// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include "ddr3_init.h"
#define WL_ITERATION_NUM 10
static u32 pup_mask_table[] = {
0x000000ff,
0x0000ff00,
0x00ff0000,
0xff000000
};
static struct write_supp_result wr_supp_res[MAX_INTERFACE_NUM][MAX_BUS_NUM];
static int ddr3_tip_dynamic_write_leveling_seq(u32 dev_num);
static int ddr3_tip_dynamic_read_leveling_seq(u32 dev_num);
static int ddr3_tip_dynamic_per_bit_read_leveling_seq(u32 dev_num);
static int ddr3_tip_wl_supp_align_phase_shift(u32 dev_num, u32 if_id,
u32 bus_id);
static int ddr3_tip_xsb_compare_test(u32 dev_num, u32 if_id, u32 bus_id,
u32 edge_offset);
u32 ddr3_tip_max_cs_get(u32 dev_num)
{
u32 c_cs, if_id, bus_id;
static u32 max_cs;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
if (!max_cs) {
CHECK_STATUS(ddr3_tip_get_first_active_if((u8)dev_num,
tm->if_act_mask,
&if_id));
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
break;
}
for (c_cs = 0; c_cs < NUM_OF_CS; c_cs++) {
VALIDATE_ACTIVE(tm->
interface_params[if_id].as_bus_params[bus_id].
cs_bitmask, c_cs);
max_cs++;
}
}
return max_cs;
}
enum {
PASS,
FAIL
};
/*****************************************************************************
Dynamic read leveling
******************************************************************************/
int ddr3_tip_dynamic_read_leveling(u32 dev_num, u32 freq)
{
u32 data, mask;
u32 max_cs = ddr3_tip_max_cs_get(dev_num);
u32 bus_num, if_id, cl_val;
enum hws_speed_bin speed_bin_index;
/* save current CS value */
u32 cs_enable_reg_val[MAX_INTERFACE_NUM] = { 0 };
int is_any_pup_fail = 0;
u32 data_read[MAX_INTERFACE_NUM + 1] = { 0 };
u8 rl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM];
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (effective_cs = 0; effective_cs < NUM_OF_CS; effective_cs++)
for (bus_num = 0; bus_num < MAX_BUS_NUM; bus_num++)
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++)
rl_values[effective_cs][bus_num][if_id] = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
/* save current cs enable reg val */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, cs_enable_reg_val,
MASK_ALL_BITS));
/* enable single cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, (1 << 3), (1 << 3)));
}
ddr3_tip_reset_fifo_ptr(dev_num);
/*
* Phase 1: Load pattern (using ODPG)
*
* enter Read Leveling mode
* only 27 bits are masked
* assuming non multi-CS configuration
* write to CS = 0 for the non multi CS configuration, note
* that the results shall be read back to the required CS !!!
*/
/* BUS count is 0 shifted 26 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0x3, 0x3));
CHECK_STATUS(ddr3_tip_configure_odpg
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0,
pattern_table[PATTERN_RL].num_of_phases_tx, 0,
pattern_table[PATTERN_RL].num_of_phases_rx, 0, 0,
effective_cs, STRESS_NONE, DURATION_SINGLE));
/* load pattern to ODPG */
ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, PATTERN_RL,
pattern_table[PATTERN_RL].
start_addr);
/*
* Phase 2: ODPG to Read Leveling mode
*/
/* General Training Opcode register */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_WR_RD_MODE_ENA_REG, 0,
MASK_ALL_BITS));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
GENERAL_TRAINING_OPCODE_REG,
(0x301b01 | effective_cs << 2), 0x3c3fef));
/* Object1 opcode register 0 & 1 */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
speed_bin_index =
tm->interface_params[if_id].speed_bin_index;
cl_val =
cas_latency_table[speed_bin_index].cl_val[freq];
data = (cl_val << 17) | (0x3 << 25);
mask = (0xff << 9) | (0x1f << 17) | (0x3 << 25);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
OPCODE_REG0_REG(1), data, mask));
}
/* Set iteration count to max value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
OPCODE_REG1_REG(1), 0xd00, 0xd00));
/*
* Phase 2: Mask config
*/
ddr3_tip_dynamic_read_leveling_seq(dev_num);
/*
* Phase 3: Read Leveling execution
*/
/* temporary jira dunit=14751 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_1_REG, 0, (u32)(1 << 31)));
/* configure phy reset value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_3_REG, (0x7f << 24),
(u32)(0xff << 24)));
/* data pup rd reset enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0, (1 << 30)));
/* data pup rd reset disable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, (1 << 30), (1 << 30)));
/* training SW override & training RL mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x1, 0x9));
/* training enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (1 << 24) | (1 << 20),
(1 << 24) | (1 << 20)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (u32)(1 << 31), (u32)(1 << 31)));
/* trigger training */
mv_ddr_training_enable();
/* check for training done */
if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, &data) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("training done failed\n"));
return MV_FAIL;
}
/* check for training pass */
if (data != PASS)
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("training result failed\n"));
/* disable odpg; switch back to functional mode */
mv_ddr_odpg_disable();
if (mv_ddr_is_odpg_done(MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("odpg disable failed\n"));
return MV_FAIL;
}
ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0, MASK_ALL_BITS);
/* double loop on bus, pup */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* check training done */
is_any_pup_fail = 0;
for (bus_num = 0;
bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST,
if_id, (1 << 25), (1 << 25),
mask_results_pup_reg_map[bus_num],
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("\n_r_l: DDR3 poll failed(2) for IF %d CS %d bus %d",
if_id, effective_cs, bus_num));
