// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include "ddr3_init.h"
#include "mv_ddr_common.h"
#define GET_CS_FROM_MASK(mask) (cs_mask2_num[mask])
#define CS_CBE_VALUE(cs_num) (cs_cbe_reg[cs_num])
u32 window_mem_addr = 0;
u32 phy_reg0_val = 0;
u32 phy_reg1_val = 8;
u32 phy_reg2_val = 0;
u32 phy_reg3_val = PARAM_UNDEFINED;
enum hws_ddr_freq low_freq = DDR_FREQ_LOW_FREQ;
enum hws_ddr_freq medium_freq;
u32 debug_dunit = 0;
u32 odt_additional = 1;
u32 *dq_map_table = NULL;
/* in case of ddr4 do not run ddr3_tip_write_additional_odt_setting function - mc odt always 'on'
* in ddr4 case the terminations are rttWR and rttPARK and the odt must be always 'on' 0x1498 = 0xf
*/
u32 odt_config = 1;
u32 nominal_avs;
u32 extension_avs;
u32 is_pll_before_init = 0, is_adll_calib_before_init = 1, is_dfs_in_init = 0;
u32 dfs_low_freq;
u32 g_rtt_nom_cs0, g_rtt_nom_cs1;
u8 calibration_update_control; /* 2 external only, 1 is internal only */
enum hws_result training_result[MAX_STAGE_LIMIT][MAX_INTERFACE_NUM];
enum auto_tune_stage training_stage = INIT_CONTROLLER;
u32 finger_test = 0, p_finger_start = 11, p_finger_end = 64,
n_finger_start = 11, n_finger_end = 64,
p_finger_step = 3, n_finger_step = 3;
u32 clamp_tbl[] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 };
/* Initiate to 0xff, this variable is define by user in debug mode */
u32 mode_2t = 0xff;
u32 xsb_validate_type = 0;
u32 xsb_validation_base_address = 0xf000;
u32 first_active_if = 0;
u32 dfs_low_phy1 = 0x1f;
u32 multicast_id = 0;
int use_broadcast = 0;
struct hws_tip_freq_config_info *freq_info_table = NULL;
u8 is_cbe_required = 0;
u32 debug_mode = 0;
u32 delay_enable = 0;
int rl_mid_freq_wa = 0;
u32 effective_cs = 0;
u32 vref_init_val = 0x4;
u32 ck_delay = PARAM_UNDEFINED;
/* Design guidelines parameters */
u32 g_zpri_data = PARAM_UNDEFINED; /* controller data - P drive strength */
u32 g_znri_data = PARAM_UNDEFINED; /* controller data - N drive strength */
u32 g_zpri_ctrl = PARAM_UNDEFINED; /* controller C/A - P drive strength */
u32 g_znri_ctrl = PARAM_UNDEFINED; /* controller C/A - N drive strength */
u32 g_zpodt_data = PARAM_UNDEFINED; /* controller data - P ODT */
u32 g_znodt_data = PARAM_UNDEFINED; /* controller data - N ODT */
u32 g_zpodt_ctrl = PARAM_UNDEFINED; /* controller data - P ODT */
u32 g_znodt_ctrl = PARAM_UNDEFINED; /* controller data - N ODT */
u32 g_odt_config = PARAM_UNDEFINED;
u32 g_rtt_nom = PARAM_UNDEFINED;
u32 g_rtt_wr = PARAM_UNDEFINED;
u32 g_dic = PARAM_UNDEFINED;
u32 g_rtt_park = PARAM_UNDEFINED;
u32 mask_tune_func = (SET_MEDIUM_FREQ_MASK_BIT |
WRITE_LEVELING_MASK_BIT |
LOAD_PATTERN_2_MASK_BIT |
READ_LEVELING_MASK_BIT |
SET_TARGET_FREQ_MASK_BIT |
WRITE_LEVELING_TF_MASK_BIT |
READ_LEVELING_TF_MASK_BIT |
CENTRALIZATION_RX_MASK_BIT |
CENTRALIZATION_TX_MASK_BIT);
static int ddr3_tip_ddr3_training_main_flow(u32 dev_num);
static int ddr3_tip_write_odt(u32 dev_num, enum hws_access_type access_type,
u32 if_id, u32 cl_value, u32 cwl_value);
static int ddr3_tip_ddr3_auto_tune(u32 dev_num);
#ifdef ODT_TEST_SUPPORT
static int odt_test(u32 dev_num, enum hws_algo_type algo_type);
#endif
int adll_calibration(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_ddr_freq frequency);
static int ddr3_tip_set_timing(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_ddr_freq frequency);
static struct page_element page_tbl[] = {
/*
* 8bits 16 bits
* page-size(K) page-size(K) mask
*/
{ 1, 2, 2},
/* 512M */
{ 1, 2, 3},
/* 1G */
{ 1, 2, 0},
/* 2G */
{ 1, 2, 4},
/* 4G */
{ 2, 2, 5},
/* 8G */
{0, 0, 0}, /* TODO: placeholder for 16-Mbit die capacity */
{0, 0, 0}, /* TODO: placeholder for 32-Mbit die capacity */
{0, 0, 0}, /* TODO: placeholder for 12-Mbit die capacity */
{0, 0, 0} /* TODO: placeholder for 24-Mbit die capacity */
};
struct page_element *mv_ddr_page_tbl_get(void)
{
return &page_tbl[0];
}
static u8 mem_size_config[MV_DDR_DIE_CAP_LAST] = {
0x2, /* 512Mbit */
0x3, /* 1Gbit */
0x0, /* 2Gbit */
0x4, /* 4Gbit */
0x5, /* 8Gbit */
0x0, /* TODO: placeholder for 16-Mbit die capacity */
0x0, /* TODO: placeholder for 32-Mbit die capacity */
0x0, /* TODO: placeholder for 12-Mbit die capacity */
0x0 /* TODO: placeholder for 24-Mbit die capacity */
};
static u8 cs_mask2_num[] = { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
static struct reg_data odpg_default_value[] = {
{0x1034, 0x38000, MASK_ALL_BITS},
{0x1038, 0x0, MASK_ALL_BITS},
{0x10b0, 0x0, MASK_ALL_BITS},
{0x10b8, 0x0, MASK_ALL_BITS},
{0x10c0, 0x0, MASK_ALL_BITS},
{0x10f0, 0x0, MASK_ALL_BITS},
{0x10f4, 0x0, MASK_ALL_BITS},
{0x10f8, 0xff, MASK_ALL_BITS},
{0x10fc, 0xffff, MASK_ALL_BITS},
{0x1130, 0x0, MASK_ALL_BITS},
{0x1830, 0x2000000, MASK_ALL_BITS},
{0x14d0, 0x0, MASK_ALL_BITS},
{0x14d4, 0x0, MASK_ALL_BITS},
{0x14d8, 0x0, MASK_ALL_BITS},
{0x14dc, 0x0, MASK_ALL_BITS},
{0x1454, 0x0, MASK_ALL_BITS},
{0x1594, 0x0, MASK_ALL_BITS},
{0x1598, 0x0, MASK_ALL_BITS},
{0x159c, 0x0, MASK_ALL_BITS},
{0x15a0, 0x0, MASK_ALL_BITS},
{0x15a4, 0x0, MASK_ALL_BITS},
{0x15a8, 0x0, MASK_ALL_BITS},
{0x15ac, 0x0, MASK_ALL_BITS},
{0x1604, 0x0, MASK_ALL_BITS},
{0x1608, 0x0, MASK_ALL_BITS},
{0x160c, 0x0, MASK_ALL_BITS},
{0x1610, 0x0, MASK_ALL_BITS},
{0x1614, 0x0, MASK_ALL_BITS},
{0x1618, 0x0, MASK_ALL_BITS},
{0x1624, 0x0, MASK_ALL_BITS},
{0x1690, 0x0, MASK_ALL_BITS},
{0x1694, 0x0, MASK_ALL_BITS},
{0x1698, 0x0, MASK_ALL_BITS},
{0x169c, 0x0, MASK_ALL_BITS},
{0x14b8, 0x6f67, MASK_ALL_BITS},
{0x1630, 0x0, MASK_ALL_BITS},
{0x1634, 0x0, MASK_ALL_BITS},
{0x1638, 0x0, MASK_ALL_BITS},
{0x163c, 0x0, MASK_ALL_BITS},
{0x16b0, 0x0, MASK_ALL_BITS},
{0x16b4, 0x0, MASK_ALL_BITS},
{0x16b8, 0x0, MASK_ALL_BITS},
{0x16bc, 0x0, MASK_ALL_BITS},
{0x16c0, 0x0, MASK_ALL_BITS},
{0x16c4, 0x0, MASK_ALL_BITS},
{0x16c8, 0x0, MASK_ALL_BITS},
{0x16cc, 0x1, MASK_ALL_BITS},
{0x16f0, 0x1, MASK_ALL_BITS},
{0x16f4, 0x0, MASK_ALL_BITS},
{0x16f8, 0x0, MASK_ALL_BITS},
{0x16fc, 0x0, MASK_ALL_BITS}
};
/* MR cmd and addr definitions */
struct mv_ddr_mr_data mr_data[] = {
{MRS0_CMD, MR0_REG},
{MRS1_CMD, MR1_REG},
{MRS2_CMD, MR2_REG},
{MRS3_CMD, MR3_REG}
};
static int ddr3_tip_pad_inv(u32 dev_num, u32 if_id);
static int ddr3_tip_rank_control(u32 dev_num, u32 if_id);
/*
* Update global training parameters by data from user
*/
int ddr3_tip_tune_training_params(u32 dev_num,
struct tune_train_params *params)
{
if (params->ck_delay != PARAM_UNDEFINED)
ck_delay = params->ck_delay;
if (params->phy_reg3_val != PARAM_UNDEFINED)
phy_reg3_val = params->phy_reg3_val;
if (params->g_rtt_nom != PARAM_UNDEFINED)
g_rtt_nom = params->g_rtt_nom;
if (params->g_rtt_wr != PARAM_UNDEFINED)
g_rtt_wr = params->g_rtt_wr;
if (params->g_dic != PARAM_UNDEFINED)
g_dic = params->g_dic;
if (params->g_odt_config != PARAM_UNDEFINED)
g_odt_config = params->g_odt_config;
if (params->g_zpri_data != PARAM_UNDEFINED)
g_zpri_data = params->g_zpri_data;
if (params->g_znri_data != PARAM_UNDEFINED)
g_znri_data = params->g_znri_data;
if (params->g_zpri_ctrl != PARAM_UNDEFINED)
g_zpri_ctrl = params->g_zpri_ctrl;
if (params->g_znri_ctrl != PARAM_UNDEFINED)
g_znri_ctrl = params->g_znri_ctrl;
if (params->g_zpodt_data != PARAM_UNDEFINED)
g_zpodt_data = params->g_zpodt_data;
if (params->g_znodt_data != PARAM_UNDEFINED)
g_znodt_data = params->g_znodt_data;
if (params->g_zpodt_ctrl != PARAM_UNDEFINED)
g_zpodt_ctrl = params->g_zpodt_ctrl;
if (params->g_znodt_ctrl != PARAM_UNDEFINED)
g_znodt_ctrl = params->g_znodt_ctrl;
if (params->g_rtt_park != PARAM_UNDEFINED)
g_rtt_park = params->g_rtt_park;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("DGL parameters: 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n",
g_zpri_data, g_znri_data, g_zpri_ctrl, g_znri_ctrl, g_zpodt_data, g_znodt_data,
g_zpodt_ctrl, g_znodt_ctrl, g_rtt_nom, g_dic, g_odt_config, g_rtt_wr));
return MV_OK;
}
/*
