// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include "ddr3_init.h"
#define PATTERN_1 0x55555555
#define PATTERN_2 0xaaaaaaaa
#define VALIDATE_TRAINING_LIMIT(e1, e2) \
((((e2) - (e1) + 1) > 33) && ((e1) < 67))
u32 phy_reg_bk[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u32 training_res[MAX_INTERFACE_NUM * MAX_BUS_NUM * BUS_WIDTH_IN_BITS *
HWS_SEARCH_DIR_LIMIT];
u8 byte_status[MAX_INTERFACE_NUM][MAX_BUS_NUM]; /* holds the bit status in the byte in wrapper function*/
u16 mask_results_dq_reg_map[] = {
RESULT_CONTROL_PUP_0_BIT_0_REG, RESULT_CONTROL_PUP_0_BIT_1_REG,
RESULT_CONTROL_PUP_0_BIT_2_REG, RESULT_CONTROL_PUP_0_BIT_3_REG,
RESULT_CONTROL_PUP_0_BIT_4_REG, RESULT_CONTROL_PUP_0_BIT_5_REG,
RESULT_CONTROL_PUP_0_BIT_6_REG, RESULT_CONTROL_PUP_0_BIT_7_REG,
RESULT_CONTROL_PUP_1_BIT_0_REG, RESULT_CONTROL_PUP_1_BIT_1_REG,
RESULT_CONTROL_PUP_1_BIT_2_REG, RESULT_CONTROL_PUP_1_BIT_3_REG,
RESULT_CONTROL_PUP_1_BIT_4_REG, RESULT_CONTROL_PUP_1_BIT_5_REG,
RESULT_CONTROL_PUP_1_BIT_6_REG, RESULT_CONTROL_PUP_1_BIT_7_REG,
RESULT_CONTROL_PUP_2_BIT_0_REG, RESULT_CONTROL_PUP_2_BIT_1_REG,
RESULT_CONTROL_PUP_2_BIT_2_REG, RESULT_CONTROL_PUP_2_BIT_3_REG,
RESULT_CONTROL_PUP_2_BIT_4_REG, RESULT_CONTROL_PUP_2_BIT_5_REG,
RESULT_CONTROL_PUP_2_BIT_6_REG, RESULT_CONTROL_PUP_2_BIT_7_REG,
RESULT_CONTROL_PUP_3_BIT_0_REG, RESULT_CONTROL_PUP_3_BIT_1_REG,
RESULT_CONTROL_PUP_3_BIT_2_REG, RESULT_CONTROL_PUP_3_BIT_3_REG,
RESULT_CONTROL_PUP_3_BIT_4_REG, RESULT_CONTROL_PUP_3_BIT_5_REG,
RESULT_CONTROL_PUP_3_BIT_6_REG, RESULT_CONTROL_PUP_3_BIT_7_REG,
RESULT_CONTROL_PUP_4_BIT_0_REG, RESULT_CONTROL_PUP_4_BIT_1_REG,
RESULT_CONTROL_PUP_4_BIT_2_REG, RESULT_CONTROL_PUP_4_BIT_3_REG,
RESULT_CONTROL_PUP_4_BIT_4_REG, RESULT_CONTROL_PUP_4_BIT_5_REG,
RESULT_CONTROL_PUP_4_BIT_6_REG, RESULT_CONTROL_PUP_4_BIT_7_REG,
#if MAX_BUS_NUM == 9
RESULT_CONTROL_PUP_5_BIT_0_REG, RESULT_CONTROL_PUP_5_BIT_1_REG,
RESULT_CONTROL_PUP_5_BIT_2_REG, RESULT_CONTROL_PUP_5_BIT_3_REG,
RESULT_CONTROL_PUP_5_BIT_4_REG, RESULT_CONTROL_PUP_5_BIT_5_REG,
RESULT_CONTROL_PUP_5_BIT_6_REG, RESULT_CONTROL_PUP_5_BIT_7_REG,
RESULT_CONTROL_PUP_6_BIT_0_REG, RESULT_CONTROL_PUP_6_BIT_1_REG,
RESULT_CONTROL_PUP_6_BIT_2_REG, RESULT_CONTROL_PUP_6_BIT_3_REG,
RESULT_CONTROL_PUP_6_BIT_4_REG, RESULT_CONTROL_PUP_6_BIT_5_REG,
RESULT_CONTROL_PUP_6_BIT_6_REG, RESULT_CONTROL_PUP_6_BIT_7_REG,
RESULT_CONTROL_PUP_7_BIT_0_REG, RESULT_CONTROL_PUP_7_BIT_1_REG,
RESULT_CONTROL_PUP_7_BIT_2_REG, RESULT_CONTROL_PUP_7_BIT_3_REG,
RESULT_CONTROL_PUP_7_BIT_4_REG, RESULT_CONTROL_PUP_7_BIT_5_REG,
RESULT_CONTROL_PUP_7_BIT_6_REG, RESULT_CONTROL_PUP_7_BIT_7_REG,
RESULT_CONTROL_PUP_8_BIT_0_REG, RESULT_CONTROL_PUP_8_BIT_1_REG,
RESULT_CONTROL_PUP_8_BIT_2_REG, RESULT_CONTROL_PUP_8_BIT_3_REG,
RESULT_CONTROL_PUP_8_BIT_4_REG, RESULT_CONTROL_PUP_8_BIT_5_REG,
RESULT_CONTROL_PUP_8_BIT_6_REG, RESULT_CONTROL_PUP_8_BIT_7_REG,
#endif
0xffff
};
u16 mask_results_pup_reg_map[] = {
RESULT_CONTROL_BYTE_PUP_0_REG, RESULT_CONTROL_BYTE_PUP_1_REG,
RESULT_CONTROL_BYTE_PUP_2_REG, RESULT_CONTROL_BYTE_PUP_3_REG,
RESULT_CONTROL_BYTE_PUP_4_REG,
#if MAX_BUS_NUM == 9
RESULT_CONTROL_BYTE_PUP_5_REG, RESULT_CONTROL_BYTE_PUP_6_REG,
RESULT_CONTROL_BYTE_PUP_7_REG, RESULT_CONTROL_BYTE_PUP_8_REG,
#endif
0xffff
};
#if MAX_BUS_NUM == 5
u16 mask_results_dq_reg_map_pup3_ecc[] = {
RESULT_CONTROL_PUP_0_BIT_0_REG, RESULT_CONTROL_PUP_0_BIT_1_REG,
RESULT_CONTROL_PUP_0_BIT_2_REG, RESULT_CONTROL_PUP_0_BIT_3_REG,
RESULT_CONTROL_PUP_0_BIT_4_REG, RESULT_CONTROL_PUP_0_BIT_5_REG,
RESULT_CONTROL_PUP_0_BIT_6_REG, RESULT_CONTROL_PUP_0_BIT_7_REG,
RESULT_CONTROL_PUP_1_BIT_0_REG, RESULT_CONTROL_PUP_1_BIT_1_REG,
RESULT_CONTROL_PUP_1_BIT_2_REG, RESULT_CONTROL_PUP_1_BIT_3_REG,
RESULT_CONTROL_PUP_1_BIT_4_REG, RESULT_CONTROL_PUP_1_BIT_5_REG,
RESULT_CONTROL_PUP_1_BIT_6_REG, RESULT_CONTROL_PUP_1_BIT_7_REG,
RESULT_CONTROL_PUP_2_BIT_0_REG, RESULT_CONTROL_PUP_2_BIT_1_REG,
RESULT_CONTROL_PUP_2_BIT_2_REG, RESULT_CONTROL_PUP_2_BIT_3_REG,
RESULT_CONTROL_PUP_2_BIT_4_REG, RESULT_CONTROL_PUP_2_BIT_5_REG,
RESULT_CONTROL_PUP_2_BIT_6_REG, RESULT_CONTROL_PUP_2_BIT_7_REG,
RESULT_CONTROL_PUP_4_BIT_0_REG, RESULT_CONTROL_PUP_4_BIT_1_REG,
RESULT_CONTROL_PUP_4_BIT_2_REG, RESULT_CONTROL_PUP_4_BIT_3_REG,
RESULT_CONTROL_PUP_4_BIT_4_REG, RESULT_CONTROL_PUP_4_BIT_5_REG,
RESULT_CONTROL_PUP_4_BIT_6_REG, RESULT_CONTROL_PUP_4_BIT_7_REG,
RESULT_CONTROL_PUP_3_BIT_0_REG, RESULT_CONTROL_PUP_3_BIT_1_REG,
RESULT_CONTROL_PUP_3_BIT_2_REG, RESULT_CONTROL_PUP_3_BIT_3_REG,
RESULT_CONTROL_PUP_3_BIT_4_REG, RESULT_CONTROL_PUP_3_BIT_5_REG,
RESULT_CONTROL_PUP_3_BIT_6_REG, RESULT_CONTROL_PUP_3_BIT_7_REG
};
#endif
#if MAX_BUS_NUM == 5
u16 mask_results_pup_reg_map_pup3_ecc[] = {
RESULT_CONTROL_BYTE_PUP_0_REG, RESULT_CONTROL_BYTE_PUP_1_REG,
RESULT_CONTROL_BYTE_PUP_2_REG, RESULT_CONTROL_BYTE_PUP_4_REG,
RESULT_CONTROL_BYTE_PUP_4_REG
};
#endif
struct pattern_info pattern_table_64[] = {
/*
* num_of_phases_tx, tx_burst_size;
* delay_between_bursts, num_of_phases_rx,
* start_addr, pattern_len
*/
{0x7, 0x7, 2, 0x7, 0x00000, 8}, /* PATTERN_PBS1 */
{0x7, 0x7, 2, 0x7, 0x00080, 8}, /* PATTERN_PBS2 */
{0x7, 0x7, 2, 0x7, 0x00100, 8}, /* PATTERN_PBS3 */
{0x7, 0x7, 2, 0x7, 0x00030, 8}, /* PATTERN_TEST */
{0x7, 0x7, 2, 0x7, 0x00100, 8}, /* PATTERN_RL */
{0x7, 0x7, 2, 0x7, 0x00100, 8}, /* PATTERN_RL2 */
{0x1f, 0xf, 2, 0xf, 0x00680, 32}, /* PATTERN_STATIC_PBS */
{0x1f, 0xf, 2, 0xf, 0x00a80, 32}, /* PATTERN_KILLER_DQ0 */
{0x1f, 0xf, 2, 0xf, 0x01280, 32}, /* PATTERN_KILLER_DQ1 */
{0x1f, 0xf, 2, 0xf, 0x01a80, 32}, /* PATTERN_KILLER_DQ2 */
{0x1f, 0xf, 2, 0xf, 0x02280, 32}, /* PATTERN_KILLER_DQ3 */
{0x1f, 0xf, 2, 0xf, 0x02a80, 32}, /* PATTERN_KILLER_DQ4 */
{0x1f, 0xf, 2, 0xf, 0x03280, 32}, /* PATTERN_KILLER_DQ5 */