is_any_pup_fail = 1;
} else {
/* read result per pup */
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_pup_reg_map
[bus_num], data_read,
0xff));
rl_values[effective_cs][bus_num]
[if_id] = (u8)data_read[if_id];
}
}
if (is_any_pup_fail == 1) {
training_result[training_stage][if_id] =
TEST_FAILED;
if (debug_mode == 0)
return MV_FAIL;
}
}
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("RL exit read leveling\n"));
/*
* Phase 3: Exit Read Leveling
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, (1 << 3), (1 << 3)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_1_REG, (1 << 16), (1 << 16)));
/* set ODPG to functional */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));
/*
* Copy the result from the effective CS search to the
* real Functional CS
*/
/*ddr3_tip_write_cs_result(dev_num, RL_PHY_REG(0); */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
/* double loop on bus, pup */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0;
bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
/* read result per pup from arry */
data = rl_values[effective_cs][bus_num][if_id];
data = (data & 0x1f) |
(((data & 0xe0) >> 5) << 6);
ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
RL_PHY_REG(effective_cs),
data);
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* restore cs enable value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, cs_enable_reg_val[if_id],
MASK_ALL_BITS));
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_write_additional_odt_setting
(dev_num, if_id));
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
/*
* Legacy Dynamic write leveling
*/
int ddr3_tip_legacy_dynamic_write_leveling(u32 dev_num)
{
u32 c_cs, if_id, cs_mask = 0;
u32 max_cs = ddr3_tip_max_cs_get(dev_num);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/*
* In TRAINIUNG reg (0x15b0) write 0x80000008 | cs_mask:
* Trn_start
* cs_mask = 0x1 <<20 Trn_CS0 - CS0 is included in the DDR3 training
* cs_mask = 0x1 <<21 Trn_CS1 - CS1 is included in the DDR3 training
* cs_mask = 0x1 <<22 Trn_CS2 - CS2 is included in the DDR3 training
* cs_mask = 0x1 <<23 Trn_CS3 - CS3 is included in the DDR3 training
* Trn_auto_seq = write leveling
*/
for (c_cs = 0; c_cs < max_cs; c_cs++)
cs_mask = cs_mask | 1 << (20 + c_cs);
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, 0,
TRAINING_REG, (0x80000008 | cs_mask),
0xffffffff));
mdelay(20);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
(u32)0x80000000, TRAINING_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("polling failed for Old WL result\n"));
return MV_FAIL;
}
}
return MV_OK;
}
/*
* Legacy Dynamic read leveling
*/
int ddr3_tip_legacy_dynamic_read_leveling(u32 dev_num)
{
u32 c_cs, if_id, cs_mask = 0;
u32 max_cs = ddr3_tip_max_cs_get(dev_num);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/*
* In TRAINIUNG reg (0x15b0) write 0x80000040 | cs_mask:
* Trn_start
* cs_mask = 0x1 <<20 Trn_CS0 - CS0 is included in the DDR3 training
* cs_mask = 0x1 <<21 Trn_CS1 - CS1 is included in the DDR3 training
* cs_mask = 0x1 <<22 Trn_CS2 - CS2 is included in the DDR3 training
* cs_mask = 0x1 <<23 Trn_CS3 - CS3 is included in the DDR3 training
* Trn_auto_seq = Read Leveling using training pattern
*/
for (c_cs = 0; c_cs < max_cs; c_cs++)
cs_mask = cs_mask | 1 << (20 + c_cs);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, 0, TRAINING_REG,
(0x80000040 | cs_mask), 0xffffffff));
mdelay(100);
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
(u32)0x80000000, TRAINING_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("polling failed for Old RL result\n"));
return MV_FAIL;
}
}
return MV_OK;
}
/*
* Dynamic per bit read leveling
*/
int ddr3_tip_dynamic_per_bit_read_leveling(u32 dev_num, u32 freq)
{
u32 data, mask;
u32 bus_num, if_id, cl_val, bit_num;
u32 curr_numb, curr_min_delay;
int adll_array[3] = { 0, -0xa, 0x14 };
u32 phyreg3_arr[MAX_INTERFACE_NUM][MAX_BUS_NUM];
enum hws_speed_bin speed_bin_index;
int is_any_pup_fail = 0;
int break_loop = 0;
u32 cs_enable_reg_val[MAX_INTERFACE_NUM]; /* save current CS value */
u32 data_read[MAX_INTERFACE_NUM];
int per_bit_rl_pup_status[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u32 data2_write[MAX_INTERFACE_NUM][MAX_BUS_NUM];
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0;
bus_num <= octets_per_if_num; bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
per_bit_rl_pup_status[if_id][bus_num] = 0;
data2_write[if_id][bus_num] = 0;
/* read current value of phy register 0x3 */
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
CRX_PHY_REG(0),
&phyreg3_arr[if_id][bus_num]));
}
}
/* NEW RL machine */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
/* save current cs enable reg val */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, &cs_enable_reg_val[if_id],
MASK_ALL_BITS));
/* enable single cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, (1 << 3), (1 << 3)));
}
ddr3_tip_reset_fifo_ptr(dev_num);
for (curr_numb = 0; curr_numb < 3; curr_numb++) {
/*
* Phase 1: Load pattern (using ODPG)
*
* enter Read Leveling mode
* only 27 bits are masked
* assuming non multi-CS configuration
* write to CS = 0 for the non multi CS configuration, note that
* the results shall be read back to the required CS !!!
*/
/* BUS count is 0 shifted 26 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0x3, 0x3));
CHECK_STATUS(ddr3_tip_configure_odpg
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0,
pattern_table[PATTERN_TEST].num_of_phases_tx, 0,
pattern_table[PATTERN_TEST].num_of_phases_rx, 0,
0, 0, STRESS_NONE, DURATION_SINGLE));
/* load pattern to ODPG */
ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, PATTERN_TEST,
pattern_table[PATTERN_TEST].