* Configure CS
*/
int ddr3_tip_configure_cs(u32 dev_num, u32 if_id, u32 cs_num, u32 enable)
{
u32 data, addr_hi, data_high;
u32 mem_index;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (enable == 1) {
data = (tm->interface_params[if_id].bus_width ==
MV_DDR_DEV_WIDTH_8BIT) ? 0 : 1;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG, (data << (cs_num * 4)),
0x3 << (cs_num * 4)));
mem_index = tm->interface_params[if_id].memory_size;
addr_hi = mem_size_config[mem_index] & 0x3;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG,
(addr_hi << (2 + cs_num * 4)),
0x3 << (2 + cs_num * 4)));
data_high = (mem_size_config[mem_index] & 0x4) >> 2;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG,
data_high << (20 + cs_num), 1 << (20 + cs_num)));
/* Enable Address Select Mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG, 1 << (16 + cs_num),
1 << (16 + cs_num)));
}
switch (cs_num) {
case 0:
case 1:
case 2:
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUNIT_CTRL_LOW_REG, (enable << (cs_num + 11)),
1 << (cs_num + 11)));
break;
case 3:
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUNIT_CTRL_LOW_REG, (enable << 15), 1 << 15));
break;
}
return MV_OK;
}
/*
* Calculate number of CS
*/
int calc_cs_num(u32 dev_num, u32 if_id, u32 *cs_num)
{
u32 cs;
u32 bus_cnt;
u32 cs_count;
u32 cs_bitmask;
u32 curr_cs_num = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
cs_count = 0;
cs_bitmask = tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
for (cs = 0; cs < MAX_CS_NUM; cs++) {
if ((cs_bitmask >> cs) & 1)
cs_count++;
}
if (curr_cs_num == 0) {
curr_cs_num = cs_count;
} else if (cs_count != curr_cs_num) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("CS number is different per bus (IF %d BUS %d cs_num %d curr_cs_num %d)\n",
if_id, bus_cnt, cs_count,
curr_cs_num));
return MV_NOT_SUPPORTED;
}
}
*cs_num = curr_cs_num;
return MV_OK;
}
/*
* Init Controller Flow
*/
int hws_ddr3_tip_init_controller(u32 dev_num, struct init_cntr_param *init_cntr_prm)
{
u32 if_id;
u32 cs_num;
u32 t_ckclk = 0, t_wr = 0, t2t = 0;
u32 data_value = 0, cs_cnt = 0,
mem_mask = 0, bus_index = 0;
enum hws_speed_bin speed_bin_index = SPEED_BIN_DDR_2133N;
u32 cs_mask = 0;
u32 cl_value = 0, cwl_val = 0;
u32 bus_cnt = 0, adll_tap = 0;
enum hws_access_type access_type = ACCESS_TYPE_UNICAST;
u32 data_read[MAX_INTERFACE_NUM];
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum hws_ddr_freq freq = tm->interface_params[0].memory_freq;
enum mv_ddr_timing timing;
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("Init_controller, do_mrs_phy=%d, is_ctrl64_bit=%d\n",
init_cntr_prm->do_mrs_phy,
init_cntr_prm->is_ctrl64_bit));
if (init_cntr_prm->init_phy == 1) {
CHECK_STATUS(ddr3_tip_configure_phy(dev_num));
}
if (generic_init_controller == 1) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("active IF %d\n", if_id));
mem_mask = 0;
for (bus_index = 0;
bus_index < octets_per_if_num;
bus_index++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_index);
mem_mask |=
tm->interface_params[if_id].
as_bus_params[bus_index].mirror_enable_bitmask;
}
if (mem_mask != 0) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
if_id, DUAL_DUNIT_CFG_REG, 0,
0x8));
}
speed_bin_index =
tm->interface_params[if_id].
speed_bin_index;
/* t_ckclk is external clock */
t_ckclk = (MEGA / freq_val[freq]);
if (MV_DDR_IS_HALF_BUS_DRAM_MODE(tm->bus_act_mask, octets_per_if_num))
data_value = (0x4000 | 0 | 0x1000000) & ~(1 << 26);
else
data_value = (0x4000 | 0x8000 | 0x1000000) & ~(1 << 26);
/* Interface Bus Width */
/* SRMode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, data_value,
0x100c000));
/* Interleave first command pre-charge enable (TBD) */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OPEN_PAGES_CTRL_REG, (1 << 10),
(1 << 10)));
/* Reset divider_b assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_CFG_REG,
0x0 << PUP_RST_DIVIDER_OFFS,
PUP_RST_DIVIDER_MASK << PUP_RST_DIVIDER_OFFS));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_CFG_REG,
0x1 << PUP_RST_DIVIDER_OFFS,
PUP_RST_DIVIDER_MASK << PUP_RST_DIVIDER_OFFS));
/* PHY configuration */
/*
* Postamble Length = 1.5cc, Addresscntl to clk skew
* \BD, Preamble length normal, parralal ADLL enable
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, 0x28, 0x3e));
if (init_cntr_prm->is_ctrl64_bit) {
/* positive edge */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, 0x0,
0xff80));
}
/* calibration block disable */
/* Xbar Read buffer select (for Internal access) */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG, 0x1200c,
0x7dffe01c));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG,
calibration_update_control << 3, 0x3 << 3));
/* Pad calibration control - enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG, 0x1, 0x1));
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) < MV_TIP_REV_3) {
/* DDR3 rank ctrl \96 part of the generic code */
/* CS1 mirroring enable + w/a for JIRA DUNIT-14581 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DDR3_RANK_CTRL_REG, 0x27, MASK_ALL_BITS));
}
cs_mask = 0;
data_value = 0x7;
/*
* Address ctrl \96 Part of the Generic code
* The next configuration is done:
* 1) Memory Size
* 2) Bus_width
* 3) CS#
* 4) Page Number
* Per Dunit get from the Map_topology the parameters:
* Bus_width
*/
data_value =
(tm->interface_params[if_id].
bus_width == MV_DDR_DEV_WIDTH_8BIT) ? 0 : 1;
/* create merge cs mask for all cs available in dunit */
for (bus_cnt = 0;
bus_cnt < octets_per_if_num;
bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
cs_mask |=
tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("Init_controller IF %d cs_mask %d\n",
if_id, cs_mask));
/*
* Configure the next upon the Map Topology \96 If the
* Dunit is CS0 Configure CS0 if it is multi CS
* configure them both: The Bust_width it\92s the
* Memory Bus width \96 x8 or x16
*/
for (cs_cnt = 0; cs_cnt < NUM_OF_CS; cs_cnt++) {
ddr3_tip_configure_cs(dev_num, if_id, cs_cnt,
((cs_mask & (1 << cs_cnt)) ? 1
: 0));
}
if (init_cntr_prm->do_mrs_phy) {
/*
* MR0 \96 Part of the Generic code
* The next configuration is done:
* 1) Burst Length
* 2) CAS Latency
* get for each dunit what is it Speed_bin &
* Target Frequency. From those both parameters
* get the appropriate Cas_l from the CL table
*/
cl_value =
tm->interface_params[if_id].
cas_l;
cwl_val =
tm->interface_params[if_id].
cas_wl;
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("cl_value 0x%x cwl_val 0x%x\n",
cl_value, cwl_val));
t_wr = time_to_nclk(speed_bin_table
(speed_bin_index,
SPEED_BIN_TWR), t_ckclk);
data_value =
((cl_mask_table[cl_value] & 0x1) << 2) |
((cl_mask_table[cl_value] & 0xe) << 3);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MR0_REG, data_value,
(0x7 << 4) | (1 << 2)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MR0_REG, twr_mask_table[t_wr] << 9,
0x7 << 9));
/*
* MR1: Set RTT and DIC Design GL values
* configured by user
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, MR1_REG,
g_dic | g_rtt_nom, 0x266));
/* MR2 - Part of the Generic code */
/*
* The next configuration is done:
* 1) SRT
* 2) CAS Write Latency
*/
data_value = (cwl_mask_table[cwl_val] << 3);
data_value |=
((tm->interface_params[if_id].
interface_temp ==
MV_DDR_TEMP_HIGH) ? (1 << 7) : 0);
data_value |= g_rtt_wr;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MR2_REG, data_value,
(0x7 << 3) | (0x1 << 7) | (0x3 <<
9)));
}
ddr3_tip_write_odt(dev_num, access_type, if_id,
cl_value, cwl_val);
ddr3_tip_set_timing(dev_num, access_type, if_id, freq);
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) < MV_TIP_REV_3) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG, 0x1000119,
0x100017F));
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG, 0x600177 |
(init_cntr_prm->is_ctrl64_bit ?