{0x1f, 0xf, 2, 0xf, 0x03a80, 32}, /* PATTERN_KILLER_DQ6 */
{0x1f, 0xf, 2, 0xf, 0x04280, 32}, /* PATTERN_KILLER_DQ7 */
{0x1f, 0xf, 2, 0xf, 0x00e80, 32}, /* PATTERN_KILLER_DQ0_64 */
{0x1f, 0xf, 2, 0xf, 0x01680, 32}, /* PATTERN_KILLER_DQ1_64 */
{0x1f, 0xf, 2, 0xf, 0x01e80, 32}, /* PATTERN_KILLER_DQ2_64 */
{0x1f, 0xf, 2, 0xf, 0x02680, 32}, /* PATTERN_KILLER_DQ3_64 */
{0x1f, 0xf, 2, 0xf, 0x02e80, 32}, /* PATTERN_KILLER_DQ4_64 */
{0x1f, 0xf, 2, 0xf, 0x03680, 32}, /* PATTERN_KILLER_DQ5_64 */
{0x1f, 0xf, 2, 0xf, 0x03e80, 32}, /* PATTERN_KILLER_DQ6_64 */
{0x1f, 0xf, 2, 0xf, 0x04680, 32}, /* PATTERN_KILLER_DQ7_64 */
{0x1f, 0xf, 2, 0xf, 0x04a80, 32}, /* PATTERN_KILLER_DQ0_INV */
{0x1f, 0xf, 2, 0xf, 0x05280, 32}, /* PATTERN_KILLER_DQ1_INV */
{0x1f, 0xf, 2, 0xf, 0x05a80, 32}, /* PATTERN_KILLER_DQ2_INV */
{0x1f, 0xf, 2, 0xf, 0x06280, 32}, /* PATTERN_KILLER_DQ3_INV */
{0x1f, 0xf, 2, 0xf, 0x06a80, 32}, /* PATTERN_KILLER_DQ4_INV */
{0x1f, 0xf, 2, 0xf, 0x07280, 32}, /* PATTERN_KILLER_DQ5_INV */
{0x1f, 0xf, 2, 0xf, 0x07a80, 32}, /* PATTERN_KILLER_DQ6_INV */
{0x1f, 0xf, 2, 0xf, 0x08280, 32}, /* PATTERN_KILLER_DQ7_INV */
{0x1f, 0xf, 2, 0xf, 0x04e80, 32}, /* PATTERN_KILLER_DQ0_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x05680, 32}, /* PATTERN_KILLER_DQ1_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x05e80, 32}, /* PATTERN_KILLER_DQ2_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x06680, 32}, /* PATTERN_KILLER_DQ3_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x06e80, 32}, /* PATTERN_KILLER_DQ4_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x07680, 32}, /* PATTERN_KILLER_DQ5_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x07e80, 32}, /* PATTERN_KILLER_DQ6_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x08680, 32}, /* PATTERN_KILLER_DQ7_INV_64 */
{0x1f, 0xf, 2, 0xf, 0x08a80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ0 */
{0x1f, 0xf, 2, 0xf, 0x09280, 32}, /* PATTERN_SSO_FULL_XTALK_DQ1 */
{0x1f, 0xf, 2, 0xf, 0x09a80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ2 */
{0x1f, 0xf, 2, 0xf, 0x0a280, 32}, /* PATTERN_SSO_FULL_XTALK_DQ3 */
{0x1f, 0xf, 2, 0xf, 0x0aa80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ4 */
{0x1f, 0xf, 2, 0xf, 0x0b280, 32}, /* PATTERN_SSO_FULL_XTALK_DQ5 */
{0x1f, 0xf, 2, 0xf, 0x0ba80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ6 */
{0x1f, 0xf, 2, 0xf, 0x0c280, 32}, /* PATTERN_SSO_FULL_XTALK_DQ7 */
{0x1f, 0xf, 2, 0xf, 0x08e80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ0_64 */
{0x1f, 0xf, 2, 0xf, 0x09680, 32}, /* PATTERN_SSO_FULL_XTALK_DQ1_64 */
{0x1f, 0xf, 2, 0xf, 0x09e80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ2_64 */
{0x1f, 0xf, 2, 0xf, 0x0a680, 32}, /* PATTERN_SSO_FULL_XTALK_DQ3_64 */
{0x1f, 0xf, 2, 0xf, 0x0ae80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ4_64 */
{0x1f, 0xf, 2, 0xf, 0x0b680, 32}, /* PATTERN_SSO_FULL_XTALK_DQ5_64 */
{0x1f, 0xf, 2, 0xf, 0x0be80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ6_64 */
{0x1f, 0xf, 2, 0xf, 0x0c680, 32}, /* PATTERN_SSO_FULL_XTALK_DQ7_64 */
{0x1f, 0xf, 2, 0xf, 0x0ca80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ0 */
{0x1f, 0xf, 2, 0xf, 0x0d280, 32}, /* PATTERN_SSO_XTALK_FREE_DQ1 */
{0x1f, 0xf, 2, 0xf, 0x0da80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ2 */
{0x1f, 0xf, 2, 0xf, 0x0e280, 32}, /* PATTERN_SSO_XTALK_FREE_DQ3 */
{0x1f, 0xf, 2, 0xf, 0x0ea80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ4 */
{0x1f, 0xf, 2, 0xf, 0x0f280, 32}, /* PATTERN_SSO_XTALK_FREE_DQ5 */
{0x1f, 0xf, 2, 0xf, 0x0fa80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ6 */
{0x1f, 0xf, 2, 0xf, 0x10280, 32}, /* PATTERN_SSO_XTALK_FREE_DQ7 */
{0x1f, 0xf, 2, 0xf, 0x0ce80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ0_64 */
{0x1f, 0xf, 2, 0xf, 0x0d680, 32}, /* PATTERN_SSO_XTALK_FREE_DQ1_64 */
{0x1f, 0xf, 2, 0xf, 0x0de80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ2_64 */
{0x1f, 0xf, 2, 0xf, 0x0e680, 32}, /* PATTERN_SSO_XTALK_FREE_DQ3_64 */
{0x1f, 0xf, 2, 0xf, 0x0ee80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ4_64 */
{0x1f, 0xf, 2, 0xf, 0x0f680, 32}, /* PATTERN_SSO_XTALK_FREE_DQ5_64 */
{0x1f, 0xf, 2, 0xf, 0x0fe80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ6_64 */
{0x1f, 0xf, 2, 0xf, 0x10680, 32}, /* PATTERN_SSO_XTALK_FREE_DQ7_64 */
{0x1f, 0xf, 2, 0xf, 0x10a80, 32}, /* PATTERN_ISI_XTALK_FREE */
{0x1f, 0xf, 2, 0xf, 0x10e80, 32}, /* PATTERN_ISI_XTALK_FREE_64 */
{0x1f, 0xf, 2, 0xf, 0x11280, 32}, /* PATTERN_VREF */
{0x1f, 0xf, 2, 0xf, 0x11680, 32}, /* PATTERN_VREF_64 */
{0x1f, 0xf, 2, 0xf, 0x11a80, 32}, /* PATTERN_VREF_INV */
{0x1f, 0xf, 2, 0xf, 0x11e80, 32}, /* PATTERN_FULL_SSO_0T */
{0x1f, 0xf, 2, 0xf, 0x12280, 32}, /* PATTERN_FULL_SSO_1T */
{0x1f, 0xf, 2, 0xf, 0x12680, 32}, /* PATTERN_FULL_SSO_2T */
{0x1f, 0xf, 2, 0xf, 0x12a80, 32}, /* PATTERN_FULL_SSO_3T */
{0x1f, 0xf, 2, 0xf, 0x12e80, 32}, /* PATTERN_RESONANCE_1T */
{0x1f, 0xf, 2, 0xf, 0x13280, 32}, /* PATTERN_RESONANCE_2T */
{0x1f, 0xf, 2, 0xf, 0x13680, 32}, /* PATTERN_RESONANCE_3T */
{0x1f, 0xf, 2, 0xf, 0x13a80, 32}, /* PATTERN_RESONANCE_4T */
{0x1f, 0xf, 2, 0xf, 0x13e80, 32}, /* PATTERN_RESONANCE_5T */
{0x1f, 0xf, 2, 0xf, 0x14280, 32}, /* PATTERN_RESONANCE_6T */
{0x1f, 0xf, 2, 0xf, 0x14680, 32}, /* PATTERN_RESONANCE_7T */
{0x1f, 0xf, 2, 0xf, 0x14a80, 32}, /* PATTERN_RESONANCE_8T */
{0x1f, 0xf, 2, 0xf, 0x14e80, 32}, /* PATTERN_RESONANCE_9T */
{0x1f, 0xf, 2, 0xf, 0x15280, 32}, /* PATTERN_ZERO */
{0x1f, 0xf, 2, 0xf, 0x15680, 32} /* PATTERN_ONE */
/* Note: actual start_address is "<< 3" of defined address */
};
struct pattern_info pattern_table_16[] = {
/*
* num tx phases, tx burst, delay between, rx pattern,