start_addr);
/*
* Phase 2: ODPG to Read Leveling mode
*/
/* General Training Opcode register */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_WR_RD_MODE_ENA_REG, 0,
MASK_ALL_BITS));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
GENERAL_TRAINING_OPCODE_REG, 0x301b01, 0x3c3fef));
/* Object1 opcode register 0 & 1 */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
speed_bin_index =
tm->interface_params[if_id].speed_bin_index;
cl_val =
cas_latency_table[speed_bin_index].cl_val[freq];
data = (cl_val << 17) | (0x3 << 25);
mask = (0xff << 9) | (0x1f << 17) | (0x3 << 25);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
OPCODE_REG0_REG(1), data, mask));
}
/* Set iteration count to max value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
OPCODE_REG1_REG(1), 0xd00, 0xd00));
/*
* Phase 2: Mask config
*/
ddr3_tip_dynamic_per_bit_read_leveling_seq(dev_num);
/*
* Phase 3: Read Leveling execution
*/
/* temporary jira dunit=14751 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_1_REG, 0, (u32)(1 << 31)));
/* configure phy reset value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_3_REG, (0x7f << 24),
(u32)(0xff << 24)));
/* data pup rd reset enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0, (1 << 30)));
/* data pup rd reset disable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, (1 << 30), (1 << 30)));
/* training SW override & training RL mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x1, 0x9));
/* training enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (1 << 24) | (1 << 20),
(1 << 24) | (1 << 20)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (u32)(1 << 31), (u32)(1 << 31)));
/* trigger training */
mv_ddr_training_enable();
/* check for training done */
if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, &data) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("training done failed\n"));
return MV_FAIL;
}
/* check for training pass */
if (data != PASS)
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("training result failed\n"));
/* disable odpg; switch back to functional mode */
mv_ddr_odpg_disable();
if (mv_ddr_is_odpg_done(MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("odpg disable failed\n"));
return MV_FAIL;
}
ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0, MASK_ALL_BITS);
/* double loop on bus, pup */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* check training done */
for (bus_num = 0;
bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
if (per_bit_rl_pup_status[if_id][bus_num]
== 0) {
curr_min_delay = 0;
for (bit_num = 0; bit_num < 8;
bit_num++) {
if (ddr3_tip_if_polling
(dev_num,
ACCESS_TYPE_UNICAST,
if_id, (1 << 25),
(1 << 25),
mask_results_dq_reg_map
[bus_num * 8 + bit_num],
MAX_POLLING_ITERATIONS) !=
MV_OK) {
DEBUG_LEVELING
(DEBUG_LEVEL_ERROR,
("\n_r_l: DDR3 poll failed(2) for bus %d bit %d\n",
bus_num,
bit_num));
} else {
/* read result per pup */
CHECK_STATUS
(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_dq_reg_map
[bus_num * 8 +
bit_num],
data_read,
MASK_ALL_BITS));
data =
(data_read
[if_id] &
0x1f) |
((data_read
[if_id] &
0xe0) << 1);
if (curr_min_delay == 0)
curr_min_delay =
data;
else if (data <
curr_min_delay)
curr_min_delay =
data;
if (data > data2_write[if_id][bus_num])
data2_write
[if_id]
[bus_num] =
data;
}
}
if (data2_write[if_id][bus_num] <=
(curr_min_delay +
MAX_DQ_READ_LEVELING_DELAY)) {
per_bit_rl_pup_status[if_id]
[bus_num] = 1;
}
}
}
}
/* check if there is need to search new phyreg3 value */
if (curr_numb < 2) {
/* if there is DLL that is not checked yet */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1;
if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0;
bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask,
bus_num);
if (per_bit_rl_pup_status[if_id]
[bus_num] != 1) {
/* go to next ADLL value */
CHECK_STATUS
(ddr3_tip_bus_write
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
CRX_PHY_REG(0),
(phyreg3_arr[if_id]
[bus_num] +
adll_array[curr_numb])));
break_loop = 1;
break;
}
}
if (break_loop)
break;
}
} /* if (curr_numb < 2) */
if (!break_loop)
break;
} /* for ( curr_numb = 0; curr_numb <3; curr_numb++) */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0; bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
if (per_bit_rl_pup_status[if_id][bus_num] == 1)
ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
RL_PHY_REG(effective_cs),
data2_write[if_id]
[bus_num]);
else
is_any_pup_fail = 1;
}
/* TBD flow does not support multi CS */
/*
* cs_bitmask = tm->interface_params[if_id].
* as_bus_params[bus_num].cs_bitmask;
*/
/* divide by 4 is used for retrieving the CS number */
/*
* TBD BC2 - what is the PHY address for other
* CS ddr3_tip_write_cs_result() ???
*/
/*
* find what should be written to PHY
* - max delay that is less than threshold
*/
if (is_any_pup_fail == 1) {
training_result[training_stage][if_id] = TEST_FAILED;
if (debug_mode == 0)
return MV_FAIL;
}
}
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("RL exit read leveling\n"));
/*
* Phase 3: Exit Read Leveling
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, (1 << 3), (1 << 3)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_1_REG, (1 << 16), (1 << 16)));
/* set ODPG to functional */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));
/*
* Copy the result from the effective CS search to the real
* Functional CS
*/
ddr3_tip_write_cs_result(dev_num, RL_PHY_REG(0));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0x0, MASK_ALL_BITS));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* restore cs enable value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, cs_enable_reg_val[if_id],
MASK_ALL_BITS));
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_write_additional_odt_setting
(dev_num, if_id));
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
int ddr3_tip_calc_cs_mask(u32 dev_num, u32 if_id, u32 effective_cs,
u32 *cs_mask)
{
u32 all_bus_cs = 0, same_bus_cs;
u32 bus_cnt;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
*cs_mask = same_bus_cs = CS_BIT_MASK;
/*
* In some of the devices (such as BC2), the CS is per pup and there
* for mixed mode is valid on like other devices where CS configuration
* is per interface.
* In order to know that, we do 'Or' and 'And' operation between all
* CS (of the pups).