CPU_INTERJECTION_ENA_SPLIT_ENA << CPU_INTERJECTION_ENA_OFFS :
CPU_INTERJECTION_ENA_SPLIT_DIS << CPU_INTERJECTION_ENA_OFFS),
0x1600177 | CPU_INTERJECTION_ENA_MASK <<
CPU_INTERJECTION_ENA_OFFS));
}
/* reset bit 7 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG,
(init_cntr_prm->msys_init << 7), (1 << 7)));
timing = tm->interface_params[if_id].timing;
if (mode_2t != 0xff) {
t2t = mode_2t;
} else if (timing != MV_DDR_TIM_DEFAULT) {
t2t = (timing == MV_DDR_TIM_2T) ? 1 : 0;
} else {
/* calculate number of CS (per interface) */
CHECK_STATUS(calc_cs_num
(dev_num, if_id, &cs_num));
t2t = (cs_num == 1) ? 0 : 1;
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_LOW_REG, t2t << 3,
0x3 << 3));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DDR_TIMING_REG, 0x28 << 9, 0x3f << 9));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DDR_TIMING_REG, 0xa << 21, 0xff << 21));
/* move the block to ddr3_tip_set_timing - end */
/* AUTO_ZQC_TIMING */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ZQC_CFG_REG, (AUTO_ZQC_TIMING | (2 << 20)),
0x3fffff));
CHECK_STATUS(ddr3_tip_if_read
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, data_read, 0x30));
data_value =
(data_read[if_id] == 0) ? (1 << 11) : 0;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG, data_value,
(1 << 11)));
/* Set Active control for ODT write transactions */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, 0x1494, g_odt_config,
MASK_ALL_BITS));
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) == MV_TIP_REV_3) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x14a8, 0x900, 0x900));
/* wa: controls control sub-phy outputs floating during self-refresh */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x16d0, 0, 0x8000));
}
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_rank_control(dev_num, if_id));
if (init_cntr_prm->do_mrs_phy) {
CHECK_STATUS(ddr3_tip_pad_inv(dev_num, if_id));
}
/* Pad calibration control - disable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG, 0x0, 0x1));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG,
calibration_update_control << 3, 0x3 << 3));
}
if (delay_enable != 0) {
adll_tap = MEGA / (freq_val[freq] * 64);
ddr3_tip_cmd_addr_init_delay(dev_num, adll_tap);
}
return MV_OK;
}
/*
* Rank Control Flow
*/
static int ddr3_tip_rev2_rank_control(u32 dev_num, u32 if_id)
{
u32 data_value = 0, bus_cnt = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
data_value |= tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask;
if (tm->interface_params[if_id].as_bus_params[bus_cnt].
mirror_enable_bitmask == 1) {
/*
* Check mirror_enable_bitmask
* If it is enabled, CS + 4 bit in a word to be '1'
*/
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x1) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 4;
}
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x2) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 5;
}
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x4) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 6;
}
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x8) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 7;
}
}
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, DDR3_RANK_CTRL_REG,
data_value, 0xff));
return MV_OK;
}
static int ddr3_tip_rev3_rank_control(u32 dev_num, u32 if_id)
{
u32 data_value = 0, bus_cnt;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (bus_cnt = 1; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
if ((tm->interface_params[if_id].
as_bus_params[0].cs_bitmask !=
tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask) ||
(tm->interface_params[if_id].
as_bus_params[0].mirror_enable_bitmask !=
tm->interface_params[if_id].
as_bus_params[bus_cnt].mirror_enable_bitmask))
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("WARNING:Wrong configuration for pup #%d CS mask and CS mirroring for all pups should be the same\n",
bus_cnt));
}
data_value |= tm->interface_params[if_id].
as_bus_params[0].cs_bitmask;
data_value |= tm->interface_params[if_id].
as_bus_params[0].mirror_enable_bitmask << 4;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, DDR3_RANK_CTRL_REG,
data_value, 0xff));
return MV_OK;
}
static int ddr3_tip_rank_control(u32 dev_num, u32 if_id)
{
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) == MV_TIP_REV_2)
return ddr3_tip_rev2_rank_control(dev_num, if_id);
else
return ddr3_tip_rev3_rank_control(dev_num, if_id);
}
/*
* PAD Inverse Flow
*/
static int ddr3_tip_pad_inv(u32 dev_num, u32 if_id)
{
u32 bus_cnt, data_value, ck_swap_pup_ctrl;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
if (tm->interface_params[if_id].
as_bus_params[bus_cnt].is_dqs_swap == 1) {
/* dqs swap */
ddr3_tip_bus_read_modify_write(dev_num, ACCESS_TYPE_UNICAST,
if_id, bus_cnt,
DDR_PHY_DATA,
PHY_CTRL_PHY_REG, 0xc0,
0xc0);
}
if (tm->interface_params[if_id].
as_bus_params[bus_cnt].is_ck_swap == 1) {
if (bus_cnt <= 1)
data_value = 0x5 << 2;
else
data_value = 0xa << 2;
/* mask equals data */
/* ck swap pup is only control pup #0 ! */
ck_swap_pup_ctrl = 0;
ddr3_tip_bus_read_modify_write(dev_num, ACCESS_TYPE_UNICAST,
if_id, ck_swap_pup_ctrl,
DDR_PHY_CONTROL,
PHY_CTRL_PHY_REG,
data_value, data_value);
}
}
return MV_OK;
}
/*
* Algorithm Parameters Validation
*/
int ddr3_tip_validate_algo_var(u32 value, u32 fail_value, char *var_name)
{
if (value == fail_value) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: %s is not initialized (Algo Components Validation)\n",
var_name));
return 0;
}
return 1;
}
int ddr3_tip_validate_algo_ptr(void *ptr, void *fail_value, char *ptr_name)
{
if (ptr == fail_value) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: %s is not initialized (Algo Components Validation)\n",
ptr_name));
return 0;
}
return 1;
}
int ddr3_tip_validate_algo_components(u8 dev_num)
{
int status = 1;
/* Check DGL parameters*/
status &= ddr3_tip_validate_algo_var(ck_delay, PARAM_UNDEFINED, "ck_delay");
status &= ddr3_tip_validate_algo_var(phy_reg3_val, PARAM_UNDEFINED, "phy_reg3_val");
status &= ddr3_tip_validate_algo_var(g_rtt_nom, PARAM_UNDEFINED, "g_rtt_nom");
status &= ddr3_tip_validate_algo_var(g_dic, PARAM_UNDEFINED, "g_dic");
status &= ddr3_tip_validate_algo_var(odt_config, PARAM_UNDEFINED, "odt_config");
status &= ddr3_tip_validate_algo_var(g_zpri_data, PARAM_UNDEFINED, "g_zpri_data");
status &= ddr3_tip_validate_algo_var(g_znri_data, PARAM_UNDEFINED, "g_znri_data");
status &= ddr3_tip_validate_algo_var(g_zpri_ctrl, PARAM_UNDEFINED, "g_zpri_ctrl");
status &= ddr3_tip_validate_algo_var(g_znri_ctrl, PARAM_UNDEFINED, "g_znri_ctrl");
status &= ddr3_tip_validate_algo_var(g_zpodt_data, PARAM_UNDEFINED, "g_zpodt_data");
status &= ddr3_tip_validate_algo_var(g_znodt_data, PARAM_UNDEFINED, "g_znodt_data");
status &= ddr3_tip_validate_algo_var(g_zpodt_ctrl, PARAM_UNDEFINED, "g_zpodt_ctrl");
status &= ddr3_tip_validate_algo_var(g_znodt_ctrl, PARAM_UNDEFINED, "g_znodt_ctrl");
/* Check functions pointers */
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_dunit_mux_select_func,
NULL, "tip_dunit_mux_select_func");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_dunit_write,
NULL, "mv_ddr_dunit_write");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_dunit_read,
NULL, "mv_ddr_dunit_read");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_phy_write,
NULL, "mv_ddr_phy_write");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_phy_read,
NULL, "mv_ddr_phy_read");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_get_freq_config_info_func,
NULL, "tip_get_freq_config_info_func");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_set_freq_divider_func,
NULL, "tip_set_freq_divider_func");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_get_clock_ratio,
NULL, "tip_get_clock_ratio");
status &= ddr3_tip_validate_algo_ptr(dq_map_table, NULL, "dq_map_table");
status &= ddr3_tip_validate_algo_var(dfs_low_freq, 0, "dfs_low_freq");
return (status == 1) ? MV_OK : MV_NOT_INITIALIZED;
}
int ddr3_pre_algo_config(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Set Bus3 ECC training mode */
if (DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask)) {
/* Set Bus3 ECC MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
DRAM_PINS_MUX_REG, 0x100, 0x100));
}
/* Set regular ECC training mode (bus4 and bus 3) */
if ((DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP8_MODE(tm->bus_act_mask))) {
/* Enable ECC Write MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x100, 0x100));
/* General ECC enable */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0x40000, 0x40000));
/* Disable Read Data ECC MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x2));
}
return MV_OK;
}
int ddr3_post_algo_config(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
int status;
status = ddr3_post_run_alg();
if (MV_OK != status) {
printf("DDR3 Post Run Alg - FAILED 0x%x\n", status);
return status;
}
/* Un_set ECC training mode */
if ((DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP8_MODE(tm->bus_act_mask))) {
/* Disable ECC Write MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x100));
/* General ECC and Bus3 ECC MUX remains enabled */
}
return MV_OK;
}
/*
* Run Training Flow
*/
int hws_ddr3_tip_run_alg(u32 dev_num, enum hws_algo_type algo_type)
{
int status = MV_OK;
status = ddr3_pre_algo_config();
if (MV_OK != status) {
printf("DDR3 Pre Algo Config - FAILED 0x%x\n", status);
return status;
}
#ifdef ODT_TEST_SUPPORT
if (finger_test == 1)
return odt_test(dev_num, algo_type);
#endif
if (algo_type == ALGO_TYPE_DYNAMIC) {
status = ddr3_tip_ddr3_auto_tune(dev_num);
}
if (status != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("******** DRAM initialization Failed (res 0x%x) ********\n",
status));
return status;
}
status = ddr3_post_algo_config();
if (MV_OK != status) {
printf("DDR3 Post Algo Config - FAILED 0x%x\n", status);
return status;
}
return status;
}
#ifdef ODT_TEST_SUPPORT
/*
* ODT Test
*/
static int odt_test(u32 dev_num, enum hws_algo_type algo_type)
{
int ret = MV_OK, ret_tune = MV_OK;
int pfinger_val = 0, nfinger_val;
for (pfinger_val = p_finger_start; pfinger_val <= p_finger_end;
pfinger_val += p_finger_step) {
for (nfinger_val = n_finger_start; nfinger_val <= n_finger_end;
nfinger_val += n_finger_step) {
if (finger_test != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("pfinger_val %d nfinger_val %d\n",
pfinger_val, nfinger_val));
/*
* TODO: need to check the correctness
* of the following two lines.