* start_address, pattern_len
*/
{1, 1, 2, 1, 0x0080, 2}, /* PATTERN_PBS1 */
{1, 1, 2, 1, 0x00c0, 2}, /* PATTERN_PBS2 */
{1, 1, 2, 1, 0x0380, 2}, /* PATTERN_PBS3 */
{1, 1, 2, 1, 0x0040, 2}, /* PATTERN_TEST */
{1, 1, 2, 1, 0x0100, 2}, /* PATTERN_RL */
{1, 1, 2, 1, 0x0000, 2}, /* PATTERN_RL2 */
{0xf, 0x7, 2, 0x7, 0x0140, 16}, /* PATTERN_STATIC_PBS */
{0xf, 0x7, 2, 0x7, 0x0190, 16}, /* PATTERN_KILLER_DQ0 */
{0xf, 0x7, 2, 0x7, 0x01d0, 16}, /* PATTERN_KILLER_DQ1 */
{0xf, 0x7, 2, 0x7, 0x0210, 16}, /* PATTERN_KILLER_DQ2 */
{0xf, 0x7, 2, 0x7, 0x0250, 16}, /* PATTERN_KILLER_DQ3 */
{0xf, 0x7, 2, 0x7, 0x0290, 16}, /* PATTERN_KILLER_DQ4 */
{0xf, 0x7, 2, 0x7, 0x02d0, 16}, /* PATTERN_KILLER_DQ5 */
{0xf, 0x7, 2, 0x7, 0x0310, 16}, /* PATTERN_KILLER_DQ6 */
{0xf, 0x7, 2, 0x7, 0x0350, 16}, /* PATTERN_KILLER_DQ7 */
{0xf, 0x7, 2, 0x7, 0x04c0, 16}, /* PATTERN_VREF */
{0xf, 0x7, 2, 0x7, 0x03c0, 16}, /* PATTERN_FULL_SSO_1T */
{0xf, 0x7, 2, 0x7, 0x0400, 16}, /* PATTERN_FULL_SSO_2T */
{0xf, 0x7, 2, 0x7, 0x0440, 16}, /* PATTERN_FULL_SSO_3T */
{0xf, 0x7, 2, 0x7, 0x0480, 16}, /* PATTERN_FULL_SSO_4T */
{0xf, 7, 2, 7, 0x6280, 16}, /* PATTERN_SSO_FULL_XTALK_DQ1 */
{0xf, 7, 2, 7, 0x6680, 16}, /* PATTERN_SSO_FULL_XTALK_DQ1 */
{0xf, 7, 2, 7, 0x6A80, 16}, /* PATTERN_SSO_FULL_XTALK_DQ2 */
{0xf, 7, 2, 7, 0x6E80, 16}, /* PATTERN_SSO_FULL_XTALK_DQ3 */
{0xf, 7, 2, 7, 0x7280, 16}, /* PATTERN_SSO_FULL_XTALK_DQ4 */
{0xf, 7, 2, 7, 0x7680, 16}, /* PATTERN_SSO_FULL_XTALK_DQ5 */
{0xf, 7, 2, 7, 0x7A80, 16}, /* PATTERN_SSO_FULL_XTALK_DQ6 */
{0xf, 7, 2, 7, 0x7E80, 16}, /* PATTERN_SSO_FULL_XTALK_DQ7 */
{0xf, 7, 2, 7, 0x8280, 16}, /* PATTERN_SSO_XTALK_FREE_DQ0 */
{0xf, 7, 2, 7, 0x8680, 16}, /* PATTERN_SSO_XTALK_FREE_DQ1 */
{0xf, 7, 2, 7, 0x8A80, 16}, /* PATTERN_SSO_XTALK_FREE_DQ2 */
{0xf, 7, 2, 7, 0x8E80, 16}, /* PATTERN_SSO_XTALK_FREE_DQ3 */
{0xf, 7, 2, 7, 0x9280, 16}, /* PATTERN_SSO_XTALK_FREE_DQ4 */
{0xf, 7, 2, 7, 0x9680, 16}, /* PATTERN_SSO_XTALK_FREE_DQ5 */
{0xf, 7, 2, 7, 0x9A80, 16}, /* PATTERN_SSO_XTALK_FREE_DQ6 */
{0xf, 7, 2, 7, 0x9E80, 16}, /* PATTERN_SSO_XTALK_FREE_DQ7 */
{0xf, 7, 2, 7, 0xA280, 16} /* PATTERN_ISI_XTALK_FREE */
/* Note: actual start_address is "<< 3" of defined address */
};
struct pattern_info pattern_table_32[] = {
/*
* num tx phases, tx burst, delay between, rx pattern,
* start_address, pattern_len
*/
{3, 3, 2, 3, 0x0080, 4}, /* PATTERN_PBS1 */
{3, 3, 2, 3, 0x00c0, 4}, /* PATTERN_PBS2 */
{3, 3, 2, 3, 0x0380, 4}, /* PATTERN_PBS3 */
{3, 3, 2, 3, 0x0040, 4}, /* PATTERN_TEST */
{3, 3, 2, 3, 0x0100, 4}, /* PATTERN_RL */
{3, 3, 2, 3, 0x0000, 4}, /* PATTERN_RL2 */
{0x1f, 0xf, 2, 0xf, 0x0140, 32}, /* PATTERN_STATIC_PBS */
{0x1f, 0xf, 2, 0xf, 0x0190, 32}, /* PATTERN_KILLER_DQ0 */
{0x1f, 0xf, 2, 0xf, 0x01d0, 32}, /* PATTERN_KILLER_DQ1 */
{0x1f, 0xf, 2, 0xf, 0x0210, 32}, /* PATTERN_KILLER_DQ2 */
{0x1f, 0xf, 2, 0xf, 0x0250, 32}, /* PATTERN_KILLER_DQ3 */
{0x1f, 0xf, 2, 0xf, 0x0290, 32}, /* PATTERN_KILLER_DQ4 */
{0x1f, 0xf, 2, 0xf, 0x02d0, 32}, /* PATTERN_KILLER_DQ5 */
{0x1f, 0xf, 2, 0xf, 0x0310, 32}, /* PATTERN_KILLER_DQ6 */
{0x1f, 0xf, 2, 0xf, 0x0350, 32}, /* PATTERN_KILLER_DQ7 */
{0x1f, 0xf, 2, 0xf, 0x04c0, 32}, /* PATTERN_VREF */
{0x1f, 0xf, 2, 0xf, 0x03c0, 32}, /* PATTERN_FULL_SSO_1T */
{0x1f, 0xf, 2, 0xf, 0x0400, 32}, /* PATTERN_FULL_SSO_2T */
{0x1f, 0xf, 2, 0xf, 0x0440, 32}, /* PATTERN_FULL_SSO_3T */
{0x1f, 0xf, 2, 0xf, 0x0480, 32}, /* PATTERN_FULL_SSO_4T */
{0x1f, 0xF, 2, 0xf, 0x6280, 32}, /* PATTERN_SSO_FULL_XTALK_DQ0 */
{0x1f, 0xF, 2, 0xf, 0x6680, 32}, /* PATTERN_SSO_FULL_XTALK_DQ1 */
{0x1f, 0xF, 2, 0xf, 0x6A80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ2 */
{0x1f, 0xF, 2, 0xf, 0x6E80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ3 */
{0x1f, 0xF, 2, 0xf, 0x7280, 32}, /* PATTERN_SSO_FULL_XTALK_DQ4 */
{0x1f, 0xF, 2, 0xf, 0x7680, 32}, /* PATTERN_SSO_FULL_XTALK_DQ5 */
{0x1f, 0xF, 2, 0xf, 0x7A80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ6 */
{0x1f, 0xF, 2, 0xf, 0x7E80, 32}, /* PATTERN_SSO_FULL_XTALK_DQ7 */
{0x1f, 0xF, 2, 0xf, 0x8280, 32}, /* PATTERN_SSO_XTALK_FREE_DQ0 */
{0x1f, 0xF, 2, 0xf, 0x8680, 32}, /* PATTERN_SSO_XTALK_FREE_DQ1 */
{0x1f, 0xF, 2, 0xf, 0x8A80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ2 */
{0x1f, 0xF, 2, 0xf, 0x8E80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ3 */
{0x1f, 0xF, 2, 0xf, 0x9280, 32}, /* PATTERN_SSO_XTALK_FREE_DQ4 */
{0x1f, 0xF, 2, 0xf, 0x9680, 32}, /* PATTERN_SSO_XTALK_FREE_DQ5 */
{0x1f, 0xF, 2, 0xf, 0x9A80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ6 */
{0x1f, 0xF, 2, 0xf, 0x9E80, 32}, /* PATTERN_SSO_XTALK_FREE_DQ7 */
{0x1f, 0xF, 2, 0xf, 0xA280, 32} /* PATTERN_ISI_XTALK_FREE */
/* Note: actual start_address is "<< 3" of defined address */
};
u32 train_dev_num;
enum hws_ddr_cs traintrain_cs_type;
u32 train_pup_num;
enum hws_training_result train_result_type;
enum hws_control_element train_control_element;
enum hws_search_dir traine_search_dir;
enum hws_dir train_direction;
u32 train_if_select;
u32 train_init_value;
u32 train_number_iterations;
enum hws_pattern train_pattern;
enum hws_edge_compare train_edge_compare;
u32 train_cs_num;
u32 train_if_acess, train_if_id, train_pup_access;
u32 max_polling_for_done = 1000000;
u32 *ddr3_tip_get_buf_ptr(u32 dev_num, enum hws_search_dir search,
enum hws_training_result result_type,
u32 interface_num)
{
u32 *buf_ptr = NULL;
buf_ptr = &training_res
[MAX_INTERFACE_NUM * MAX_BUS_NUM * BUS_WIDTH_IN_BITS * search +
interface_num * MAX_BUS_NUM * BUS_WIDTH_IN_BITS];
return buf_ptr;
}
enum {
PASS,
FAIL
};
/*
* IP Training search
* Note: for one edge search only from fail to pass, else jitter can
* be be entered into solution.
