// Copyright (c) 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/comp/markv_decoder.h"
#include <cstring>
#include <iterator>
#include <numeric>
#include "source/ext_inst.h"
#include "source/opcode.h"
#include "spirv-tools/libspirv.hpp"
namespace spvtools {
namespace comp {
spv_result_t MarkvDecoder::DecodeNonIdWord(uint32_t* word) {
auto* codec = model_->GetNonIdWordHuffmanCodec(inst_.opcode, operand_index_);
if (codec) {
uint64_t decoded_value = 0;
if (!codec->DecodeFromStream(GetReadBitCallback(), &decoded_value))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to decode non-id word with Huffman";
if (decoded_value != MarkvModel::GetMarkvNoneOfTheAbove()) {
// The word decoded successfully.
*word = uint32_t(decoded_value);
assert(*word == decoded_value);
return SPV_SUCCESS;
}
// Received kMarkvNoneOfTheAbove signal, use fallback decoding.
}
const size_t chunk_length =
model_->GetOperandVariableWidthChunkLength(operand_.type);
if (chunk_length) {
if (!reader_.ReadVariableWidthU32(word, chunk_length))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to decode non-id word with varint";
} else {
if (!reader_.ReadUnencoded(word))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read unencoded non-id word";
}
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeOpcodeAndNumberOfOperands(
uint32_t* opcode, uint32_t* num_operands) {
// First try to use the Markov chain codec.
auto* codec =
model_->GetOpcodeAndNumOperandsMarkovHuffmanCodec(GetPrevOpcode());
if (codec) {
uint64_t decoded_value = 0;
if (!codec->DecodeFromStream(GetReadBitCallback(), &decoded_value))
return Diag(SPV_ERROR_INTERNAL)
<< "Failed to decode opcode_and_num_operands, previous opcode is "
<< spvOpcodeString(GetPrevOpcode());
if (decoded_value != MarkvModel::GetMarkvNoneOfTheAbove()) {
// The word was successfully decoded.
*opcode = uint32_t(decoded_value & 0xFFFF);
*num_operands = uint32_t(decoded_value >> 16);
return SPV_SUCCESS;
}
// Received kMarkvNoneOfTheAbove signal, use fallback decoding.
}
// Fallback to base-rate codec.
codec = model_->GetOpcodeAndNumOperandsMarkovHuffmanCodec(SpvOpNop);
assert(codec);
uint64_t decoded_value = 0;
if (!codec->DecodeFromStream(GetReadBitCallback(), &decoded_value))
return Diag(SPV_ERROR_INTERNAL)
<< "Failed to decode opcode_and_num_operands with global codec";
if (decoded_value == MarkvModel::GetMarkvNoneOfTheAbove()) {
// Received kMarkvNoneOfTheAbove signal, fallback further.
return SPV_UNSUPPORTED;
}
*opcode = uint32_t(decoded_value & 0xFFFF);
*num_operands = uint32_t(decoded_value >> 16);
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeMtfRankHuffman(uint64_t mtf,
uint32_t fallback_method,
uint32_t* rank) {
const auto* codec = GetMtfHuffmanCodec(mtf);
if (!codec) {
assert(fallback_method != kMtfNone);
codec = GetMtfHuffmanCodec(fallback_method);
}
if (!codec) return Diag(SPV_ERROR_INTERNAL) << "No codec to decode MTF rank";
uint32_t decoded_value = 0;
if (!codec->DecodeFromStream(GetReadBitCallback(), &decoded_value))
return Diag(SPV_ERROR_INTERNAL) << "Failed to decode MTF rank with Huffman";
if (decoded_value == kMtfRankEncodedByValueSignal) {
// Decode by value.
if (!reader_.ReadVariableWidthU32(rank, model_->mtf_rank_chunk_length()))
return Diag(SPV_ERROR_INTERNAL)
<< "Failed to decode MTF rank with varint";
*rank += MarkvCodec::kMtfSmallestRankEncodedByValue;
} else {
// Decode using Huffman coding.
assert(decoded_value < MarkvCodec::kMtfSmallestRankEncodedByValue);
*rank = decoded_value;
}
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeIdWithDescriptor(uint32_t* id) {
auto* codec =
model_->GetIdDescriptorHuffmanCodec(inst_.opcode, operand_index_);
uint64_t mtf = kMtfNone;
if (codec) {
uint64_t decoded_value = 0;
if (!codec->DecodeFromStream(GetReadBitCallback(), &decoded_value))
return Diag(SPV_ERROR_INTERNAL)
<< "Failed to decode descriptor with Huffman";
if (decoded_value != MarkvModel::GetMarkvNoneOfTheAbove()) {
const uint32_t long_descriptor = uint32_t(decoded_value);
mtf = GetMtfLongIdDescriptor(long_descriptor);
}
}
if (mtf == kMtfNone) {
if (model_->id_fallback_strategy() !=
MarkvModel::IdFallbackStrategy::kShortDescriptor) {
return SPV_UNSUPPORTED;
}
uint64_t decoded_value = 0;
if (!reader_.ReadBits(&decoded_value, MarkvCodec::kShortDescriptorNumBits))
return Diag(SPV_ERROR_INTERNAL) << "Failed to read short descriptor";
const uint32_t short_descriptor = uint32_t(decoded_value);
if (short_descriptor == 0) {
// Forward declared id.