*/
g_zpodt_data = pfinger_val;
g_znodt_data = nfinger_val;
}
if (algo_type == ALGO_TYPE_DYNAMIC) {
ret = ddr3_tip_ddr3_auto_tune(dev_num);
}
}
}
if (ret_tune != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Run_alg: tuning failed %d\n", ret_tune));
ret = (ret == MV_OK) ? ret_tune : ret;
}
return ret;
}
#endif
/*
* Select Controller
*/
int hws_ddr3_tip_select_ddr_controller(u32 dev_num, int enable)
{
return config_func_info[dev_num].
tip_dunit_mux_select_func((u8)dev_num, enable);
}
/*
* Dunit Register Write
*/
int ddr3_tip_if_write(u32 dev_num, enum hws_access_type interface_access,
u32 if_id, u32 reg_addr, u32 data_value, u32 mask)
{
config_func_info[dev_num].mv_ddr_dunit_write(reg_addr, mask, data_value);
return MV_OK;
}
/*
* Dunit Register Read
*/
int ddr3_tip_if_read(u32 dev_num, enum hws_access_type interface_access,
u32 if_id, u32 reg_addr, u32 *data, u32 mask)
{
config_func_info[dev_num].mv_ddr_dunit_read(reg_addr, mask, data);
return MV_OK;
}
/*
* Dunit Register Polling
*/
int ddr3_tip_if_polling(u32 dev_num, enum hws_access_type access_type,
u32 if_id, u32 exp_value, u32 mask, u32 offset,
u32 poll_tries)
{
u32 poll_cnt = 0, interface_num = 0, start_if, end_if;
u32 read_data[MAX_INTERFACE_NUM];
int ret;
int is_fail = 0, is_if_fail;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = if_id;
end_if = if_id;
}
for (interface_num = start_if; interface_num <= end_if; interface_num++) {
/* polling bit 3 for n times */
VALIDATE_IF_ACTIVE(tm->if_act_mask, interface_num);
is_if_fail = 0;
for (poll_cnt = 0; poll_cnt < poll_tries; poll_cnt++) {
ret =
ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST,
interface_num, offset, read_data,
mask);
if (ret != MV_OK)
return ret;
if (read_data[interface_num] == exp_value)
break;
}
if (poll_cnt >= poll_tries) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("max poll IF #%d\n", interface_num));
is_fail = 1;
is_if_fail = 1;
}
training_result[training_stage][interface_num] =
(is_if_fail == 1) ? TEST_FAILED : TEST_SUCCESS;
}
return (is_fail == 0) ? MV_OK : MV_FAIL;
}
/*
* Bus read access
*/
int ddr3_tip_bus_read(u32 dev_num, u32 if_id,
enum hws_access_type phy_access, u32 phy_id,
enum hws_ddr_phy phy_type, u32 reg_addr, u32 *data)
{
return config_func_info[dev_num].
mv_ddr_phy_read(phy_access, phy_id, phy_type, reg_addr, data);
}
/*
* Bus write access
*/
int ddr3_tip_bus_write(u32 dev_num, enum hws_access_type interface_access,
u32 if_id, enum hws_access_type phy_access,
u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr,
u32 data_value)
{
return config_func_info[dev_num].
mv_ddr_phy_write(phy_access, phy_id, phy_type, reg_addr, data_value, OPERATION_WRITE);
}
/*
* Phy read-modify-write
*/
int ddr3_tip_bus_read_modify_write(u32 dev_num, enum hws_access_type access_type,
u32 interface_id, u32 phy_id,
enum hws_ddr_phy phy_type, u32 reg_addr,
u32 data_value, u32 reg_mask)
{
u32 data_val = 0, if_id, start_if, end_if;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = interface_id;
end_if = interface_id;
}
for (if_id = start_if; if_id <= end_if; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST, phy_id,
phy_type, reg_addr, &data_val));
data_value = (data_val & (~reg_mask)) | (data_value & reg_mask);
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, phy_type, reg_addr,
data_value));
}
return MV_OK;
}
/*
* ADLL Calibration
*/
int adll_calibration(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_ddr_freq frequency)
{
struct hws_tip_freq_config_info freq_config_info;
u32 bus_cnt = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Reset Diver_b assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0, 0x10000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0x10000000, 0x10000000));
CHECK_STATUS(config_func_info[dev_num].
tip_get_freq_config_info_func((u8)dev_num, frequency,
&freq_config_info));
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, access_type, if_id, bus_cnt,
DDR_PHY_DATA, ADLL_CFG0_PHY_REG,
freq_config_info.bw_per_freq << 8, 0x700));
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, access_type, if_id, bus_cnt,
DDR_PHY_DATA, ADLL_CFG2_PHY_REG,
freq_config_info.rate_per_freq, 0x7));
}
for (bus_cnt = 0; bus_cnt < DDR_IF_CTRL_SUBPHYS_NUM; bus_cnt++) {
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt,
DDR_PHY_CONTROL, ADLL_CFG0_PHY_REG,
freq_config_info.bw_per_freq << 8, 0x700));
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt,
DDR_PHY_CONTROL, ADLL_CFG2_PHY_REG,
freq_config_info.rate_per_freq, 0x7));
}
/* DUnit to Phy drive post edge, ADLL reset assert de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DRAM_PHY_CFG_REG,
0, (0x80000000 | 0x40000000)));
mdelay(100 / (freq_val[frequency] / freq_val[DDR_FREQ_LOW_FREQ]));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DRAM_PHY_CFG_REG,
(0x80000000 | 0x40000000), (0x80000000 | 0x40000000)));
/* polling for ADLL Done */
if (ddr3_tip_if_polling(dev_num, access_type, if_id,
0x3ff03ff, 0x3ff03ff, PHY_LOCK_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(1)"));
}
/* pup data_pup reset assert-> deassert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0, 0x60000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0x60000000, 0x60000000));
return MV_OK;
}
int ddr3_tip_freq_set(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_ddr_freq frequency)
{
u32 cl_value = 0, cwl_value = 0, mem_mask = 0, val = 0,
bus_cnt = 0, t_wr = 0, t_ckclk = 0,
cnt_id;
u32 end_if, start_if;
u32 bus_index = 0;
int is_dll_off = 0;
enum hws_speed_bin speed_bin_index = 0;
struct hws_tip_freq_config_info freq_config_info;
enum hws_result *flow_result = training_result[training_stage];
u32 adll_tap = 0;
u32 cs_num;
u32 t2t;
u32 cs_mask[MAX_INTERFACE_NUM];
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int tclk;
enum mv_ddr_timing timing = tm->interface_params[if_id].timing;
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("dev %d access %d IF %d freq %d\n", dev_num,
access_type, if_id, frequency));
if (frequency == DDR_FREQ_LOW_FREQ)
is_dll_off = 1;
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = if_id;
end_if = if_id;
}
/* calculate interface cs mask - Oferb 4/11 */
/* speed bin can be different for each interface */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
/* cs enable is active low */
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
cs_mask[if_id] = CS_BIT_MASK;
training_result[training_stage][if_id] = TEST_SUCCESS;
ddr3_tip_calc_cs_mask(dev_num, if_id, effective_cs,
&cs_mask[if_id]);
}
/* speed bin can be different for each interface */
/*
* moti b - need to remove the loop for multicas access functions
* and loop the unicast access functions
*/
for (if_id = start_if; if_id <= end_if; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
flow_result[if_id] = TEST_SUCCESS;
speed_bin_index =
tm->interface_params[if_id].speed_bin_index;
if (tm->interface_params[if_id].memory_freq ==
frequency) {
cl_value =
tm->interface_params[if_id].cas_l;
cwl_value =
tm->interface_params[if_id].cas_wl;
} else if (tm->cfg_src == MV_DDR_CFG_SPD) {
tclk = 1000000 / freq_val[frequency];
cl_value = mv_ddr_cl_calc(tm->timing_data[MV_DDR_TAA_MIN], tclk);
if (cl_value == 0) {
printf("mv_ddr: unsupported cas latency value found\n");
return MV_FAIL;
}
cwl_value = mv_ddr_cwl_calc(tclk);
if (cwl_value == 0) {
printf("mv_ddr: unsupported cas write latency value found\n");
return MV_FAIL;
}
} else {
cl_value =
cas_latency_table[speed_bin_index].cl_val[frequency];
cwl_value =
cas_write_latency_table[speed_bin_index].
cl_val[frequency];
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("Freq_set dev 0x%x access 0x%x if 0x%x freq 0x%x speed %d:\n\t",
dev_num, access_type, if_id,
frequency, speed_bin_index));
for (cnt_id = 0; cnt_id < DDR_FREQ_LAST; cnt_id++) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("%d ",
cas_latency_table[speed_bin_index].