*/
int ddr3_tip_ip_training(u32 dev_num, enum hws_access_type access_type,
u32 interface_num,
enum hws_access_type pup_access_type,
u32 pup_num, enum hws_training_result result_type,
enum hws_control_element control_element,
enum hws_search_dir search_dir, enum hws_dir direction,
u32 interface_mask, u32 init_value, u32 num_iter,
enum hws_pattern pattern,
enum hws_edge_compare edge_comp,
enum hws_ddr_cs cs_type, u32 cs_num,
enum hws_training_ip_stat *train_status)
{
u32 mask_dq_num_of_regs, mask_pup_num_of_regs, index_cnt,
reg_data, pup_id;
u32 tx_burst_size;
u32 delay_between_burst;
u32 rd_mode;
u32 data;
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (pup_num >= octets_per_if_num) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("pup_num %d not valid\n", pup_num));
}
if (interface_num >= MAX_INTERFACE_NUM) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("if_id %d not valid\n",
interface_num));
}
if (train_status == NULL) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("error param 4\n"));
return MV_BAD_PARAM;
}
/* load pattern */
if (cs_type == CS_SINGLE) {
/* All CSs to CS0 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
DUAL_DUNIT_CFG_REG, 1 << 3, 1 << 3));
/* All CSs to CS0 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
ODPG_DATA_CTRL_REG,
(0x3 | (effective_cs << 26)), 0xc000003));
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
DUAL_DUNIT_CFG_REG, 0, 1 << 3));
/* CS select */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
ODPG_DATA_CTRL_REG, 0x3 | cs_num << 26,
0x3 | 3 << 26));
}
/* load pattern to ODPG */
ddr3_tip_load_pattern_to_odpg(dev_num, access_type, interface_num,
pattern,
pattern_table[pattern].start_addr);
tx_burst_size = (direction == OPER_WRITE) ?
pattern_table[pattern].tx_burst_size : 0;
delay_between_burst = (direction == OPER_WRITE) ? 2 : 0;
rd_mode = (direction == OPER_WRITE) ? 1 : 0;
CHECK_STATUS(ddr3_tip_configure_odpg
(dev_num, access_type, interface_num, direction,
pattern_table[pattern].num_of_phases_tx, tx_burst_size,
pattern_table[pattern].num_of_phases_rx,
delay_between_burst, rd_mode, effective_cs, STRESS_NONE,
DURATION_SINGLE));
reg_data = (direction == OPER_READ) ? 0 : (0x3 << 30);
reg_data |= (direction == OPER_READ) ? 0x60 : 0xfa;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
ODPG_WR_RD_MODE_ENA_REG, reg_data,
MASK_ALL_BITS));
reg_data = (edge_comp == EDGE_PF || edge_comp == EDGE_FP) ? 0 : 1 << 6;
reg_data |= (edge_comp == EDGE_PF || edge_comp == EDGE_PFP) ?
(1 << 7) : 0;
/* change from Pass to Fail will lock the result */
if (pup_access_type == ACCESS_TYPE_MULTICAST)
reg_data |= 0xe << 14;
else
reg_data |= pup_num << 14;
if (edge_comp == EDGE_FP) {
/* don't search for readl edge change, only the state */
reg_data |= (0 << 20);
} else if (edge_comp == EDGE_FPF) {
reg_data |= (0 << 20);
} else {
reg_data |= (3 << 20);
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
GENERAL_TRAINING_OPCODE_REG,
reg_data | (0x7 << 8) | (0x7 << 11),
(0x3 | (0x3 << 2) | (0x3 << 6) | (1 << 5) | (0x7 << 8) |
(0x7 << 11) | (0xf << 14) | (0x3 << 18) | (3 << 20))));
reg_data = (search_dir == HWS_LOW2HIGH) ? 0 : (1 << 8);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num, OPCODE_REG0_REG(1),
1 | reg_data | init_value << 9 | (1 << 25) | (1 << 26),
0xff | (1 << 8) | (0xffff << 9) | (1 << 25) | (1 << 26)));
/*
* Write2_dunit(0x10b4, Number_iteration , [15:0])
* Max number of iterations
*/
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, interface_num,
OPCODE_REG1_REG(1), num_iter,
0xffff));
if (control_element == HWS_CONTROL_ELEMENT_DQ_SKEW &&
direction == OPER_READ) {
/*
* Write2_dunit(0x10c0, 0x5f , [7:0])
* MC PBS Reg Address at DDR PHY
*/
reg_data = PBS_RX_BCAST_PHY_REG(effective_cs);
} else if (control_element == HWS_CONTROL_ELEMENT_DQ_SKEW &&
direction == OPER_WRITE) {
reg_data = PBS_TX_BCAST_PHY_REG(effective_cs);
} else if (control_element == HWS_CONTROL_ELEMENT_ADLL &&
direction == OPER_WRITE) {
/*
* LOOP 0x00000001 + 4*n:
* where n (0-3) represents M_CS number
*/
/*
* Write2_dunit(0x10c0, 0x1 , [7:0])
* ADLL WR Reg Address at DDR PHY
*/
reg_data = CTX_PHY_REG(effective_cs);
} else if (control_element == HWS_CONTROL_ELEMENT_ADLL &&
direction == OPER_READ) {
/* ADLL RD Reg Address at DDR PHY */
reg_data = CRX_PHY_REG(effective_cs);
} else if (control_element == HWS_CONTROL_ELEMENT_DQS_SKEW &&
direction == OPER_WRITE) {
/* TBD not defined in 0.5.0 requirement */
} else if (control_element == HWS_CONTROL_ELEMENT_DQS_SKEW &&
direction == OPER_READ) {
/* TBD not defined in 0.5.0 requirement */
}
reg_data |= (0x6 << 28);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num, CAL_PHY_REG(1),
reg_data | (init_value << 8),
0xff | (0xffff << 8) | (0xf << 24) | (u32) (0xf << 28)));
mask_dq_num_of_regs = octets_per_if_num * BUS_WIDTH_IN_BITS;
mask_pup_num_of_regs = octets_per_if_num;
if (result_type == RESULT_PER_BIT) {
for (index_cnt = 0; index_cnt < mask_dq_num_of_regs;
index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
mask_results_dq_reg_map[index_cnt], 0,
1 << 24));
}
/* Mask disabled buses */
for (pup_id = 0; pup_id < octets_per_if_num;
pup_id++) {
if (IS_BUS_ACTIVE(tm->bus_act_mask, pup_id) == 1)
continue;
for (index_cnt = (pup_id * 8); index_cnt < (pup_id + 1) * 8; index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type,
interface_num,
mask_results_dq_reg_map
[index_cnt], (1 << 24), 1 << 24));
}
}
for (index_cnt = 0; index_cnt < mask_pup_num_of_regs;
index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
mask_results_pup_reg_map[index_cnt],
(1 << 24), 1 << 24));
}
} else if (result_type == RESULT_PER_BYTE) {
/* write to adll */
for (index_cnt = 0; index_cnt < mask_pup_num_of_regs;
index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
mask_results_pup_reg_map[index_cnt], 0,
1 << 24));
}
for (index_cnt = 0; index_cnt < mask_dq_num_of_regs;
index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, interface_num,
mask_results_dq_reg_map[index_cnt],
(1 << 24), (1 << 24)));
}
}
/* trigger training */
mv_ddr_training_enable();
/* wa for 16-bit mode: wait for all rfu tests to finish or timeout */
mdelay(1);
/* check for training done */
if (mv_ddr_is_training_done(MAX_POLLING_ITERATIONS, &data) != MV_OK) {
train_status[0] = HWS_TRAINING_IP_STATUS_TIMEOUT;
} else { /* training done; check for pass */
if (data == PASS)
train_status[0] = HWS_TRAINING_IP_STATUS_SUCCESS;
else
train_status[0] = HWS_TRAINING_IP_STATUS_FAIL;
}
ddr3_tip_if_write(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0, MASK_ALL_BITS);
return MV_OK;
}
/*
* Load expected Pattern to ODPG
*/
int ddr3_tip_load_pattern_to_odpg(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_pattern pattern,
u32 load_addr)
{
u32 pattern_length_cnt = 0;
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (pattern_length_cnt = 0;
pattern_length_cnt < pattern_table[pattern].pattern_len;
pattern_length_cnt++) { /* FIXME: the ecc patch below is only for a7040 A0 */
