg_val_low != RD_FIFO_DQS_FALL_EDGE_POS_4 ||
					    reg_val_high != RD_FIFO_DQS_RISE_EDGE_POS_4) {
						if ((i - rl_values[effective_cs][subphy_id][if_id]) <
						    RL_JITTER_WIDTH_LMT) {
							/* inside the jitter; not valid segment */
							rl_state[effective_cs][subphy_id][if_id] = RL_AHEAD;
							DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
								       ("new state %d; jitter on mask\n",
									rl_state[effective_cs][subphy_id][if_id]));
						} else { /* finished valid segment */
							rl_state[effective_cs][subphy_id][if_id] = RL_BEHIND;
							rl_values[effective_cs][subphy_id][if_id] =
								(i + rl_values[effective_cs][subphy_id][if_id]) / 2;
							DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
								       ("new state %d, solution %d\n",
									rl_state[effective_cs][subphy_id][if_id],
									rl_values[effective_cs][subphy_id][if_id]));
							pass_lock_num++;
							DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
								       ("new lock %d\n", pass_lock_num));
							if (rl_min_val[effective_cs] >
							    rl_values[effective_cs][subphy_id][if_id])
								rl_min_val[effective_cs] =
									rl_values[effective_cs][subphy_id][if_id];
							if (rl_max_val[effective_cs] <
							    rl_values[effective_cs][subphy_id][if_id])
								rl_max_val[effective_cs] =
									rl_values[effective_cs][subphy_id][if_id];
							step = 2;
						}
					}
					break;
				case RL_BEHIND: /* do nothing */
					break;
				}
				DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("\n"));
			}
			DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("pass_lock_num %d\n", pass_lock_num));
			/* exit condition */
			if (pass_lock_num == MAX_BUS_NUM)
				break;
		} /* for-loop on i */

		if (pass_lock_num != MAX_BUS_NUM) {
			DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
				       ("%s: cs %d, pass_lock_num %d, max_bus_num %d, init_pass_lock_num %d\n",
				       __func__, effective_cs, pass_lock_num, MAX_BUS_NUM, init_pass_lock_num));
			for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++) {
				VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_id);
				DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
					       ("%s: subphy %d %s\n",
						__func__, subphy_id,
						(rl_state[effective_cs][subphy_id][if_id] == RL_BEHIND) ?
						"locked" : "not locked"));
			}
		}
	} /* for-loop on effective_cs */

	/* post-processing read leveling results */
	if_id = 0;
	for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
		phase_delta = 0;
		i = rl_min_val[effective_cs];
		sdr_cycle_incr = i / TAPS_PER_RD_SAMPLE; /* sdr cycle increment */
		rd_sample = cl_val + 2 * sdr_cycle_incr;
		rd_ready = rd_sample + RD_FIFO_DLY;
		min_phase = (rl_min_val[effective_cs] - (sdr_cycle_incr * TAPS_PER_RD_SAMPLE)) % MAX_RD_SAMPLES;
		max_phase = (rl_max_val[effective_cs] - (sdr_cycle_incr * TAPS_PER_RD_SAMPLE)) % MAX_RD_SAMPLES;
		final_rd_sample = rd_sample;
		final_rd_ready = rd_ready;

		ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_SMPL_DLYS_REG,
				  rd_sample << RD_SMPL_DLY_CS_OFFS(effective_cs),
				  RD_SMPL_DLY_CS_MASK << RD_SMPL_DLY_CS_OFFS(effective_cs));
		ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_RDY_DLYS_REG,
				  rd_ready << RD_RDY_DLY_CS_OFFS(effective_cs),
				  RD_RDY_DLY_CS_MASK << RD_RDY_DLY_CS_OFFS(effective_cs));
		DEBUG_LEVELING(DEBUG_LEVEL_INFO,
			       ("%s: cs %d, min phase %d, max phase %d, read sample %d\n",
				__func__, effective_cs, min_phase, max_phase, rd_sample));

		for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++) {
			VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_id);
			/* reduce sdr cycle per cs; extract rl adll and phase values */
			i = rl_values[effective_cs][subphy_id][if_id] - (sdr_cycle_incr * TAPS_PER_RD_SAMPLE);
			rl_adll_val = i % MAX_RD_SAMPLES;
			rl_phase_val = i / MAX_RD_SAMPLES;
			rl_phase_val -= phase_delta;
			DEBUG_LEVELING(DEBUG_LEVEL_INFO,
				       ("%s: final results: cs %d, subphy %d, read sample %d read ready %d, rl_phase_val %d, rl_adll_val %d\n",
					__func__, effective_cs, subphy_id, final_rd_sample,
					final_rd_ready, rl_phase_val, rl_adll_val));

			rl_val = ((rl_adll_val & RL_REF_DLY_MASK) << RL_REF_DLY_OFFS) |
				 ((rl_phase_val & RL_PH_SEL_MASK) << RL_PH_SEL_OFFS);
			ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_UNICAST,
					   subphy_id, subphy_type, RL_PHY_REG(effective_cs), rl_val);
		}
	} /* for-loop on effective cs */

	for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
		VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
		if (odt_config != 0)
			CHECK_STATUS(ddr3_tip_write_additional_odt_setting(dev_num, if_id));
	}

	/* reset read fifo assertion */
	ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
			  DATA_PUP_RD_RESET_ENA << DATA_PUP_RD_RESET_OFFS,
			  DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);

	/* reset read fifo deassertion */
	ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
			  DATA_PUP_RD_RESET_DIS << DATA_PUP_RD_RESET_OFFS,
			  DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);

	return MV_OK;
}