cl_val[cnt_id]));
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("\n"));
mem_mask = 0;
for (bus_index = 0; bus_index < octets_per_if_num;
bus_index++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_index);
mem_mask |=
tm->interface_params[if_id].
as_bus_params[bus_index].mirror_enable_bitmask;
}
if (mem_mask != 0) {
/* motib redundent in KW28 */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id,
DUAL_DUNIT_CFG_REG, 0, 0x8));
}
/* dll state after exiting SR */
if (is_dll_off == 1) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DFS_REG, 0x1, 0x1));
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DFS_REG, 0, 0x1));
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_MMASK_REG, 0, 0x1));
/* DFS - block transactions */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DFS_REG, 0x2, 0x2));
/* disable ODT in case of dll off */
if (is_dll_off == 1) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x1874, 0, 0x244));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x1884, 0, 0x244));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x1894, 0, 0x244));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x18a4, 0, 0x244));
}
/* DFS - Enter Self-Refresh */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG, 0x4,
0x4));
/* polling on self refresh entry */
if (ddr3_tip_if_polling(dev_num, ACCESS_TYPE_UNICAST,
if_id, 0x8, 0x8, DFS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed on SR entry\n"));
}
/* Calculate 2T mode */
if (mode_2t != 0xff) {
t2t = mode_2t;
} else if (timing != MV_DDR_TIM_DEFAULT) {
t2t = (timing == MV_DDR_TIM_2T) ? 1 : 0;
} else {
/* Calculate number of CS per interface */
CHECK_STATUS(calc_cs_num(dev_num, if_id, &cs_num));
t2t = (cs_num == 1) ? 0 : 1;
}
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_INTERLEAVE_WA) == 1) {
/* Use 1T mode if 1:1 ratio configured */
if (config_func_info[dev_num].tip_get_clock_ratio(frequency) == 1) {
/* Low freq*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OPEN_PAGES_CTRL_REG, 0x0, 0x3C0));
t2t = 0;
} else {
/* Middle or target freq */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OPEN_PAGES_CTRL_REG, 0x3C0, 0x3C0));
}
}
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DUNIT_CTRL_LOW_REG, t2t << 3, 0x3 << 3));
/* PLL configuration */
config_func_info[dev_num].tip_set_freq_divider_func(dev_num, if_id,
frequency);
/* DFS - CL/CWL/WR parameters after exiting SR */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG,
(cl_mask_table[cl_value] << 8), 0xf00));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG,
(cwl_mask_table[cwl_value] << 12), 0x7000));
t_ckclk = (MEGA / freq_val[frequency]);
t_wr = time_to_nclk(speed_bin_table
(speed_bin_index,
SPEED_BIN_TWR), t_ckclk);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG,
(twr_mask_table[t_wr] << 16), 0x70000));
/* Restore original RTT values if returning from DLL OFF mode */
if (is_dll_off == 1) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x1874,
g_dic | g_rtt_nom, 0x266));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x1884,
g_dic | g_rtt_nom, 0x266));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x1894,
g_dic | g_rtt_nom, 0x266));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x18a4,
g_dic | g_rtt_nom, 0x266));
}
/* Reset divider_b assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0, 0x10000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0x10000000, 0x10000000));
/* ADLL configuration function of process and frequency */
CHECK_STATUS(config_func_info[dev_num].
tip_get_freq_config_info_func(dev_num, frequency,
&freq_config_info));
/* TBD check milo5 using device ID ? */
for (bus_cnt = 0; bus_cnt < octets_per_if_num;
bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, bus_cnt, DDR_PHY_DATA,
0x92,
freq_config_info.
bw_per_freq << 8
/*freq_mask[dev_num][frequency] << 8 */
, 0x700));
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
bus_cnt, DDR_PHY_DATA, 0x94,
freq_config_info.rate_per_freq, 0x7));
}
/* Dunit to PHY drive post edge, ADLL reset assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, 0,
(0x80000000 | 0x40000000)));
mdelay(100 / (freq_val[frequency] / freq_val[DDR_FREQ_LOW_FREQ]));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, (0x80000000 | 0x40000000),
(0x80000000 | 0x40000000)));
/* polling for ADLL Done */
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0x3ff03ff,
0x3ff03ff, PHY_LOCK_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(1)\n"));
}
/* pup data_pup reset assert-> deassert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0, 0x60000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0x60000000, 0x60000000));
/* Set proper timing params before existing Self-Refresh */
ddr3_tip_set_timing(dev_num, access_type, if_id, frequency);
if (delay_enable != 0) {
adll_tap = (is_dll_off == 1) ? 1000 : (MEGA / (freq_val[frequency] * 64));
ddr3_tip_cmd_addr_init_delay(dev_num, adll_tap);
}
/* Exit SR */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG, 0,
0x4));
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x8, DFS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(2)"));
}
/* Refresh Command */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OP_REG, 0x2, 0xf1f));
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f,
SDRAM_OP_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(3)"));
}
/* Release DFS Block */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG, 0,
0x2));
/* Controller to MBUS Retry - normal */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DUNIT_MMASK_REG,
0x1, 0x1));
/* MRO: Burst Length 8, CL , Auto_precharge 0x16cc */
val =
((cl_mask_table[cl_value] & 0x1) << 2) |
((cl_mask_table[cl_value] & 0xe) << 3);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, MR0_REG,
val, (0x7 << 4) | (1 << 2)));
/* MR2: CWL = 10 , Auto Self-Refresh - disable */
val = (cwl_mask_table[cwl_value] << 3) | g_rtt_wr;
/*
* nklein 24.10.13 - should not be here - leave value as set in
* the init configuration val |= (1 << 9);
* val |= ((tm->interface_params[if_id].
* interface_temp == MV_DDR_TEMP_HIGH) ? (1 << 7) : 0);
*/
/* nklein 24.10.13 - see above comment */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id, MR2_REG,
val, (0x7 << 3) | (0x3 << 9)));
/* ODT TIMING */
val = ((cl_value - cwl_value + 1) << 4) |
((cl_value - cwl_value + 6) << 8) |
((cl_value - 1) << 12) | ((cl_value + 6) << 16);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id, DDR_ODT_TIMING_LOW_REG,
val, 0xffff0));
val = 0x91 | ((cwl_value - 1) << 8) | ((cwl_value + 5) << 12);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id, DDR_ODT_TIMING_HIGH_REG,
val, 0xffff));
/* in case of ddr4 need to set the receiver to odt always 'on' (odt_config = '0')
* in case of ddr3 configure the odt through the timing
*/
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DUNIT_ODT_CTRL_REG, 0xf, 0xf));
}
else {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DUNIT_ODT_CTRL_REG,
0x30f, 0x30f));
}
/* re-write CL */
val = ((cl_mask_table[cl_value] & 0x1) << 2) |
((cl_mask_table[cl_value] & 0xe) << 3);
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask, MR_CMD0,
val, (0x7 << 4) | (0x1 << 2)));
/* re-write CWL */
val = (cwl_mask_table[cwl_value] << 3) | g_rtt_wr;
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask, MR_CMD2,
val, (0x7 << 3) | (0x3 << 9)));
if (mem_mask != 0) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id,
DUAL_DUNIT_CFG_REG,
1 << 3, 0x8));
}
}
return MV_OK;
}
/*
* Set ODT values
*/
static int ddr3_tip_write_odt(u32 dev_num, enum hws_access_type access_type,
u32 if_id, u32 cl_value, u32 cwl_value)
{
/* ODT TIMING */
u32 val = (cl_value - cwl_value + 6);
val = ((cl_value - cwl_value + 1) << 4) | ((val & 0xf) << 8) |
(((cl_value - 1) & 0xf) << 12) |
(((cl_value + 6) & 0xf) << 16) | (((val & 0x10) >> 4) << 21);
val |= (((cl_value - 1) >> 4) << 22) | (((cl_value + 6) >> 4) << 23);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DDR_ODT_TIMING_LOW_REG, val, 0xffff0));
val = 0x91 | ((cwl_value - 1) << 8) | ((cwl_value + 5) << 12);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DDR_ODT_TIMING_HIGH_REG, val, 0xffff));
if (odt_additional == 1) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id,
SDRAM_ODT_CTRL_HIGH_REG,
0xf, 0xf));
}
/* ODT Active */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DUNIT_ODT_CTRL_REG, 0xf, 0xf));
return MV_OK;
}
/*
* Set Timing values for training
*/
static int ddr3_tip_set_timing(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum hws_ddr_freq frequency)
{
u32 t_ckclk = 0, t_ras = 0;
u32 t_rcd = 0, t_rp = 0, t_wr = 0, t_wtr = 0, t_rrd = 0, t_rtp = 0,
t_rfc = 0, t_mod = 0, t_r2r = 0x3, t_r2r_high = 0,
t_r2w_w2r = 0x3, t_r2w_w2r_high = 0x1, t_w2w = 0x3;
u32 refresh_interval_cnt, t_hclk, t_refi, t_faw, t_pd, t_xpdll;
u32 val = 0, page_size = 0, mask = 0;
enum hws_speed_bin speed_bin_index;
enum mv_ddr_die_capacity memory_size = MV_DDR_DIE_CAP_2GBIT;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
struct page_element *page_param = mv_ddr_page_tbl_get();
speed_bin_index = tm->interface_params[if_id].speed_bin_index;
memory_size = tm->interface_params[if_id].memory_size;
page_size =
(tm->interface_params[if_id].bus_width ==
MV_DDR_DEV_WIDTH_8BIT) ? page_param[memory_size].