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask)/* || tm->bus_act_mask == MV_DDR_32BIT_ECC_PUP8_BUS_MASK*/) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ODPG_DATA_WR_DATA_LOW_REG,
pattern_table_get_word(dev_num, pattern,
(u8) (pattern_length_cnt)),
MASK_ALL_BITS));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ODPG_DATA_WR_DATA_HIGH_REG,
pattern_table_get_word(dev_num, pattern,
(u8) (pattern_length_cnt)),
MASK_ALL_BITS));
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ODPG_DATA_WR_DATA_LOW_REG,
pattern_table_get_word(dev_num, pattern,
(u8) (pattern_length_cnt * 2)),
MASK_ALL_BITS));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ODPG_DATA_WR_DATA_HIGH_REG,
pattern_table_get_word(dev_num, pattern,
(u8) (pattern_length_cnt * 2 + 1)),
MASK_ALL_BITS));
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ODPG_DATA_WR_ADDR_REG, pattern_length_cnt,
MASK_ALL_BITS));
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ODPG_DATA_BUFFER_OFFS_REG, load_addr, MASK_ALL_BITS));
return MV_OK;
}
/*
* Configure ODPG
*/
int ddr3_tip_configure_odpg(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_dir direction, u32 tx_phases,
u32 tx_burst_size, u32 rx_phases,
u32 delay_between_burst, u32 rd_mode, u32 cs_num,
u32 addr_stress_jump, u32 single_pattern)
{
u32 data_value = 0;
int ret;
data_value = ((single_pattern << 2) | (tx_phases << 5) |
(tx_burst_size << 11) | (delay_between_burst << 15) |
(rx_phases << 21) | (rd_mode << 25) | (cs_num << 26) |
(addr_stress_jump << 29));
ret = ddr3_tip_if_write(dev_num, access_type, if_id,
ODPG_DATA_CTRL_REG, data_value, 0xaffffffc);
if (ret != MV_OK)
return ret;
return MV_OK;
}
int ddr3_tip_process_result(u32 *ar_result, enum hws_edge e_edge,
enum hws_edge_search e_edge_search,
u32 *edge_result)
{
u32 i, res;
int tap_val, max_val = -10000, min_val = 10000;
int lock_success = 1;
for (i = 0; i < BUS_WIDTH_IN_BITS; i++) {
res = GET_LOCK_RESULT(ar_result[i]);
if (res == 0) {
lock_success = 0;
break;
}
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("lock failed for bit %d\n", i));
}
if (lock_success == 1) {
for (i = 0; i < BUS_WIDTH_IN_BITS; i++) {
tap_val = GET_TAP_RESULT(ar_result[i], e_edge);
if (tap_val > max_val)
max_val = tap_val;
if (tap_val < min_val)
min_val = tap_val;
if (e_edge_search == TRAINING_EDGE_MAX)
*edge_result = (u32) max_val;
else
*edge_result = (u32) min_val;
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("i %d ar_result[i] 0x%x tap_val %d max_val %d min_val %d Edge_result %d\n",
i, ar_result[i], tap_val,
max_val, min_val,
*edge_result));
}
} else {
return MV_FAIL;
}
return MV_OK;
}
/*
* Read training search result
*/
int ddr3_tip_read_training_result(u32 dev_num, u32 if_id,
enum hws_access_type pup_access_type,
u32 pup_num, u32 bit_num,
enum hws_search_dir search,
enum hws_dir direction,
enum hws_training_result result_type,
enum hws_training_load_op operation,
u32 cs_num_type, u32 **load_res,
int is_read_from_db, u8 cons_tap,
int is_check_result_validity)
{
u32 reg_offset, pup_cnt, start_pup, end_pup, start_reg, end_reg;
u32 *interface_train_res = NULL;
u16 *reg_addr = NULL;
u32 read_data[MAX_INTERFACE_NUM];
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/*
* Agreed assumption: all CS mask contain same number of bits,
* i.e. in multi CS, the number of CS per memory is the same for
* all pups
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, DUAL_DUNIT_CFG_REG,
(cs_num_type == 0) ? 1 << 3 : 0, (1 << 3)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ODPG_DATA_CTRL_REG, (cs_num_type << 26), (3 << 26)));
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_TRACE,
("Read_from_d_b %d cs_type %d oper %d result_type %d direction %d search %d pup_num %d if_id %d pup_access_type %d\n",
is_read_from_db, cs_num_type, operation,
result_type, direction, search, pup_num,
if_id, pup_access_type));
if ((load_res == NULL) && (is_read_from_db == 1)) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("ddr3_tip_read_training_result load_res = NULL"));
return MV_FAIL;
}
if (pup_num >= octets_per_if_num) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("pup_num %d not valid\n", pup_num));
}
if (if_id >= MAX_INTERFACE_NUM) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("if_id %d not valid\n", if_id));
}
if (result_type == RESULT_PER_BIT)
reg_addr = mask_results_dq_reg_map;
else
reg_addr = mask_results_pup_reg_map;
if (pup_access_type == ACCESS_TYPE_UNICAST) {
start_pup = pup_num;
end_pup = pup_num;
} else { /*pup_access_type == ACCESS_TYPE_MULTICAST) */
start_pup = 0;
end_pup = octets_per_if_num - 1;
}
for (pup_cnt = start_pup; pup_cnt <= end_pup; pup_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, pup_cnt);
DEBUG_TRAINING_IP_ENGINE(
DEBUG_LEVEL_TRACE,
("if_id %d start_pup %d end_pup %d pup_cnt %d\n",
if_id, start_pup, end_pup, pup_cnt));
if (result_type == RESULT_PER_BIT) {
if (bit_num == ALL_BITS_PER_PUP) {
start_reg = pup_cnt * BUS_WIDTH_IN_BITS;
end_reg = (pup_cnt + 1) * BUS_WIDTH_IN_BITS - 1;
} else {
start_reg =
pup_cnt * BUS_WIDTH_IN_BITS + bit_num;
end_reg = pup_cnt * BUS_WIDTH_IN_BITS + bit_num;
}
} else {
start_reg = pup_cnt;
end_reg = pup_cnt;
}
interface_train_res =
ddr3_tip_get_buf_ptr(dev_num, search, result_type,
if_id);
DEBUG_TRAINING_IP_ENGINE(
DEBUG_LEVEL_TRACE,
("start_reg %d end_reg %d interface %p\n",
start_reg, end_reg, interface_train_res));
if (interface_train_res == NULL) {
DEBUG_TRAINING_IP_ENGINE(
DEBUG_LEVEL_ERROR,
("interface_train_res is NULL\n"));
return MV_FAIL;
}
for (reg_offset = start_reg; reg_offset <= end_reg;
reg_offset++) {
if (operation == TRAINING_LOAD_OPERATION_UNLOAD) {
if (is_read_from_db == 0) {
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
reg_addr[reg_offset],
read_data,
MASK_ALL_BITS));
if (is_check_result_validity == 1) {
if ((read_data[if_id] &
TIP_ENG_LOCK) == 0) {
interface_train_res
[reg_offset] =
TIP_ENG_LOCK +
TIP_TX_DLL_RANGE_MAX;
} else {
interface_train_res
[reg_offset] =
read_data
[if_id] +
cons_tap;
}
} else {
interface_train_res[reg_offset]
= read_data[if_id] +
cons_tap;
}
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("reg_offset %d value 0x%x addr %p\n",
reg_offset,
interface_train_res
[reg_offset],
&interface_train_res
[reg_offset]));
} else {
*load_res =
&interface_train_res[start_reg];
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("*load_res %p\n", *load_res));
}
} else {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_TRACE,
("not supported\n"));
}
}
}
return MV_OK;
}
/*
* Load all pattern to memory using ODPG
*/
int ddr3_tip_load_all_pattern_to_mem(u32 dev_num)
{
u32 pattern = 0, if_id;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* enable single cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUAL_DUNIT_CFG_REG, (1 << 3), (1 << 3)));
}
for (pattern = 0; pattern < PATTERN_LAST; pattern++)
ddr3_tip_load_pattern_to_mem(dev_num, pattern);
return MV_OK;
}
/*
* Load specific pattern to memory using ODPG
*/
int ddr3_tip_load_pattern_to_mem(u32 dev_num, enum hws_pattern pattern)