* If they are they are not the same then it's mixed mode so all CS
* should be configured (when configuring the MRS)
*/
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
all_bus_cs |= tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
same_bus_cs &= tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
/* cs enable is active low */
*cs_mask &= ~tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
}
if (all_bus_cs == same_bus_cs)
*cs_mask = (*cs_mask | (~(1 << effective_cs))) & CS_BIT_MASK;
return MV_OK;
}
/*
* Dynamic write leveling
*/
int ddr3_tip_dynamic_write_leveling(u32 dev_num, int phase_remove)
{
u32 reg_data = 0, temp = 0, iter, if_id, bus_cnt;
u32 cs_enable_reg_val[MAX_INTERFACE_NUM] = { 0 };
u32 cs_mask[MAX_INTERFACE_NUM];
u32 read_data_sample_delay_vals[MAX_INTERFACE_NUM] = { 0 };
u32 read_data_ready_delay_vals[MAX_INTERFACE_NUM] = { 0 };
/* 0 for failure */
u32 res_values[MAX_INTERFACE_NUM * MAX_BUS_NUM] = { 0 };
u32 test_res = 0; /* 0 - success for all pup */
u32 data_read[MAX_INTERFACE_NUM];
u8 wl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM];
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u32 cs_mask0[MAX_INTERFACE_NUM] = { 0 };
u32 max_cs = ddr3_tip_max_cs_get(dev_num);
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
/* save Read Data Sample Delay */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
RD_DATA_SMPL_DLYS_REG,
read_data_sample_delay_vals, MASK_ALL_BITS));
/* save Read Data Ready Delay */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
RD_DATA_RDY_DLYS_REG, read_data_ready_delay_vals,
MASK_ALL_BITS));
/* save current cs reg val */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, cs_enable_reg_val, MASK_ALL_BITS));
}
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) < MV_TIP_REV_3) {
/* Enable multi-CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, 0, (1 << 3)));
}
/*
* Phase 1: DRAM 2 Write Leveling mode
*/
/*Assert 10 refresh commands to DRAM to all CS */
for (iter = 0; iter < WL_ITERATION_NUM; iter++) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, SDRAM_OP_REG,
(u32)((~(0xf) << 8) | 0x2), 0xf1f));
}
}
/* check controller back to normal */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f,
SDRAM_OP_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("WL: DDR3 poll failed(3)"));
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
/*enable write leveling to all cs - Q off , WL n */
/* calculate interface cs mask */
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MR_CMD1,
0x1000, 0x1080));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* cs enable is active low */
ddr3_tip_calc_cs_mask(dev_num, if_id, effective_cs,
&cs_mask[if_id]);
}
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
/* Enable Output buffer to relevant CS - Q on , WL on */
CHECK_STATUS(ddr3_tip_write_mrs_cmd
(dev_num, cs_mask, MR_CMD1, 0x80, 0x1080));
/*enable odt for relevant CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
0x1498, (0x3 << (effective_cs * 2)), 0xf));
} else {
/* FIXME: should be the same as _CPU case */
CHECK_STATUS(ddr3_tip_write_mrs_cmd
(dev_num, cs_mask, MR_CMD1, 0xc0, 0x12c4));
}
/*
* Phase 2: Set training IP to write leveling mode
*/
CHECK_STATUS(ddr3_tip_dynamic_write_leveling_seq(dev_num));
/* phase 3: trigger training */
mv_ddr_training_enable();
/* check for training done */
if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, data_read) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR, ("training done failed\n"));
} else { /* check for training pass */
reg_data = data_read[0];
#if defined(CONFIG_ARMADA_38X) /* JIRA #1498 for 16 bit with ECC */
if (tm->bus_act_mask == 0xb) /* set to data to 0 to skip the check */
reg_data = 0;
#endif
if (reg_data != PASS)
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("training result failed\n"));
/* check for training completion per bus */
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
/* training status */
ddr3_tip_if_read(0, ACCESS_TYPE_UNICAST, 0,
mask_results_pup_reg_map[bus_cnt],
data_read, MASK_ALL_BITS);
reg_data = data_read[0];
DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("WL: IF %d BUS %d reg 0x%x\n",
0, bus_cnt, reg_data));
if ((reg_data & (1 << 25)) == 0)
res_values[bus_cnt] = 1;
ddr3_tip_if_read(0, ACCESS_TYPE_UNICAST, 0,
mask_results_pup_reg_map[bus_cnt],
data_read, 0xff);
/*
* Save the read value that should be
* write to PHY register
*/
wl_values[effective_cs][bus_cnt][0] = (u8)data_read[0];
}
}
/*
* Phase 3.5: Validate result
*/
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
/*
* Read result control register according to subphy
* "16" below is for a half-phase
*/
reg_data = wl_values[effective_cs][bus_cnt][if_id] + 16;
/*
* Write to WL register: ADLL [4:0], Phase [8:6],
* Centralization ADLL [15:10] + 0x10
*/
reg_data = (reg_data & 0x1f) |
(((reg_data & 0xe0) >> 5) << 6) |
(((reg_data & 0x1f) + phy_reg1_val) << 10);
/* Search with WL CS0 subphy reg */
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_cnt,
DDR_PHY_DATA, WL_PHY_REG(0), reg_data);
/*
* Check for change in data read from DRAM.
* If changed, fix the result
*/
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
TRAINING_WL_REG,
data_read, MASK_ALL_BITS));
if (((data_read[if_id] & (1 << (bus_cnt + 20))) >>
(bus_cnt + 20)) == 0) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WLValues was changed from 0x%X",
wl_values[effective_cs]
[bus_cnt][if_id]));
wl_values[effective_cs]
[bus_cnt][if_id] += 32;
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("to 0x%X",
wl_values[effective_cs]
[bus_cnt][if_id]));
}
}
}
/*
* Phase 4: Exit write leveling mode
*/
/* disable DQs toggling */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
WL_DQS_PATTERN_REG, 0x0, 0x1));
/* Update MRS 1 (WL off) */
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MR_CMD1,
0x1000, 0x1080));
} else {
/* FIXME: should be same as _CPU case */
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MR_CMD1,
0x1000, 0x12c4));
}
/* Update MRS 1 (return to functional mode - Q on , WL off) */
CHECK_STATUS(ddr3_tip_write_mrs_cmd
(dev_num, cs_mask0, MR_CMD1, 0x0, 0x1080));
/* set phy to normal mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x5, 0x7));
/* exit sw override mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x4, 0x7));
}
/*
* Phase 5: Load WL values to each PHY
*/
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
test_res = 0;
for (bus_cnt = 0;
bus_cnt < octets_per_if_num;
bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
/* check if result == pass */
if (res_values
[(if_id *
octets_per_if_num) +
bus_cnt] == 0) {
/*
* read result control register
* according to pup
*/
reg_data =
wl_values[effective_cs][bus_cnt]
[if_id];
/*
* Write into write leveling register
* ([4:0] ADLL, [8:6] Phase, [15:10]
* (centralization) ADLL + 0x10)
*/
reg_data =
(reg_data & 0x1f) |
(((reg_data & 0xe0) >> 5) << 6) |
(((reg_data & 0x1f) +
phy_reg1_val) << 10);
/*
* in case phase remove should be executed
* need to remove more than one phase.