page_size_8bit : page_param[memory_size].page_size_16bit;
t_ckclk = (MEGA / freq_val[frequency]);
/* HCLK in[ps] */
t_hclk = MEGA / (freq_val[frequency] / config_func_info[dev_num].tip_get_clock_ratio(frequency));
t_refi = (tm->interface_params[if_id].interface_temp == MV_DDR_TEMP_HIGH) ? TREFI_HIGH : TREFI_LOW;
t_refi *= 1000; /* psec */
refresh_interval_cnt = t_refi / t_hclk; /* no units */
if (page_size == 1) {
t_faw = speed_bin_table(speed_bin_index, SPEED_BIN_TFAW1K);
t_faw = time_to_nclk(t_faw, t_ckclk);
t_faw = GET_MAX_VALUE(20, t_faw);
} else { /* page size =2, we do not support page size 0.5k */
t_faw = speed_bin_table(speed_bin_index, SPEED_BIN_TFAW2K);
t_faw = time_to_nclk(t_faw, t_ckclk);
t_faw = GET_MAX_VALUE(28, t_faw);
}
t_pd = GET_MAX_VALUE(t_ckclk * 3, speed_bin_table(speed_bin_index, SPEED_BIN_TPD));
t_pd = time_to_nclk(t_pd, t_ckclk);
t_xpdll = GET_MAX_VALUE(t_ckclk * 10, speed_bin_table(speed_bin_index, SPEED_BIN_TXPDLL));
t_xpdll = time_to_nclk(t_xpdll, t_ckclk);
t_rrd = (page_size == 1) ? speed_bin_table(speed_bin_index,
SPEED_BIN_TRRD1K) :
speed_bin_table(speed_bin_index, SPEED_BIN_TRRD2K);
t_rrd = GET_MAX_VALUE(t_ckclk * 4, t_rrd);
t_rtp = GET_MAX_VALUE(t_ckclk * 4, speed_bin_table(speed_bin_index,
SPEED_BIN_TRTP));
t_mod = GET_MAX_VALUE(t_ckclk * 12, 15000);
t_wtr = GET_MAX_VALUE(t_ckclk * 4, speed_bin_table(speed_bin_index,
SPEED_BIN_TWTR));
t_ras = time_to_nclk(speed_bin_table(speed_bin_index,
SPEED_BIN_TRAS),
t_ckclk);
t_rcd = time_to_nclk(speed_bin_table(speed_bin_index,
SPEED_BIN_TRCD),
t_ckclk);
t_rp = time_to_nclk(speed_bin_table(speed_bin_index,
SPEED_BIN_TRP),
t_ckclk);
t_wr = time_to_nclk(speed_bin_table(speed_bin_index,
SPEED_BIN_TWR),
t_ckclk);
t_wtr = time_to_nclk(t_wtr, t_ckclk);
t_rrd = time_to_nclk(t_rrd, t_ckclk);
t_rtp = time_to_nclk(t_rtp, t_ckclk);
t_rfc = time_to_nclk(rfc_table[memory_size] * 1000, t_ckclk);
t_mod = time_to_nclk(t_mod, t_ckclk);
/* SDRAM Timing Low */
val = (((t_ras - 1) & SDRAM_TIMING_LOW_TRAS_MASK) << SDRAM_TIMING_LOW_TRAS_OFFS) |
(((t_rcd - 1) & SDRAM_TIMING_LOW_TRCD_MASK) << SDRAM_TIMING_LOW_TRCD_OFFS) |
(((t_rcd - 1) >> SDRAM_TIMING_LOW_TRCD_OFFS & SDRAM_TIMING_HIGH_TRCD_MASK)
<< SDRAM_TIMING_HIGH_TRCD_OFFS) |
(((t_rp - 1) & SDRAM_TIMING_LOW_TRP_MASK) << SDRAM_TIMING_LOW_TRP_OFFS) |
(((t_rp - 1) >> SDRAM_TIMING_LOW_TRP_MASK & SDRAM_TIMING_HIGH_TRP_MASK)
<< SDRAM_TIMING_HIGH_TRP_OFFS) |
(((t_wr - 1) & SDRAM_TIMING_LOW_TWR_MASK) << SDRAM_TIMING_LOW_TWR_OFFS) |
(((t_wtr - 1) & SDRAM_TIMING_LOW_TWTR_MASK) << SDRAM_TIMING_LOW_TWTR_OFFS) |
((((t_ras - 1) >> 4) & SDRAM_TIMING_LOW_TRAS_HIGH_MASK) << SDRAM_TIMING_LOW_TRAS_HIGH_OFFS) |
(((t_rrd - 1) & SDRAM_TIMING_LOW_TRRD_MASK) << SDRAM_TIMING_LOW_TRRD_OFFS) |
(((t_rtp - 1) & SDRAM_TIMING_LOW_TRTP_MASK) << SDRAM_TIMING_LOW_TRTP_OFFS);
mask = (SDRAM_TIMING_LOW_TRAS_MASK << SDRAM_TIMING_LOW_TRAS_OFFS) |
(SDRAM_TIMING_LOW_TRCD_MASK << SDRAM_TIMING_LOW_TRCD_OFFS) |
(SDRAM_TIMING_HIGH_TRCD_MASK << SDRAM_TIMING_HIGH_TRCD_OFFS) |
(SDRAM_TIMING_LOW_TRP_MASK << SDRAM_TIMING_LOW_TRP_OFFS) |
(SDRAM_TIMING_HIGH_TRP_MASK << SDRAM_TIMING_HIGH_TRP_OFFS) |
(SDRAM_TIMING_LOW_TWR_MASK << SDRAM_TIMING_LOW_TWR_OFFS) |
(SDRAM_TIMING_LOW_TWTR_MASK << SDRAM_TIMING_LOW_TWTR_OFFS) |
(SDRAM_TIMING_LOW_TRAS_HIGH_MASK << SDRAM_TIMING_LOW_TRAS_HIGH_OFFS) |
(SDRAM_TIMING_LOW_TRRD_MASK << SDRAM_TIMING_LOW_TRRD_OFFS) |
(SDRAM_TIMING_LOW_TRTP_MASK << SDRAM_TIMING_LOW_TRTP_OFFS);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_TIMING_LOW_REG, val, mask));
/* SDRAM Timing High */
val = 0;
mask = 0;
val = (((t_rfc - 1) & SDRAM_TIMING_HIGH_TRFC_MASK) << SDRAM_TIMING_HIGH_TRFC_OFFS) |
((t_r2r & SDRAM_TIMING_HIGH_TR2R_MASK) << SDRAM_TIMING_HIGH_TR2R_OFFS) |
((t_r2w_w2r & SDRAM_TIMING_HIGH_TR2W_W2R_MASK) << SDRAM_TIMING_HIGH_TR2W_W2R_OFFS) |
((t_w2w & SDRAM_TIMING_HIGH_TW2W_MASK) << SDRAM_TIMING_HIGH_TW2W_OFFS) |
((((t_rfc - 1) >> 7) & SDRAM_TIMING_HIGH_TRFC_HIGH_MASK) << SDRAM_TIMING_HIGH_TRFC_HIGH_OFFS) |
((t_r2r_high & SDRAM_TIMING_HIGH_TR2R_HIGH_MASK) << SDRAM_TIMING_HIGH_TR2R_HIGH_OFFS) |
((t_r2w_w2r_high & SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_MASK) << SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_OFFS) |
(((t_mod - 1) & SDRAM_TIMING_HIGH_TMOD_MASK) << SDRAM_TIMING_HIGH_TMOD_OFFS) |
((((t_mod - 1) >> 4) & SDRAM_TIMING_HIGH_TMOD_HIGH_MASK) << SDRAM_TIMING_HIGH_TMOD_HIGH_OFFS);
mask = (SDRAM_TIMING_HIGH_TRFC_MASK << SDRAM_TIMING_HIGH_TRFC_OFFS) |
(SDRAM_TIMING_HIGH_TR2R_MASK << SDRAM_TIMING_HIGH_TR2R_OFFS) |
(SDRAM_TIMING_HIGH_TR2W_W2R_MASK << SDRAM_TIMING_HIGH_TR2W_W2R_OFFS) |
(SDRAM_TIMING_HIGH_TW2W_MASK << SDRAM_TIMING_HIGH_TW2W_OFFS) |
(SDRAM_TIMING_HIGH_TRFC_HIGH_MASK << SDRAM_TIMING_HIGH_TRFC_HIGH_OFFS) |
(SDRAM_TIMING_HIGH_TR2R_HIGH_MASK << SDRAM_TIMING_HIGH_TR2R_HIGH_OFFS) |
(SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_MASK << SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_OFFS) |
(SDRAM_TIMING_HIGH_TMOD_MASK << SDRAM_TIMING_HIGH_TMOD_OFFS) |
(SDRAM_TIMING_HIGH_TMOD_HIGH_MASK << SDRAM_TIMING_HIGH_TMOD_HIGH_OFFS);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_TIMING_HIGH_REG, val, mask));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_CFG_REG,
refresh_interval_cnt << REFRESH_OFFS,
REFRESH_MASK << REFRESH_OFFS));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_ADDR_CTRL_REG, (t_faw - 1) << T_FAW_OFFS,
T_FAW_MASK << T_FAW_OFFS));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DDR_TIMING_REG,
(t_pd - 1) << DDR_TIMING_TPD_OFFS |
(t_xpdll - 1) << DDR_TIMING_TXPDLL_OFFS,
DDR_TIMING_TPD_MASK << DDR_TIMING_TPD_OFFS |
DDR_TIMING_TXPDLL_MASK << DDR_TIMING_TXPDLL_OFFS));
return MV_OK;
}
/*
* Mode Read
*/
int hws_ddr3_tip_mode_read(u32 dev_num, struct mode_info *mode_info)
{
u32 ret;
ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
MR0_REG, mode_info->reg_mr0, MASK_ALL_BITS);
if (ret != MV_OK)
return ret;
ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
MR1_REG, mode_info->reg_mr1, MASK_ALL_BITS);
if (ret != MV_OK)
return ret;
ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
MR2_REG, mode_info->reg_mr2, MASK_ALL_BITS);
if (ret != MV_OK)
return ret;
ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
MR3_REG, mode_info->reg_mr2, MASK_ALL_BITS);
if (ret != MV_OK)
return ret;
ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
RD_DATA_SMPL_DLYS_REG, mode_info->read_data_sample,
MASK_ALL_BITS);
if (ret != MV_OK)
return ret;
ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
RD_DATA_RDY_DLYS_REG, mode_info->read_data_ready,
MASK_ALL_BITS);
if (ret != MV_OK)
return ret;
return MV_OK;
}
/*
* Get first active IF
*/
int ddr3_tip_get_first_active_if(u8 dev_num, u32 interface_mask,
u32 *interface_id)
{
u32 if_id;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (interface_mask & (1 << if_id)) {
*interface_id = if_id;
break;
}
}
return MV_OK;
}
/*
* Write CS Result
*/
int ddr3_tip_write_cs_result(u32 dev_num, u32 offset)
{
u32 if_id, bus_num, cs_bitmask, data_val, cs_num;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0; bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
cs_bitmask =
tm->interface_params[if_id].