{
u32 reg_data, if_id;
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* load pattern to memory */
/*
* Write Tx mode, CS0, phases, Tx burst size, delay between burst,
* rx pattern phases
*/
reg_data =
0x1 | (pattern_table[pattern].num_of_phases_tx << 5) |
(pattern_table[pattern].tx_burst_size << 11) |
(pattern_table[pattern].delay_between_bursts << 15) |
(pattern_table[pattern].num_of_phases_rx << 21) | (0x1 << 25) |
(effective_cs << 26);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, reg_data, MASK_ALL_BITS));
/* ODPG Write enable from BIST */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, (0x1 | (effective_cs << 26)),
0xc000003));
/* disable error injection */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_WR_DATA_ERR_REG, 0, 0x1));
/* load pattern to ODPG */
ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, pattern,
pattern_table[pattern].start_addr);
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ODT_CTRL_HIGH_REG,
0x3, 0xf));
}
mv_ddr_odpg_enable();
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, (u32)(0x1 << 31),
(u32)(0x1 << 31)));
}
mdelay(1);
if (mv_ddr_is_odpg_done(MAX_POLLING_ITERATIONS) != MV_OK)
return MV_FAIL;
/* Disable ODPG and stop write to memory */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, (0x1 << 30), (u32) (0x3 << 30)));
/* return to default */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CTRL_REG, 0, MASK_ALL_BITS));
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) >= MV_TIP_REV_3) {
/* Disable odt0 for CS0 training - need to adjust for multy CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_ODT_CTRL_HIGH_REG, 0x0, 0xf));
}
/* temporary added */
mdelay(1);
return MV_OK;
}
/*
* Training search routine
*/
int ddr3_tip_ip_training_wrapper_int(u32 dev_num,
enum hws_access_type access_type,
u32 if_id,
enum hws_access_type pup_access_type,
u32 pup_num, u32 bit_num,
enum hws_training_result result_type,
enum hws_control_element control_element,
enum hws_search_dir search_dir,
enum hws_dir direction,
u32 interface_mask, u32 init_value_l2h,
u32 init_value_h2l, u32 num_iter,
enum hws_pattern pattern,
enum hws_edge_compare edge_comp,
enum hws_ddr_cs train_cs_type, u32 cs_num,
enum hws_training_ip_stat *train_status)
{
u32 interface_num = 0, start_if, end_if, init_value_used;
enum hws_search_dir search_dir_id, start_search, end_search;
enum hws_edge_compare edge_comp_used;
u8 cons_tap = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (train_status == NULL) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("train_status is NULL\n"));
return MV_FAIL;
}
if ((train_cs_type > CS_NON_SINGLE) ||
(edge_comp >= EDGE_PFP) ||
(pattern >= PATTERN_LAST) ||
(direction > OPER_WRITE_AND_READ) ||
(search_dir > HWS_HIGH2LOW) ||
(control_element > HWS_CONTROL_ELEMENT_DQS_SKEW) ||
(result_type > RESULT_PER_BYTE) ||
(pup_num >= octets_per_if_num) ||
(pup_access_type > ACCESS_TYPE_MULTICAST) ||
(if_id > 11) || (access_type > ACCESS_TYPE_MULTICAST)) {
DEBUG_TRAINING_IP_ENGINE(
DEBUG_LEVEL_ERROR,
("wrong parameter train_cs_type %d edge_comp %d pattern %d direction %d search_dir %d control_element %d result_type %d pup_num %d pup_access_type %d if_id %d access_type %d\n",
train_cs_type, edge_comp, pattern, direction,
search_dir, control_element, result_type, pup_num,
pup_access_type, if_id, access_type));
return MV_FAIL;
}
if (edge_comp == EDGE_FPF) {
start_search = HWS_LOW2HIGH;
end_search = HWS_HIGH2LOW;
edge_comp_used = EDGE_FP;
} else {
start_search = search_dir;
end_search = search_dir;
edge_comp_used = edge_comp;
}
for (search_dir_id = start_search; search_dir_id <= end_search;
search_dir_id++) {
init_value_used = (search_dir_id == HWS_LOW2HIGH) ?
init_value_l2h : init_value_h2l;
DEBUG_TRAINING_IP_ENGINE(
DEBUG_LEVEL_TRACE,
("dev_num %d, access_type %d, if_id %d, pup_access_type %d,pup_num %d, result_type %d, control_element %d search_dir_id %d, direction %d, interface_mask %d,init_value_used %d, num_iter %d, pattern %d, edge_comp_used %d, train_cs_type %d, cs_num %d\n",
dev_num, access_type, if_id, pup_access_type, pup_num,
result_type, control_element, search_dir_id,
direction, interface_mask, init_value_used, num_iter,
pattern, edge_comp_used, train_cs_type, cs_num));
ddr3_tip_ip_training(dev_num, access_type, if_id,
pup_access_type, pup_num, result_type,
control_element, search_dir_id, direction,
interface_mask, init_value_used, num_iter,
pattern, edge_comp_used, train_cs_type,
cs_num, train_status);
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = if_id;
end_if = if_id;
}
for (interface_num = start_if; interface_num <= end_if;
interface_num++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, interface_num);
cs_num = 0;
CHECK_STATUS(ddr3_tip_read_training_result
(dev_num, interface_num, pup_access_type,
pup_num, bit_num, search_dir_id,
direction, result_type,
TRAINING_LOAD_OPERATION_UNLOAD,
train_cs_type, NULL, 0, cons_tap,
0));
}
}
return MV_OK;
}
/*
* Training search & read result routine
* This function implements the search algorithm
* first it calls the function ddr3_tip_ip_training_wrapper_int which triggers the search from l2h and h2l
* this function handles rx and tx search cases
* in case of rx it only triggers the search (l2h and h2l)
* in case of tx there are 3 optional algorithm phases:
* phase 1:
* it first triggers the search and handles the results as following (phase 1):
* each bit, which defined by the search two edges (e1 or VW_L and e2 or VW_H), match on of cases:
* 1. BIT_LOW_UI 0 =< VW =< 31 in case of jitter use: VW_L <= 31, VW_H <= 31
* 2. BIT_HIGH_UI 32 =< VW =< 63 in case of jitter use: VW_L >= 32, VW_H >= 32
* 3. BIT_SPLIT_IN VW_L <= 31 & VW_H >= 32
* 4. BIT_SPLIT_OUT* VW_H < 32 & VW_L > 32
* note: the VW units is adll taps
* phase 2:
* only bit case BIT_SPLIT_OUT requires another search (phase 2) from the middle range in two directions h2l and l2h
* because only this case is not locked by the search engine in the first search trigger (phase 1).
* phase 3:
* each subphy is categorized according to its bits definition.
* the sub-phy cases are as follows:
* 1.BYTE_NOT_DEFINED the byte has not yet been categorized
* 2.BYTE_HOMOGENEOUS_LOW 0 =< VW =< 31
* 3.BYTE_HOMOGENEOUS_HIGH 32 =< VW =< 63
* 4.BYTE_HOMOGENEOUS_SPLIT_IN VW_L <= 31 & VW_H >= 32
* or the center of all bits in the byte =< 31
* 5.BYTE_HOMOGENEOUS_SPLIT_OUT VW_H < 32 & VW_L > 32
* 6.BYTE_SPLIT_OUT_MIX at least one bits is in split out state and one bit is in other
* or the center of all bits in the byte => 32
* after the two phases above a center valid window for each subphy is calculated accordingly:
* center valid window = maximum center of all bits in the subphy - minimum center of all bits in the subphy.
* now decisions are made in each subphy as following:
* all subphys which are homogeneous remains as is
* all subphys which are homogeneous low | homogeneous high and the subphy center valid window is less than 32
* mark this subphy as homogeneous split in.