* this will take place only in low frequency,
* where there could be more than one phase between sub-phys
*/
if (phase_remove == 1) {
temp = (reg_data >> WR_LVL_PH_SEL_OFFS) & WR_LVL_PH_SEL_PHASE1;
reg_data &= ~(WR_LVL_PH_SEL_MASK << WR_LVL_PH_SEL_OFFS);
reg_data |= (temp << WR_LVL_PH_SEL_OFFS);
}
ddr3_tip_bus_write(
dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_cnt,
DDR_PHY_DATA,
WL_PHY_REG(effective_cs),
reg_data);
} else {
test_res = 1;
/*
* read result control register
* according to pup
*/
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_pup_reg_map
[bus_cnt], data_read,
0xff));
reg_data = data_read[if_id];
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL: IF %d BUS %d failed, reg 0x%x\n",
if_id, bus_cnt, reg_data));
}
}
if (test_res != 0) {
training_result[training_stage][if_id] =
TEST_FAILED;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
/*
* Copy the result from the effective CS search to the real
* Functional CS
*/
/* ddr3_tip_write_cs_result(dev_num, WL_PHY_REG(0); */
/* restore saved values */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* restore Read Data Sample Delay */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
RD_DATA_SMPL_DLYS_REG,
read_data_sample_delay_vals[if_id],
MASK_ALL_BITS));
/* restore Read Data Ready Delay */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
RD_DATA_RDY_DLYS_REG,
read_data_ready_delay_vals[if_id],
MASK_ALL_BITS));
/* enable multi cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, cs_enable_reg_val[if_id],
MASK_ALL_BITS));
}
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
/* Disable modt0 for CS0 training - need to adjust for multi-CS
* in case of ddr4 set 0xf else 0
*/
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_ODT_CTRL_HIGH_REG, 0x0, 0xf));
}
else {
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_ODT_CTRL_HIGH_REG, 0xf, 0xf));
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
/*
* Dynamic write leveling supplementary
*/
int ddr3_tip_dynamic_write_leveling_supp(u32 dev_num)
{
int adll_offset;
u32 if_id, bus_id, data, data_tmp;
int is_if_fail = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
is_if_fail = 0;
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
wr_supp_res[if_id][bus_id].is_pup_fail = 1;
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
&data));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: adll_offset=0 data delay = %d\n",
data));
if (ddr3_tip_wl_supp_align_phase_shift
(dev_num, if_id, bus_id) == MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d adll_offset=0 Success !\n",
if_id, bus_id));
continue;
}
/* change adll */
adll_offset = 5;
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
data + adll_offset));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
&data_tmp));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: adll_offset= %d data delay = %d\n",
adll_offset, data_tmp));
if (ddr3_tip_wl_supp_align_phase_shift
(dev_num, if_id, bus_id) == MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d adll_offset= %d Success !\n",
if_id, bus_id, adll_offset));
continue;
}
/* change adll */
adll_offset = -5;
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
data + adll_offset));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
&data_tmp));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: adll_offset= %d data delay = %d\n",
adll_offset, data_tmp));
if (ddr3_tip_wl_supp_align_phase_shift
(dev_num, if_id, bus_id) == MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d adll_offset= %d Success !\n",
if_id, bus_id, adll_offset));
continue;
} else {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL Supp: IF %d bus_id %d Failed !\n",
if_id, bus_id));
is_if_fail = 1;
}
}
if (is_if_fail == 1) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("WL Supp: CS# %d: IF %d failed\n",
effective_cs, if_id));
training_result[training_stage][if_id] = TEST_FAILED;
} else {
training_result[training_stage][if_id] = TEST_SUCCESS;
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
/*
* Phase Shift
*/
static int ddr3_tip_wl_supp_align_phase_shift(u32 dev_num, u32 if_id,
u32 bus_id)
{
u32 original_phase;
u32 data, write_data;
wr_supp_res[if_id][bus_id].stage = PHASE_SHIFT;
if (ddr3_tip_xsb_compare_test
(dev_num, if_id, bus_id, 0) == MV_OK)
return MV_OK;
/* Read current phase */
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA, WL_PHY_REG(effective_cs), &data));
original_phase = (data >> 6) & 0x7;
/* Set phase (0x0[6-8]) -2 */
if (original_phase >= 1) {
if (original_phase == 1)
write_data = data & ~0x1df;
else
write_data = (data & ~0x1c0) |
((original_phase - 2) << 6);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), write_data);
if (ddr3_tip_xsb_compare_test
(dev_num, if_id, bus_id, -2) == MV_OK)
return MV_OK;
}
/* Set phase (0x0[6-8]) +2 */
if (original_phase <= 5) {
write_data = (data & ~0x1c0) |
((original_phase + 2) << 6);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), write_data);
if (ddr3_tip_xsb_compare_test
(dev_num, if_id, bus_id, 2) == MV_OK)
return MV_OK;
}
/* Set phase (0x0[6-8]) +4 */
if (original_phase <= 3) {
write_data = (data & ~0x1c0) |
((original_phase + 4) << 6);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), write_data);
if (ddr3_tip_xsb_compare_test
(dev_num, if_id, bus_id, 4) == MV_OK)
return MV_OK;
}
/* Set phase (0x0[6-8]) +6 */
if (original_phase <= 1) {
write_data = (data & ~0x1c0) |
((original_phase + 6) << 6);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), write_data);
if (ddr3_tip_xsb_compare_test
(dev_num, if_id, bus_id, 6) == MV_OK)
return MV_OK;
}
/* Write original WL result back */
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), data);
wr_supp_res[if_id][bus_id].is_pup_fail = 1;
return MV_FAIL;
}
/*
* Compare Test
*/
static int ddr3_tip_xsb_compare_test(u32 dev_num, u32 if_id, u32 bus_id,
u32 edge_offset)
{
u32 num_of_succ_byte_compare, word_in_pattern;
u32 word_offset, i, num_of_word_mult;
u32 read_pattern[TEST_PATTERN_LENGTH * 2];