as_bus_params[bus_num].cs_bitmask;
if (cs_bitmask != effective_cs) {
cs_num = GET_CS_FROM_MASK(cs_bitmask);
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_num,
DDR_PHY_DATA,
offset +
(effective_cs * 0x4),
&data_val);
ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
offset +
(cs_num * 0x4),
data_val);
}
}
}
return MV_OK;
}
/*
* Write MRS
*/
int ddr3_tip_write_mrs_cmd(u32 dev_num, u32 *cs_mask_arr, enum mr_number mr_num, u32 data, u32 mask)
{
u32 if_id;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, mr_data[mr_num].reg_addr, data, mask));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_OP_REG,
(cs_mask_arr[if_id] << 8) | mr_data[mr_num].cmd, 0xf1f));
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
0x1f, SDRAM_OP_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("write_mrs_cmd: Poll cmd fail"));
}
}
return MV_OK;
}
/*
* Reset XSB Read FIFO
*/
int ddr3_tip_reset_fifo_ptr(u32 dev_num)
{
u32 if_id = 0;
/* Configure PHY reset value to 0 in order to "clean" the FIFO */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x15c8, 0, 0xff000000));
/*
* Move PHY to RL mode (only in RL mode the PHY overrides FIFO values
* during FIFO reset)
*/
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, TRAINING_SW_2_REG,
0x1, 0x9));
/* In order that above configuration will influence the PHY */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x15b0,
0x80000000, 0x80000000));
/* Reset read fifo assertion */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x1400, 0, 0x40000000));
/* Reset read fifo deassertion */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x1400,
0x40000000, 0x40000000));
/* Move PHY back to functional mode */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, TRAINING_SW_2_REG,
0x8, 0x9));
/* Stop training machine */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x15b4, 0x10000, 0x10000));
return MV_OK;
}
/*
* Reset Phy registers
*/
int ddr3_tip_ddr3_reset_phy_regs(u32 dev_num)
{
u32 if_id, phy_id, cs;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (phy_id = 0; phy_id < octets_per_if_num;
phy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_UNICAST,
phy_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs),
phy_reg0_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
RL_PHY_REG(effective_cs),
phy_reg2_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
CRX_PHY_REG(effective_cs), phy_reg3_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs), phy_reg1_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_BCAST_PHY_REG(effective_cs), 0x0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_RX_BCAST_PHY_REG(effective_cs), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_PHY_REG(effective_cs, DQSP_PAD), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_RX_PHY_REG(effective_cs, DQSP_PAD), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_PHY_REG(effective_cs, DQSN_PAD), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_RX_PHY_REG(effective_cs, DQSN_PAD), 0));
}
}
/* Set Receiver Calibration value */
for (cs = 0; cs < MAX_CS_NUM; cs++) {
/* PHY register 0xdb bits[5:0] - configure to 63 */
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, VREF_BCAST_PHY_REG(cs), 63));
}
return MV_OK;
}
/*
* Restore Dunit registers
*/
int ddr3_tip_restore_dunit_regs(u32 dev_num)
{
u32 index_cnt;
mv_ddr_set_calib_controller();
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, MAIN_PADS_CAL_MACH_CTRL_REG,
0x1, 0x1));
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, MAIN_PADS_CAL_MACH_CTRL_REG,
calibration_update_control << 3,
0x3 << 3));
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE,
ODPG_WR_RD_MODE_ENA_REG,
0xffff, MASK_ALL_BITS));
for (index_cnt = 0; index_cnt < ARRAY_SIZE(odpg_default_value);
index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
odpg_default_value[index_cnt].reg_addr,
odpg_default_value[index_cnt].reg_data,
odpg_default_value[index_cnt].reg_mask));
}
return MV_OK;
}
int ddr3_tip_adll_regs_bypass(u32 dev_num, u32 reg_val1, u32 reg_val2)
{
u32 if_id, phy_id;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (phy_id = 0; phy_id < octets_per_if_num; phy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs), reg_val1));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_BCAST_PHY_REG(effective_cs), reg_val2));
}
}
return MV_OK;
}
/*
* Auto tune main flow
*/
static int ddr3_tip_ddr3_training_main_flow(u32 dev_num)
{
/* TODO: enable this functionality for other platforms */
#if defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_39X)
struct init_cntr_param init_cntr_prm;
#endif
int ret = MV_OK;
int adll_bypass_flag = 0;
u32 if_id;
u32 max_cs = ddr3_tip_max_cs_get(dev_num);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum hws_ddr_freq freq = tm->interface_params[0].memory_freq;
#ifdef DDR_VIEWER_TOOL
if (debug_training == DEBUG_LEVEL_TRACE) {
CHECK_STATUS(print_device_info((u8)dev_num));
}
#endif
ddr3_tip_validate_algo_components(dev_num);
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
CHECK_STATUS(ddr3_tip_ddr3_reset_phy_regs(dev_num));
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
freq_val[DDR_FREQ_LOW_FREQ] = dfs_low_freq;
if (is_pll_before_init != 0) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
config_func_info[dev_num].tip_set_freq_divider_func(
(u8)dev_num, if_id, freq);
}
}
/* TODO: enable this functionality for other platforms */
#if defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_39X)
if (is_adll_calib_before_init != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("with adll calib before init\n"));
adll_calibration(dev_num, ACCESS_TYPE_MULTICAST, 0, freq);
}
if (is_reg_dump != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Dump before init controller\n"));
ddr3_tip_reg_dump(dev_num);
}
if (mask_tune_func & INIT_CONTROLLER_MASK_BIT) {
training_stage = INIT_CONTROLLER;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("INIT_CONTROLLER_MASK_BIT\n"));
init_cntr_prm.do_mrs_phy = 1;
init_cntr_prm.is_ctrl64_bit = 0;
init_cntr_prm.init_phy = 1;
init_cntr_prm.msys_init = 0;
ret = hws_ddr3_tip_init_controller(dev_num, &init_cntr_prm);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("hws_ddr3_tip_init_controller failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
#endif
ret = adll_calibration(dev_num, ACCESS_TYPE_MULTICAST, 0, freq);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("adll_calibration failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
if (mask_tune_func & SET_LOW_FREQ_MASK_BIT) {
training_stage = SET_LOW_FREQ;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
ddr3_tip_adll_regs_bypass(dev_num, 0, 0x1f);
adll_bypass_flag = 1;
}
effective_cs = 0;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("SET_LOW_FREQ_MASK_BIT %d\n",
freq_val[low_freq]));
ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, low_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_freq_set failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_LF_MASK_BIT) {
training_stage = WRITE_LEVELING_LF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_LF_MASK_BIT\n"));
ret = ddr3_tip_dynamic_write_leveling(dev_num, 1);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling LF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & LOAD_PATTERN_MASK_BIT) {
training_stage = LOAD_PATTERN;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("LOAD_PATTERN_MASK_BIT #%d\n",
effective_cs));
ret = ddr3_tip_load_all_pattern_to_mem(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_load_all_pattern_to_mem failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
if (adll_bypass_flag == 1) {
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
ddr3_tip_adll_regs_bypass(dev_num, phy_reg1_val, 0);
adll_bypass_flag = 0;
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
if (mask_tune_func & SET_MEDIUM_FREQ_MASK_BIT) {
training_stage = SET_MEDIUM_FREQ;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("SET_MEDIUM_FREQ_MASK_BIT %d\n",
freq_val[medium_freq]));
ret =
ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, medium_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_freq_set failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_MASK_BIT) {
training_stage = WRITE_LEVELING;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_MASK_BIT\n"));
if ((rl_mid_freq_wa == 0) || (freq_val[medium_freq] == 533)) {
ret = ddr3_tip_dynamic_write_leveling(dev_num, 0);
} else {
/* Use old WL */
ret = ddr3_tip_legacy_dynamic_write_leveling(dev_num);
}
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & LOAD_PATTERN_2_MASK_BIT) {
training_stage = LOAD_PATTERN_2;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("LOAD_PATTERN_2_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_load_all_pattern_to_mem(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_load_all_pattern_to_mem failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
if (mask_tune_func & READ_LEVELING_MASK_BIT) {
training_stage = READ_LEVELING;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("READ_LEVELING_MASK_BIT\n"));
if ((rl_mid_freq_wa == 0) || (freq_val[medium_freq] == 533)) {
ret = ddr3_tip_dynamic_read_leveling(dev_num, medium_freq);
} else {
/* Use old RL */
ret = ddr3_tip_legacy_dynamic_read_leveling(dev_num);
}
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_read_leveling failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_SUPP_MASK_BIT) {
training_stage = WRITE_LEVELING_SUPP;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_SUPP_MASK_BIT\n"));
ret = ddr3_tip_dynamic_write_leveling_supp(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling_supp failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & PBS_RX_MASK_BIT) {
training_stage = PBS_RX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("PBS_RX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_pbs_rx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_pbs_rx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & PBS_TX_MASK_BIT) {
training_stage = PBS_TX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("PBS_TX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_pbs_tx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_pbs_tx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
if (mask_tune_func & SET_TARGET_FREQ_MASK_BIT) {
training_stage = SET_TARGET_FREQ;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("SET_TARGET_FREQ_MASK_BIT %d\n",
freq_val[tm->
interface_params[first_active_if].