* now the bits in the bytes which are BYTE_SPLIT_OUT_MIX needed to be reorganized and handles as following
* all bits which are BIT_LOW_UI will be added with 64 adll,
* this will hopefully ensures that all the bits in the sub phy can be sampled by the dqs
*/
int ddr3_tip_ip_training_wrapper(u32 dev_num, enum hws_access_type access_type,
u32 if_id,
enum hws_access_type pup_access_type,
u32 pup_num,
enum hws_training_result result_type,
enum hws_control_element control_element,
enum hws_search_dir search_dir,
enum hws_dir direction, u32 interface_mask,
u32 init_value_l2h, u32 init_value_h2l,
u32 num_iter, enum hws_pattern pattern,
enum hws_edge_compare edge_comp,
enum hws_ddr_cs train_cs_type, u32 cs_num,
enum hws_training_ip_stat *train_status)
{
u8 e1, e2;
u32 bit_id, start_if, end_if, bit_end = 0;
u32 *result[HWS_SEARCH_DIR_LIMIT] = { 0 };
u8 cons_tap = (direction == OPER_WRITE) ? (64) : (0);
u8 bit_bit_mask[MAX_BUS_NUM] = { 0 }, bit_bit_mask_active = 0;
u8 bit_state[MAX_BUS_NUM * BUS_WIDTH_IN_BITS] = {0};
u8 h2l_adll_value[MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u8 l2h_adll_value[MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u8 center_subphy_adll_window[MAX_BUS_NUM];
u8 min_center_subphy_adll[MAX_BUS_NUM];
u8 max_center_subphy_adll[MAX_BUS_NUM];
u32 *l2h_if_train_res = NULL;
u32 *h2l_if_train_res = NULL;
enum hws_search_dir search_dir_id;
int status;
u32 bit_lock_result;
u8 sybphy_id;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (pup_num >= octets_per_if_num) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("pup_num %d not valid\n", pup_num));
}
if (if_id >= MAX_INTERFACE_NUM) {
DEBUG_TRAINING_IP_ENGINE(DEBUG_LEVEL_ERROR,
("if_id %d not valid\n", if_id));
}
status = ddr3_tip_ip_training_wrapper_int
(dev_num, access_type, if_id, pup_access_type, pup_num,
ALL_BITS_PER_PUP, result_type, control_element,
search_dir, direction, interface_mask, init_value_l2h,
init_value_h2l, num_iter, pattern, edge_comp,
train_cs_type, cs_num, train_status);
if (MV_OK != status)
return status;
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = if_id;
end_if = if_id;
}
for (if_id = start_if; if_id <= end_if; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* zero the database */
bit_bit_mask_active = 0; /* clean the flag for level2 search */
memset(bit_state, 0, sizeof(bit_state));
/* phase 1 */
for (sybphy_id = 0; sybphy_id < octets_per_if_num; sybphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, sybphy_id);
if (result_type == RESULT_PER_BIT)
bit_end = BUS_WIDTH_IN_BITS;
else
bit_end = 0;
/* zero the data base */
bit_bit_mask[sybphy_id] = 0;
byte_status[if_id][sybphy_id] = BYTE_NOT_DEFINED;
for (bit_id = 0; bit_id < bit_end; bit_id++) {
h2l_adll_value[sybphy_id][bit_id] = 64;
l2h_adll_value[sybphy_id][bit_id] = 0;
for (search_dir_id = HWS_LOW2HIGH; search_dir_id <= HWS_HIGH2LOW;
search_dir_id++) {
status = ddr3_tip_read_training_result
(dev_num, if_id,
ACCESS_TYPE_UNICAST, sybphy_id, bit_id,
search_dir_id, direction, result_type,
TRAINING_LOAD_OPERATION_UNLOAD, CS_SINGLE,
&result[search_dir_id], 1, 0, 0);
if (MV_OK != status)
return status;
}
e1 = GET_TAP_RESULT(result[HWS_LOW2HIGH][0], EDGE_1);
e2 = GET_TAP_RESULT(result[HWS_HIGH2LOW][0], EDGE_1);
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_INFO,
("if_id %d sybphy_id %d bit %d l2h 0x%x (e1 0x%x) h2l 0x%x (e2 0x%x)\n",
if_id, sybphy_id, bit_id, result[HWS_LOW2HIGH][0], e1,
result[HWS_HIGH2LOW][0], e2));
bit_lock_result =
(GET_LOCK_RESULT(result[HWS_LOW2HIGH][0]) &&
GET_LOCK_RESULT(result[HWS_HIGH2LOW][0]));
if (bit_lock_result) {
/* in case of read operation set the byte status as homogeneous low */
if (direction == OPER_READ) {
byte_status[if_id][sybphy_id] |= BYTE_HOMOGENEOUS_LOW;
} else if ((e2 - e1) > 32) { /* oper_write */
/* split out */
bit_state[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] =
BIT_SPLIT_OUT;
byte_status[if_id][sybphy_id] |= BYTE_HOMOGENEOUS_SPLIT_OUT;
/* mark problem bits */
bit_bit_mask[sybphy_id] |= (1 << bit_id);
bit_bit_mask_active = 1;
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d bit %d BIT_SPLIT_OUT\n",
if_id, sybphy_id, bit_id));
} else {
/* low ui */
if (e1 <= 31 && e2 <= 31) {
bit_state[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] =
BIT_LOW_UI;
byte_status[if_id][sybphy_id] |= BYTE_HOMOGENEOUS_LOW;
l2h_adll_value[sybphy_id][bit_id] = e1;
h2l_adll_value[sybphy_id][bit_id] = e2;
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d bit %d BIT_LOW_UI\n",
if_id, sybphy_id, bit_id));
}
/* high ui */
if (e1 >= 32 && e2 >= 32) {
bit_state[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] =
BIT_HIGH_UI;
byte_status[if_id][sybphy_id] |= BYTE_HOMOGENEOUS_HIGH;
l2h_adll_value[sybphy_id][bit_id] = e1;
h2l_adll_value[sybphy_id][bit_id] = e2;
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d bit %d BIT_HIGH_UI\n",
if_id, sybphy_id, bit_id));
}
/* split in */
if (e1 <= 31 && e2 >= 32) {
bit_state[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] =
BIT_SPLIT_IN;
byte_status[if_id][sybphy_id] |=
BYTE_HOMOGENEOUS_SPLIT_IN;
l2h_adll_value[sybphy_id][bit_id] = e1;
h2l_adll_value[sybphy_id][bit_id] = e2;
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d bit %d BIT_SPLIT_IN\n",
if_id, sybphy_id, bit_id));
}
}
} else {
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_INFO,
("if_id %d sybphy_id %d bit %d l2h 0x%x (e1 0x%x)"
"h2l 0x%x (e2 0x%x): bit cannot be categorized\n",
if_id, sybphy_id, bit_id, result[HWS_LOW2HIGH][0], e1,
result[HWS_HIGH2LOW][0], e2));
/* mark the byte as not defined */
byte_status[if_id][sybphy_id] = BYTE_NOT_DEFINED;
break; /* continue to next pup - no reason to analyze this byte */
}
} /* for all bits */
} /* for all PUPs */
/* phase 2 will occur only in write operation */
if (bit_bit_mask_active != 0) {
l2h_if_train_res = ddr3_tip_get_buf_ptr(dev_num, HWS_LOW2HIGH, result_type, if_id);
h2l_if_train_res = ddr3_tip_get_buf_ptr(dev_num, HWS_HIGH2LOW, result_type, if_id);
/* search from middle to end */
ddr3_tip_ip_training
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, result_type,
control_element, HWS_LOW2HIGH,
direction, interface_mask,
num_iter / 2, num_iter / 2,
pattern, EDGE_FP, train_cs_type,
cs_num, train_status);
for (sybphy_id = 0; sybphy_id < octets_per_if_num; sybphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, sybphy_id);
if (byte_status[if_id][sybphy_id] != BYTE_NOT_DEFINED) {
if (bit_bit_mask[sybphy_id] == 0)
continue; /* this byte bits have no split out state */
for (bit_id = 0; bit_id < bit_end; bit_id++) {
if ((bit_bit_mask[sybphy_id] & (1 << bit_id)) == 0)
continue; /* this bit is non split goto next bit */
/* enter the result to the data base */
status = ddr3_tip_read_training_result
(dev_num, if_id, ACCESS_TYPE_UNICAST, sybphy_id,
bit_id, HWS_LOW2HIGH, direction, result_type,
TRAINING_LOAD_OPERATION_UNLOAD, CS_SINGLE,
&l2h_if_train_res, 0, 0, 1);
if (MV_OK != status)
return status;
l2h_adll_value[sybphy_id][bit_id] =
l2h_if_train_res[sybphy_id *
BUS_WIDTH_IN_BITS + bit_id] & PUP_RESULT_EDGE_1_MASK;
}
}
}
/* Search from middle to start */
ddr3_tip_ip_training
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, result_type,
control_element, HWS_HIGH2LOW,
direction, interface_mask,
num_iter / 2, num_iter / 2,
pattern, EDGE_FP, train_cs_type,
cs_num, train_status);
for (sybphy_id = 0; sybphy_id < octets_per_if_num; sybphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, sybphy_id);
if (byte_status[if_id][sybphy_id] != BYTE_NOT_DEFINED) {
if (bit_bit_mask[sybphy_id] == 0)
continue;
for (bit_id = 0; bit_id < bit_end; bit_id++) {
if ((bit_bit_mask[sybphy_id] & (1 << bit_id)) == 0)
continue;
status = ddr3_tip_read_training_result
(dev_num, if_id, ACCESS_TYPE_UNICAST, sybphy_id,
bit_id, HWS_HIGH2LOW, direction, result_type,
TRAINING_LOAD_OPERATION_UNLOAD, CS_SINGLE,
&h2l_if_train_res, 0, cons_tap, 1);
if (MV_OK != status)
return status;
h2l_adll_value[sybphy_id][bit_id] =
h2l_if_train_res[sybphy_id *
BUS_WIDTH_IN_BITS + bit_id] & PUP_RESULT_EDGE_1_MASK;
}
}
}
} /* end if bit_bit_mask_active */
/*
* phase 3 will occur only in write operation
* find the maximum and the minimum center of each subphy
*/
for (sybphy_id = 0; sybphy_id < octets_per_if_num; sybphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, sybphy_id);