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u32 pattern_test_pattern_table[8];
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* 3 below for INTERFACE_BUS_MASK_16BIT */
num_of_word_mult = (tm->bus_act_mask == 3) ? 1 : 2;
for (i = 0; i < 8; i++) {
pattern_test_pattern_table[i] =
pattern_table_get_word(dev_num, PATTERN_TEST, (u8)i);
}
/* External write, read and compare */
CHECK_STATUS(ddr3_tip_load_pattern_to_mem(dev_num, PATTERN_TEST));
CHECK_STATUS(ddr3_tip_reset_fifo_ptr(dev_num));
CHECK_STATUS(ddr3_tip_ext_read
(dev_num, if_id,
((pattern_table[PATTERN_TEST].start_addr << 3) +
((SDRAM_CS_SIZE + 1) * effective_cs)), 1, read_pattern));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt CS#%d: IF %d bus_id %d 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, if_id, bus_id,
read_pattern[0], read_pattern[1],
read_pattern[2], read_pattern[3],
read_pattern[4], read_pattern[5],
read_pattern[6], read_pattern[7]));
/* compare byte per pup */
num_of_succ_byte_compare = 0;
for (word_in_pattern = start_xsb_offset;
word_in_pattern < (TEST_PATTERN_LENGTH * num_of_word_mult);
word_in_pattern++) {
word_offset = word_in_pattern;
if ((word_offset > (TEST_PATTERN_LENGTH * 2 - 1)))
continue;
if ((read_pattern[word_in_pattern] & pup_mask_table[bus_id]) ==
(pattern_test_pattern_table[word_offset] &
pup_mask_table[bus_id]))
num_of_succ_byte_compare++;
}
if ((TEST_PATTERN_LENGTH * num_of_word_mult - start_xsb_offset) ==
num_of_succ_byte_compare) {
wr_supp_res[if_id][bus_id].stage = edge_offset;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("supplementary: shift to %d for if %d pup %d success\n",
edge_offset, if_id, bus_id));
wr_supp_res[if_id][bus_id].is_pup_fail = 0;
return MV_OK;
} else {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt CS#%d: IF %d bus_id %d num_of_succ_byte_compare %d - Fail!\n",
effective_cs, if_id, bus_id, num_of_succ_byte_compare));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: expected 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
pattern_test_pattern_table[0],
pattern_test_pattern_table[1],
pattern_test_pattern_table[2],
pattern_test_pattern_table[3],
pattern_test_pattern_table[4],
pattern_test_pattern_table[5],
pattern_test_pattern_table[6],
pattern_test_pattern_table[7]));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: recieved 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
read_pattern[0], read_pattern[1],
read_pattern[2], read_pattern[3],
read_pattern[4], read_pattern[5],
read_pattern[6], read_pattern[7]));
return MV_FAIL;
}
}
/*
* Dynamic write leveling sequence
*/
static int ddr3_tip_dynamic_write_leveling_seq(u32 dev_num)
{
u32 bus_id, dq_id;
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x1, 0x5));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_WL_REG, 0x50, 0xff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_WL_REG, 0x5c, 0xff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
GENERAL_TRAINING_OPCODE_REG, 0x381b82, 0x3c3faf));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
OPCODE_REG0_REG(1), (0x3 << 25), (0x3ffff << 9)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
OPCODE_REG1_REG(1), 0x80, 0xffff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
WL_DONE_CNTR_REF_REG, 0x14, 0xff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_WL_REG, 0xff5c, 0xffff));
/* mask PBS */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x1 << 24,
0x1 << 24));
}
/* Mask all results */
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0x1 << 24,
0x1 << 24));
}
/* Unmask only wanted */
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0, 0x1 << 24));
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
WL_DQS_PATTERN_REG, 0x1, 0x1));
return MV_OK;
}
/*
* Dynamic read leveling sequence
*/
static int ddr3_tip_dynamic_read_leveling_seq(u32 dev_num)
{
u32 bus_id, dq_id;
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* mask PBS */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x1 << 24,
0x1 << 24));
}
/* Mask all results */
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0x1 << 24,
0x1 << 24));
}
/* Unmask only wanted */
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0, 0x1 << 24));
}
return MV_OK;
}
/*
* Dynamic read leveling sequence
*/
static int ddr3_tip_dynamic_per_bit_read_leveling_seq(u32 dev_num)
{
u32 bus_id, dq_id;
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* mask PBS */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x1 << 24,
0x1 << 24));
}
/* Mask all results */
for (bus_id = 0; bus_id < octets_per_if_num; bus_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0x1 << 24,
0x1 << 24));
}
/* Unmask only wanted */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, dq_id / 8);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x0 << 24,
0x1 << 24));
}
return MV_OK;
}
/*
* Print write leveling supplementary results
*/
int ddr3_tip_print_wl_supp_result(u32 dev_num)
{
u32 bus_id = 0, if_id = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("I/F0 PUP0 Result[0 - success, 1-fail] ...\n"));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0; bus_id < octets_per_if_num;
bus_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("%d ,", wr_supp_res[if_id]
[bus_id].is_pup_fail));
}
}
DEBUG_LEVELING(
DEBUG_LEVEL_INFO,
("I/F0 PUP0 Stage[0-phase_shift, 1-clock_shift, 2-align_shift] ...\n"));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0; bus_id < octets_per_if_num;
bus_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_id);
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("%d ,", wr_supp_res[if_id]
[bus_id].stage));
}
}
return MV_OK;
}
#define RD_FIFO_PTR_LOW_STAT_INDIR_ADDR 0x9a
#define RD_FIFO_PTR_HIGH_STAT_INDIR_ADDR 0x9b
/* position of falling dqs edge in fifo; walking 1 */
#define RD_FIFO_DQS_FALL_EDGE_POS_0 0x1
#define RD_FIFO_DQS_FALL_EDGE_POS_1 0x2
#define RD_FIFO_DQS_FALL_EDGE_POS_2 0x4
#define RD_FIFO_DQS_FALL_EDGE_POS_3 0x8
#define RD_FIFO_DQS_FALL_EDGE_POS_4 0x10 /* lock */