memory_freq]));
ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE,
tm->interface_params[first_active_if].
memory_freq);
#if defined(A70X0) || defined(A80X0)
if (apn806_rev_id_get() == APN806_REV_ID_A0) {
reg_write(0x6f812c, extension_avs);
reg_write(0x6f8130, nominal_avs);
}
#endif /* #if defined(A70X0) || defined(A80X0) */
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_freq_set failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_TF_MASK_BIT) {
training_stage = WRITE_LEVELING_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_TF_MASK_BIT\n"));
ret = ddr3_tip_dynamic_write_leveling(dev_num, 0);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling TF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & LOAD_PATTERN_HIGH_MASK_BIT) {
training_stage = LOAD_PATTERN_HIGH;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("LOAD_PATTERN_HIGH\n"));
ret = ddr3_tip_load_all_pattern_to_mem(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_load_all_pattern_to_mem failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & READ_LEVELING_TF_MASK_BIT) {
training_stage = READ_LEVELING_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("READ_LEVELING_TF_MASK_BIT\n"));
ret = ddr3_tip_dynamic_read_leveling(dev_num, tm->
interface_params[first_active_if].
memory_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_read_leveling TF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & RL_DQS_BURST_MASK_BIT) {
training_stage = READ_LEVELING_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("RL_DQS_BURST_MASK_BIT\n"));
ret = mv_ddr_rl_dqs_burst(0, 0, tm->interface_params[0].memory_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("mv_ddr_rl_dqs_burst TF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & DM_PBS_TX_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("DM_PBS_TX_MASK_BIT\n"));
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & VREF_CALIBRATION_MASK_BIT) {
training_stage = VREF_CALIBRATION;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("VREF\n"));
ret = ddr3_tip_vref(dev_num);
if (is_reg_dump != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("VREF Dump\n"));
ddr3_tip_reg_dump(dev_num);
}
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_vref failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & CENTRALIZATION_RX_MASK_BIT) {
training_stage = CENTRALIZATION_RX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("CENTRALIZATION_RX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_centralization_rx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_centralization_rx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & WRITE_LEVELING_SUPP_TF_MASK_BIT) {
training_stage = WRITE_LEVELING_SUPP_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_SUPP_TF_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_dynamic_write_leveling_supp(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling_supp TF failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & CENTRALIZATION_TX_MASK_BIT) {
training_stage = CENTRALIZATION_TX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("CENTRALIZATION_TX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_centralization_tx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_centralization_tx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("restore registers to default\n"));
/* restore register values */
CHECK_STATUS(ddr3_tip_restore_dunit_regs(dev_num));
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
return MV_OK;
}
/*
* DDR3 Dynamic training flow
*/
static int ddr3_tip_ddr3_auto_tune(u32 dev_num)
{
int status;
u32 if_id, stage;
int is_if_fail = 0, is_auto_tune_fail = 0;
training_stage = INIT_CONTROLLER;
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
for (stage = 0; stage < MAX_STAGE_LIMIT; stage++)
training_result[stage][if_id] = NO_TEST_DONE;
}
status = ddr3_tip_ddr3_training_main_flow(dev_num);
/* activate XSB test */
if (xsb_validate_type != 0) {
run_xsb_test(dev_num, xsb_validation_base_address, 1, 1,
0x1024);
}
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
/* print log */
CHECK_STATUS(ddr3_tip_print_log(dev_num, window_mem_addr));
#ifndef EXCLUDE_DEBUG_PRINTS
if (status != MV_OK) {
CHECK_STATUS(ddr3_tip_print_stability_log(dev_num));
}
#endif /* EXCLUDE_DEBUG_PRINTS */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
is_if_fail = 0;
for (stage = 0; stage < MAX_STAGE_LIMIT; stage++) {
if (training_result[stage][if_id] == TEST_FAILED)
is_if_fail = 1;
}
if (is_if_fail == 1) {
is_auto_tune_fail = 1;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Auto Tune failed for IF %d\n",
if_id));
}
}
if (((status == MV_FAIL) && (is_auto_tune_fail == 0)) ||
((status == MV_OK) && (is_auto_tune_fail == 1))) {
/*
* If MainFlow result and trainingResult DB not in sync,
* issue warning (caused by no update of trainingResult DB
* when failed)
*/
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Warning: Algorithm return value and Result DB"
"are not synced (status 0x%x result DB %d)\n",
status, is_auto_tune_fail));
}
if ((status != MV_OK) || (is_auto_tune_fail == 1))
return MV_FAIL;
else
return MV_OK;
}
/*
* Enable init sequence
*/
int ddr3_tip_enable_init_sequence(u32 dev_num)
{
int is_fail = 0;
u32 if_id = 0, mem_mask = 0, bus_index = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Enable init sequence */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, 0,
SDRAM_INIT_CTRL_REG, 0x1, 0x1));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1,
SDRAM_INIT_CTRL_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("polling failed IF %d\n",
if_id));
is_fail = 1;
continue;
}
mem_mask = 0;
for (bus_index = 0; bus_index < octets_per_if_num;
bus_index++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_index);
mem_mask |=
tm->interface_params[if_id].
as_bus_params[bus_index].mirror_enable_bitmask;
}
if (mem_mask != 0) {
/* Disable Multi CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
if_id, DUAL_DUNIT_CFG_REG, 1 << 3,
1 << 3));
}
}
return (is_fail == 0) ? MV_OK : MV_FAIL;
}
int ddr3_tip_register_dq_table(u32 dev_num, u32 *table)
{
dq_map_table = table;
return MV_OK;
}
/*
* Check if pup search is locked
*/
int ddr3_tip_is_pup_lock(u32 *pup_buf, enum hws_training_result read_mode)
{
u32 bit_start = 0, bit_end = 0, bit_id;
if (read_mode == RESULT_PER_BIT) {
bit_start = 0;
bit_end = BUS_WIDTH_IN_BITS - 1;
} else {
bit_start = 0;
bit_end = 0;
}
for (bit_id = bit_start; bit_id <= bit_end; bit_id++) {
if (GET_LOCK_RESULT(pup_buf[bit_id]) == 0)
return 0;
}
return 1;
}
/*
* Get minimum buffer value
*/
u8 ddr3_tip_get_buf_min(u8 *buf_ptr)
{
u8 min_val = 0xff;
u8 cnt = 0;
for (cnt = 0; cnt < BUS_WIDTH_IN_BITS; cnt++) {
if (buf_ptr[cnt] < min_val)
min_val = buf_ptr[cnt];
}
return min_val;
}
/*
* Get maximum buffer value
*/
u8 ddr3_tip_get_buf_max(u8 *buf_ptr)
{
u8 max_val = 0;
u8 cnt = 0;
for (cnt = 0; cnt < BUS_WIDTH_IN_BITS; cnt++) {
if (buf_ptr[cnt] > max_val)
max_val = buf_ptr[cnt];
}
return max_val;
}
/*
* The following functions return memory parameters:
* bus and device width, device size
*/
u32 hws_ddr3_get_bus_width(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
return (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask) ==
1) ? 16 : 32;
}
u32 hws_ddr3_get_device_width(u32 if_id)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
return (tm->interface_params[if_id].bus_width ==
MV_DDR_DEV_WIDTH_8BIT) ? 8 : 16;
}
u32 hws_ddr3_get_device_size(u32 if_id)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (tm->interface_params[if_id].memory_size >=
MV_DDR_DIE_CAP_LAST) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: Wrong device size of Cs: %d",
tm->interface_params[if_id].memory_size));
return 0;
} else {
return 1 << tm->interface_params[if_id].memory_size;
}
}
int hws_ddr3_calc_mem_cs_size(u32 if_id, u32 cs, u32 *cs_size)
{
u32 cs_mem_size, dev_size;
dev_size = hws_ddr3_get_device_size(if_id);
if (dev_size != 0) {
cs_mem_size = ((hws_ddr3_get_bus_width() /
hws_ddr3_get_device_width(if_id)) * dev_size);
/* the calculated result in Gbytex16 to avoid float using */
if (cs_mem_size == 2) {
*cs_size = _128M;
} else if (cs_mem_size == 4) {
*cs_size = _256M;
} else if (cs_mem_size == 8) {
*cs_size = _512M;
} else if (cs_mem_size == 16) {
*cs_size = _1G;
} else if (cs_mem_size == 32) {
*cs_size = _2G;
} else {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: Wrong Memory size of Cs: %d", cs));
return MV_FAIL;
}
return MV_OK;
} else {
return MV_FAIL;
}
}
int hws_ddr3_cs_base_adr_calc(u32 if_id, u32 cs, u32 *cs_base_addr)
{
u32 cs_mem_size = 0;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
u32 physical_mem_size;
u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
#endif
if (hws_ddr3_calc_mem_cs_size(if_id, cs, &cs_mem_size) != MV_OK)
return MV_FAIL;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/*
* if number of address pins doesn't allow to use max mem size that
* is defined in topology mem size is defined by
* DEVICE_MAX_DRAM_ADDRESS_SIZE
*/
physical_mem_size = mem_size[tm->interface_params[0].memory_size];
if (hws_ddr3_get_device_width(cs) == 16) {
/*
* 16bit mem device can be twice more - no need in less
* significant pin
*/
max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
}
if (physical_mem_size > max_mem_size) {
cs_mem_size = max_mem_size *
(hws_ddr3_get_bus_width() /
hws_ddr3_get_device_width(if_id));
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Updated Physical Mem size is from 0x%x to %x\n",
physical_mem_size,
DEVICE_MAX_DRAM_ADDRESS_SIZE));
}
#endif
/* calculate CS base addr */
*cs_base_addr = ((cs_mem_size) * cs) & 0xffff0000;
return MV_OK;
}