if ((byte_status[if_id][sybphy_id] != BYTE_NOT_DEFINED) && (direction == OPER_WRITE)) {
/* clear the arrays and parameters */
center_subphy_adll_window[sybphy_id] = 0;
max_center_subphy_adll[sybphy_id] = 0;
min_center_subphy_adll[sybphy_id] = 64;
/* find the max and min center adll value in the current subphy */
for (bit_id = 0; bit_id < bit_end; bit_id++) {
/* debug print all the bit edges after alignment */
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d bit %d l2h %d h2l %d\n",
if_id, sybphy_id, bit_id, l2h_adll_value[sybphy_id][bit_id],
h2l_adll_value[sybphy_id][bit_id]));
if (((l2h_adll_value[sybphy_id][bit_id] +
h2l_adll_value[sybphy_id][bit_id]) / 2) >
max_center_subphy_adll[sybphy_id])
max_center_subphy_adll[sybphy_id] =
(l2h_adll_value[sybphy_id][bit_id] +
h2l_adll_value[sybphy_id][bit_id]) / 2;
if (((l2h_adll_value[sybphy_id][bit_id] +
h2l_adll_value[sybphy_id][bit_id]) / 2) <
min_center_subphy_adll[sybphy_id])
min_center_subphy_adll[sybphy_id] =
(l2h_adll_value[sybphy_id][bit_id] +
h2l_adll_value[sybphy_id][bit_id]) / 2;
}
/* calculate the center of the current subphy */
center_subphy_adll_window[sybphy_id] =
max_center_subphy_adll[sybphy_id] -
min_center_subphy_adll[sybphy_id];
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d min center %d max center %d center %d\n",
if_id, sybphy_id, min_center_subphy_adll[sybphy_id],
max_center_subphy_adll[sybphy_id],
center_subphy_adll_window[sybphy_id]));
}
}
/*
* check byte state and fix bits state if needed
* in case the level 1 and 2 above subphy results are
* homogeneous continue to the next subphy
*/
for (sybphy_id = 0; sybphy_id < octets_per_if_num; sybphy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, sybphy_id);
if ((byte_status[if_id][sybphy_id] == BYTE_HOMOGENEOUS_LOW) ||
(byte_status[if_id][sybphy_id] == BYTE_HOMOGENEOUS_HIGH) ||
(byte_status[if_id][sybphy_id] == BYTE_HOMOGENEOUS_SPLIT_IN) ||
(byte_status[if_id][sybphy_id] == BYTE_HOMOGENEOUS_SPLIT_OUT) ||
(byte_status[if_id][sybphy_id] == BYTE_NOT_DEFINED))
continue;
/*
* in case all of the bits in the current subphy are
* less than 32 which will find alignment in the subphy bits
* mark this subphy as homogeneous split in
*/
if (center_subphy_adll_window[sybphy_id] <= 31)
byte_status[if_id][sybphy_id] = BYTE_HOMOGENEOUS_SPLIT_IN;
/*
* in case the current byte is split_out and the center is bigger than 31
* the byte can be aligned. in this case add 64 to the the low ui bits aligning it
* to the other ui bits
*/
if (center_subphy_adll_window[sybphy_id] >= 32) {
byte_status[if_id][sybphy_id] = BYTE_SPLIT_OUT_MIX;
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d byte state 0x%x\n",
if_id, sybphy_id, byte_status[if_id][sybphy_id]));
for (bit_id = 0; bit_id < bit_end; bit_id++) {
if (bit_state[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] == BIT_LOW_UI) {
l2h_if_train_res[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] += 64;
h2l_if_train_res[sybphy_id * BUS_WIDTH_IN_BITS + bit_id] += 64;
}
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_TRACE,
("if_id %d sybphy_id %d bit_id %d added 64 adlls\n",
if_id, sybphy_id, bit_id));
}
}
}
} /* for all interfaces */
return MV_OK;
}
u8 mv_ddr_tip_sub_phy_byte_status_get(u32 if_id, u32 subphy_id)
{
return byte_status[if_id][subphy_id];
}
void mv_ddr_tip_sub_phy_byte_status_set(u32 if_id, u32 subphy_id, u8 byte_status_data)
{
byte_status[if_id][subphy_id] = byte_status_data;
}
/*
* Load phy values
*/
int ddr3_tip_load_phy_values(int b_load)
{
u32 bus_cnt = 0, if_id, dev_num = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
if (b_load == 1) {
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_cnt,
DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
&phy_reg_bk[if_id][bus_cnt]
[0]));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_cnt,
DDR_PHY_DATA,
RL_PHY_REG(effective_cs),
&phy_reg_bk[if_id][bus_cnt]
[1]));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_cnt,
DDR_PHY_DATA,
CRX_PHY_REG(effective_cs),
&phy_reg_bk[if_id][bus_cnt]
[2]));
} else {
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
phy_reg_bk[if_id][bus_cnt]
[0]));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA,
RL_PHY_REG(effective_cs),
phy_reg_bk[if_id][bus_cnt]
[1]));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA,
CRX_PHY_REG(effective_cs),
phy_reg_bk[if_id][bus_cnt]
[2]));
}
}
}
return MV_OK;
}
int ddr3_tip_training_ip_test(u32 dev_num, enum hws_training_result result_type,
enum hws_search_dir search_dir,
enum hws_dir direction,
enum hws_edge_compare edge,
u32 init_val1, u32 init_val2,
u32 num_of_iterations,
u32 start_pattern, u32 end_pattern)
{
u32 pattern, if_id, pup_id;
enum hws_training_ip_stat train_status[MAX_INTERFACE_NUM];
u32 *res = NULL;
u32 search_state = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
ddr3_tip_load_phy_values(1);
for (pattern = start_pattern; pattern <= end_pattern; pattern++) {
for (search_state = 0; search_state < HWS_SEARCH_DIR_LIMIT;
search_state++) {
ddr3_tip_ip_training_wrapper(dev_num,
ACCESS_TYPE_MULTICAST, 0,
ACCESS_TYPE_MULTICAST, 0,
result_type,
HWS_CONTROL_ELEMENT_ADLL,
search_dir, direction,
0xfff, init_val1,
init_val2,
num_of_iterations, pattern,
edge, CS_SINGLE,
PARAM_NOT_CARE,
train_status);
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1;
if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (pup_id = 0; pup_id <
octets_per_if_num;
pup_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask,
pup_id);
CHECK_STATUS
(ddr3_tip_read_training_result
(dev_num, if_id,
ACCESS_TYPE_UNICAST, pup_id,
ALL_BITS_PER_PUP,
search_state,
direction, result_type,
TRAINING_LOAD_OPERATION_UNLOAD,
CS_SINGLE, &res, 1, 0,
0));
if (result_type == RESULT_PER_BYTE) {
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_INFO,
("search_state %d if_id %d pup_id %d 0x%x\n",
search_state, if_id,
pup_id, res[0]));
} else {
DEBUG_TRAINING_IP_ENGINE
(DEBUG_LEVEL_INFO,
("search_state %d if_id %d pup_id %d 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
search_state, if_id,
pup_id, res[0],
res[1], res[2],
res[3], res[4],
res[5], res[6],
res[7]));
}
}
} /* interface */
} /* search */
} /* pattern */
ddr3_tip_load_phy_values(0);
return MV_OK;
}
int mv_ddr_pattern_start_addr_set(struct pattern_info *pattern_tbl, enum hws_pattern pattern, u32 addr)
{
pattern_tbl[pattern].start_addr = addr;
return 0;
}
struct pattern_info *ddr3_tip_get_pattern_table()
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask))
return pattern_table_64;
else if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask) == 0)
return pattern_table_32;
else
return pattern_table_16;
}
u16 *ddr3_tip_get_mask_results_dq_reg()
{
#if MAX_BUS_NUM == 5
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask))
return mask_results_dq_reg_map_pup3_ecc;
else
#endif
return mask_results_dq_reg_map;
}
u16 *ddr3_tip_get_mask_results_pup_reg_map()
{
#if MAX_BUS_NUM == 5
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask))
return mask_results_pup_reg_map_pup3_ecc;
else
#endif
return mask_results_pup_reg_map;
}
/* load expected dm pattern to odpg */
#define LOW_NIBBLE_BYTE_MASK 0xf
#define HIGH_NIBBLE_BYTE_MASK 0xf0
int mv_ddr_load_dm_pattern_to_odpg(enum hws_access_type access_type, enum hws_pattern pattern,
enum dm_direction dm_dir)
{
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 pattern_len = 0;
u32 data_low, data_high;
u8 dm_data;
for (pattern_len = 0;
pattern_len < pattern_table[pattern].pattern_len;
pattern_len++) {
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask)) {
data_low = pattern_table_get_word(0, pattern, (u8)pattern_len);
data_high = data_low;
} else {
data_low = pattern_table_get_word(0, pattern, (u8)(pattern_len * 2));
data_high = pattern_table_get_word(0, pattern, (u8)(pattern_len * 2 + 1));
}
/* odpg mbus dm definition is opposite to ddr4 protocol */
if (dm_dir == DM_DIR_INVERSE)
dm_data = ~((data_low & LOW_NIBBLE_BYTE_MASK) | (data_high & HIGH_NIBBLE_BYTE_MASK));
else
dm_data = (data_low & LOW_NIBBLE_BYTE_MASK) | (data_high & HIGH_NIBBLE_BYTE_MASK);
ddr3_tip_if_write(0, access_type, 0, ODPG_DATA_WR_DATA_LOW_REG, data_low, MASK_ALL_BITS);
ddr3_tip_if_write(0, access_type, 0, ODPG_DATA_WR_DATA_HIGH_REG, data_high, MASK_ALL_BITS);
ddr3_tip_if_write(0, access_type, 0, ODPG_DATA_WR_ADDR_REG,
pattern_len | ((dm_data & ODPG_DATA_WR_DATA_MASK) << ODPG_DATA_WR_DATA_OFFS),
MASK_ALL_BITS);
}
return MV_OK;
}