/* position of rising dqs edge in fifo; walking 0 */
#define RD_FIFO_DQS_RISE_EDGE_POS_0 0x1fff
#define RD_FIFO_DQS_RISE_EDGE_POS_1 0x3ffe
#define RD_FIFO_DQS_RISE_EDGE_POS_2 0x3ffd
#define RD_FIFO_DQS_RISE_EDGE_POS_3 0x3ffb
#define RD_FIFO_DQS_RISE_EDGE_POS_4 0x3ff7 /* lock */
#define TEST_ADDR 0x8
#define TAPS_PER_UI 32
#define UI_PER_RD_SAMPLE 4
#define TAPS_PER_RD_SAMPLE ((UI_PER_RD_SAMPLE) * (TAPS_PER_UI))
#define MAX_RD_SAMPLES 32
#define MAX_RL_VALUE ((MAX_RD_SAMPLES) * (TAPS_PER_RD_SAMPLE))
#define RD_FIFO_DLY 8
#define STEP_SIZE 64
#define RL_JITTER_WIDTH_LMT 20
#define ADLL_TAPS_IN_CYCLE 64
enum rl_dqs_burst_state {
RL_AHEAD = 0,
RL_INSIDE,
RL_BEHIND
};
int mv_ddr_rl_dqs_burst(u32 dev_num, u32 if_id, u32 freq)
{
enum rl_dqs_burst_state rl_state[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
enum hws_ddr_phy subphy_type = DDR_PHY_DATA;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
int cl_val = tm->interface_params[0].cas_l;
int rl_adll_val, rl_phase_val, sdr_cycle_incr, rd_sample, rd_ready;
int final_rd_sample, final_rd_ready;
int i, subphy_id, step;
int pass_lock_num = 0;
int init_pass_lock_num;
int phase_delta;
int min_phase, max_phase;
u32 max_cs = ddr3_tip_max_cs_get(dev_num);
u32 rl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
u32 rl_min_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
u32 rl_max_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM] = { { {0} } };
u32 rl_val, rl_min_val[NUM_OF_CS], rl_max_val[NUM_OF_CS];
u32 reg_val_low, reg_val_high;
u32 reg_val, reg_mask;
uintptr_t test_addr = TEST_ADDR;
/* initialization */
if (ddr3_if_ecc_enabled()) {
ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST, if_id, TRAINING_SW_2_REG,
®_val, MASK_ALL_BITS);
reg_mask = (TRAINING_ECC_MUX_MASK << TRAINING_ECC_MUX_OFFS) |
(TRAINING_SW_OVRD_MASK << TRAINING_SW_OVRD_OFFS);
reg_val &= ~reg_mask;
reg_val |= (TRAINING_ECC_MUX_DIS << TRAINING_ECC_MUX_OFFS) |
(TRAINING_SW_OVRD_ENA << TRAINING_SW_OVRD_OFFS);
ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, TRAINING_SW_2_REG,
reg_val, MASK_ALL_BITS);
ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST, if_id, TRAINING_REG,
®_val, MASK_ALL_BITS);
reg_mask = (TRN_START_MASK << TRN_START_OFFS);
reg_val &= ~reg_mask;
reg_val |= TRN_START_ENA << TRN_START_OFFS;
ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, TRAINING_REG,
reg_val, MASK_ALL_BITS);
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++)
for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++)
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++)
if (IS_BUS_ACTIVE(tm->bus_act_mask, subphy_id) == 0)
pass_lock_num++; /* increment on inactive subphys */
init_pass_lock_num = pass_lock_num / max_cs;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
}
}
/* search for dqs edges per subphy */
if_id = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
pass_lock_num = init_pass_lock_num;
ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_DATA_CTRL_REG,
effective_cs << ODPG_DATA_CS_OFFS,
ODPG_DATA_CS_MASK << ODPG_DATA_CS_OFFS);
rl_min_val[effective_cs] = MAX_RL_VALUE;
rl_max_val[effective_cs] = 0;
step = STEP_SIZE;
for (i = 0; i < MAX_RL_VALUE; i += step) {
rl_val = 0;
sdr_cycle_incr = i / TAPS_PER_RD_SAMPLE; /* sdr cycle increment */
rd_sample = cl_val + 2 * sdr_cycle_incr;
/* fifo out to in delay in search is constant */
rd_ready = rd_sample + RD_FIFO_DLY;
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_SMPL_DLYS_REG,
rd_sample << RD_SMPL_DLY_CS_OFFS(effective_cs),
RD_SMPL_DLY_CS_MASK << RD_SMPL_DLY_CS_OFFS(effective_cs));
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_RDY_DLYS_REG,
rd_ready << RD_RDY_DLY_CS_OFFS(effective_cs),
RD_RDY_DLY_CS_MASK << RD_RDY_DLY_CS_OFFS(effective_cs));
/* one sdr (single data rate) cycle incremented on every four phases of ddr clock */
sdr_cycle_incr = i % TAPS_PER_RD_SAMPLE;
rl_adll_val = sdr_cycle_incr % MAX_RD_SAMPLES;
rl_phase_val = sdr_cycle_incr / MAX_RD_SAMPLES;
rl_val = ((rl_adll_val & RL_REF_DLY_MASK) << RL_REF_DLY_OFFS) |
((rl_phase_val & RL_PH_SEL_MASK) << RL_PH_SEL_OFFS);
/* write to all subphys (even to not connected or locked) */
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST,
0, DDR_PHY_DATA, RL_PHY_REG(effective_cs), rl_val);
/* reset read fifo assertion */
ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
DATA_PUP_RD_RESET_ENA << DATA_PUP_RD_RESET_OFFS,
DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);
/* reset read fifo deassertion */
ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
DATA_PUP_RD_RESET_DIS << DATA_PUP_RD_RESET_OFFS,
DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);
/* perform one read burst */
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask))
readq(test_addr);
else
readl(test_addr);
/* progress read ptr; decide on rl state per byte */
for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++) {
if (rl_state[effective_cs][subphy_id][if_id] == RL_BEHIND)
continue; /* skip locked subphys */
ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_id, DDR_PHY_DATA,
RD_FIFO_PTR_LOW_STAT_INDIR_ADDR, ®_val_low);
ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_id, DDR_PHY_DATA,
RD_FIFO_PTR_HIGH_STAT_INDIR_ADDR, ®_val_high);
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("%s: cs %d, step %d, subphy %d, state %d, low 0x%04x, high 0x%04x; move to ",
__func__, effective_cs, i, subphy_id,
rl_state[effective_cs][subphy_id][if_id],
reg_val_low, reg_val_high));
switch (rl_state[effective_cs][subphy_id][if_id]) {
case RL_AHEAD:
/* improve search resolution getting closer to the window */
if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_4 &&
reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_4) {
rl_state[effective_cs][subphy_id][if_id] = RL_INSIDE;
rl_values[effective_cs][subphy_id][if_id] = i;
rl_min_values[effective_cs][subphy_id][if_id] = i;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("new state %d\n",
rl_state[effective_cs][subphy_id][if_id]));
} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_3 &&
reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_3) {
step = (step < 2) ? step : 2;
} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_2 &&
reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_2) {
step = (step < 16) ? step : 16;
} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_1 &&
reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_1) {
step = (step < 32) ? step : 32;
} else if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_0 &&
reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_0) {
step = (step < 64) ? step : 64;
} else {
/* otherwise, step is unchanged */
}
break;
case RL_INSIDE:
if (reg_val_low == RD_FIFO_DQS_FALL_EDGE_POS_4 &&
reg_val_high == RD_FIFO_DQS_RISE_EDGE_POS_4) {
rl_max_values[effective_cs][subphy_id][if_id] = i;
if ((rl_max_values[effective_cs][subphy_id][if_id] -
rl_min_values[effective_cs][subphy_id][if_id]) >
ADLL_TAPS_IN_CYCLE) {
rl_state[effective_cs][subphy_id][if_id] = RL_BEHIND;
rl_values[effective_cs][subphy_id][if_id] =
(i + rl_values[effective_cs][subphy_id][if_id]) / 2;
pass_lock_num++;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("new lock %d\n", pass_lock_num));
if (rl_min_val[effective_cs] >
rl_values[effective_cs][subphy_id][if_id])
rl_min_val[effective_cs] =
rl_values[effective_cs][subphy_id][if_id];
if (rl_max_val[effective_cs] <
rl_values[effective_cs][subphy_id][if_id])
rl_max_val[effective_cs] =
rl_values[effective_cs][subphy_id][if_id];
step = 2;
}
}
if (reg_val_low != RD_FIFO_DQS_FALL_EDGE_POS_4 ||
reg_val_high != RD_FIFO_DQS_RISE_EDGE_POS_4) {
if ((i - rl_values[effective_cs][subphy_id][if_id]) <
RL_JITTER_WIDTH_LMT) {
/* inside the jitter; not valid segment */
rl_state[effective_cs][subphy_id][if_id] = RL_AHEAD;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("new state %d; jitter on mask\n",
rl_state[effective_cs][subphy_id][if_id]));
} else { /* finished valid segment */
rl_state[effective_cs][subphy_id][if_id] = RL_BEHIND;
rl_values[effective_cs][subphy_id][if_id] =
(i + rl_values[effective_cs][subphy_id][if_id]) / 2;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("new state %d, solution %d\n",
rl_state[effective_cs][subphy_id][if_id],
rl_values[effective_cs][subphy_id][if_id]));
pass_lock_num++;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("new lock %d\n", pass_lock_num));
if (rl_min_val[effective_cs] >
rl_values[effective_cs][subphy_id][if_id])
rl_min_val[effective_cs] =
rl_values[effective_cs][subphy_id][if_id];
if (rl_max_val[effective_cs] <
rl_values[effective_cs][subphy_id][if_id])
rl_max_val[effective_cs] =
rl_values[effective_cs][subphy_id][if_id];
step = 2;
}
}
break;
case RL_BEHIND: /* do nothing */
break;
}
DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("\n"));
}
DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("pass_lock_num %d\n", pass_lock_num));
/* exit condition */
if (pass_lock_num == MAX_BUS_NUM)
break;
} /* for-loop on i */
if (pass_lock_num != MAX_BUS_NUM) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("%s: cs %d, pass_lock_num %d, max_bus_num %d, init_pass_lock_num %d\n",
__func__, effective_cs, pass_lock_num, MAX_BUS_NUM, init_pass_lock_num));
for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_id);
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("%s: subphy %d %s\n",
__func__, subphy_id,
(rl_state[effective_cs][subphy_id][if_id] == RL_BEHIND) ?
"locked" : "not locked"));
}
}
} /* for-loop on effective_cs */
/* post-processing read leveling results */
if_id = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
phase_delta = 0;
i = rl_min_val[effective_cs];
sdr_cycle_incr = i / TAPS_PER_RD_SAMPLE; /* sdr cycle increment */
rd_sample = cl_val + 2 * sdr_cycle_incr;
rd_ready = rd_sample + RD_FIFO_DLY;
min_phase = (rl_min_val[effective_cs] - (sdr_cycle_incr * TAPS_PER_RD_SAMPLE)) % MAX_RD_SAMPLES;
max_phase = (rl_max_val[effective_cs] - (sdr_cycle_incr * TAPS_PER_RD_SAMPLE)) % MAX_RD_SAMPLES;
final_rd_sample = rd_sample;
final_rd_ready = rd_ready;
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_SMPL_DLYS_REG,
rd_sample << RD_SMPL_DLY_CS_OFFS(effective_cs),
RD_SMPL_DLY_CS_MASK << RD_SMPL_DLY_CS_OFFS(effective_cs));
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, RD_DATA_RDY_DLYS_REG,
rd_ready << RD_RDY_DLY_CS_OFFS(effective_cs),
RD_RDY_DLY_CS_MASK << RD_RDY_DLY_CS_OFFS(effective_cs));
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("%s: cs %d, min phase %d, max phase %d, read sample %d\n",
__func__, effective_cs, min_phase, max_phase, rd_sample));
for (subphy_id = 0; subphy_id < MAX_BUS_NUM; subphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_id);
/* reduce sdr cycle per cs; extract rl adll and phase values */
i = rl_values[effective_cs][subphy_id][if_id] - (sdr_cycle_incr * TAPS_PER_RD_SAMPLE);
rl_adll_val = i % MAX_RD_SAMPLES;
rl_phase_val = i / MAX_RD_SAMPLES;
rl_phase_val -= phase_delta;
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("%s: final results: cs %d, subphy %d, read sample %d read ready %d, rl_phase_val %d, rl_adll_val %d\n",
__func__, effective_cs, subphy_id, final_rd_sample,
final_rd_ready, rl_phase_val, rl_adll_val));
rl_val = ((rl_adll_val & RL_REF_DLY_MASK) << RL_REF_DLY_OFFS) |
((rl_phase_val & RL_PH_SEL_MASK) << RL_PH_SEL_OFFS);
ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_UNICAST,
subphy_id, subphy_type, RL_PHY_REG(effective_cs), rl_val);
}
} /* for-loop on effective cs */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (odt_config != 0)
CHECK_STATUS(ddr3_tip_write_additional_odt_setting(dev_num, if_id));
}
/* reset read fifo assertion */
ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
DATA_PUP_RD_RESET_ENA << DATA_PUP_RD_RESET_OFFS,
DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);
/* reset read fifo deassertion */
ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, SDRAM_CFG_REG,
DATA_PUP_RD_RESET_DIS << DATA_PUP_RD_RESET_OFFS,
DATA_PUP_RD_RESET_MASK << DATA_PUP_RD_RESET_OFFS);
return MV_OK;
}