return SPV_UNSUPPORTED;
}
mtf = GetMtfShortIdDescriptor(short_descriptor);
}
return DecodeExistingId(mtf, id);
}
spv_result_t MarkvDecoder::DecodeExistingId(uint64_t mtf, uint32_t* id) {
assert(multi_mtf_.GetSize(mtf) > 0);
*id = 0;
uint32_t rank = 0;
if (multi_mtf_.GetSize(mtf) == 1) {
rank = 1;
} else {
const spv_result_t result =
DecodeMtfRankHuffman(mtf, kMtfGenericNonZeroRank, &rank);
if (result != SPV_SUCCESS) return result;
}
assert(rank);
if (!multi_mtf_.ValueFromRank(mtf, rank, id))
return Diag(SPV_ERROR_INTERNAL) << "MTF rank is out of bounds";
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeRefId(uint32_t* id) {
{
const spv_result_t result = DecodeIdWithDescriptor(id);
if (result != SPV_UNSUPPORTED) return result;
}
const bool can_forward_declare = spvOperandCanBeForwardDeclaredFunction(
SpvOp(inst_.opcode))(operand_index_);
uint32_t rank = 0;
*id = 0;
if (model_->id_fallback_strategy() ==
MarkvModel::IdFallbackStrategy::kRuleBased) {
uint64_t mtf = GetRuleBasedMtf();
if (mtf != kMtfNone && !can_forward_declare) {
return DecodeExistingId(mtf, id);
}
if (mtf == kMtfNone) mtf = kMtfAll;
{
const spv_result_t result = DecodeMtfRankHuffman(mtf, kMtfAll, &rank);
if (result != SPV_SUCCESS) return result;
}
if (rank == 0) {
// This is the first occurrence of a forward declared id.
*id = GetIdBound();
SetIdBound(*id + 1);
multi_mtf_.Insert(kMtfAll, *id);
multi_mtf_.Insert(kMtfForwardDeclared, *id);
if (mtf != kMtfAll) multi_mtf_.Insert(mtf, *id);
} else {
if (!multi_mtf_.ValueFromRank(mtf, rank, id))
return Diag(SPV_ERROR_INTERNAL) << "MTF rank out of bounds";
}
} else {
assert(can_forward_declare);
if (!reader_.ReadVariableWidthU32(&rank, model_->mtf_rank_chunk_length()))
return Diag(SPV_ERROR_INTERNAL)
<< "Failed to decode MTF rank with varint";
if (rank == 0) {
// This is the first occurrence of a forward declared id.
*id = GetIdBound();
SetIdBound(*id + 1);
multi_mtf_.Insert(kMtfForwardDeclared, *id);
} else {
if (!multi_mtf_.ValueFromRank(kMtfForwardDeclared, rank, id))
return Diag(SPV_ERROR_INTERNAL) << "MTF rank out of bounds";
}
}
assert(*id);
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeTypeId() {
if (inst_.opcode == SpvOpFunctionParameter) {
assert(!remaining_function_parameter_types_.empty());
inst_.type_id = remaining_function_parameter_types_.front();
remaining_function_parameter_types_.pop_front();
return SPV_SUCCESS;
}
{
const spv_result_t result = DecodeIdWithDescriptor(&inst_.type_id);
if (result != SPV_UNSUPPORTED) return result;
}
assert(model_->id_fallback_strategy() ==
MarkvModel::IdFallbackStrategy::kRuleBased);
uint64_t mtf = GetRuleBasedMtf();
assert(!spvOperandCanBeForwardDeclaredFunction(SpvOp(inst_.opcode))(
operand_index_));
if (mtf == kMtfNone) {
mtf = kMtfTypeNonFunction;
// Function types should have been handled by GetRuleBasedMtf.
assert(inst_.opcode != SpvOpFunction);
}
return DecodeExistingId(mtf, &inst_.type_id);
}
spv_result_t MarkvDecoder::DecodeResultId() {
uint32_t rank = 0;
const uint64_t num_still_forward_declared =
multi_mtf_.GetSize(kMtfForwardDeclared);
if (num_still_forward_declared) {
// Some ids were forward declared. Check if this id is one of them.
uint64_t id_was_forward_declared;
if (!reader_.ReadBits(&id_was_forward_declared, 1))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read id_was_forward_declared flag";
if (id_was_forward_declared) {
if (!reader_.ReadVariableWidthU32(&rank, model_->mtf_rank_chunk_length()))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read MTF rank of forward declared id";
if (rank) {
// The id was forward declared, recover it from kMtfForwardDeclared.
if (!multi_mtf_.ValueFromRank(kMtfForwardDeclared, rank,
&inst_.result_id))
return Diag(SPV_ERROR_INTERNAL)
<< "Forward declared MTF rank is out of bounds";
// We can now remove the id from kMtfForwardDeclared.
if (!multi_mtf_.Remove(kMtfForwardDeclared, inst_.result_id))
return Diag(SPV_ERROR_INTERNAL)
<< "Failed to remove id from kMtfForwardDeclared";
}
}
}
if (inst_.result_id == 0) {
// The id was not forward declared, issue a new id.
inst_.result_id = GetIdBound();
SetIdBound(inst_.result_id + 1);
}
if (model_->id_fallback_strategy() ==
MarkvModel::IdFallbackStrategy::kRuleBased) {
if (!rank) {
multi_mtf_.Insert(kMtfAll, inst_.result_id);
}
}
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeLiteralNumber(
const spv_parsed_operand_t& operand) {
if (operand.number_bit_width <= 32) {
uint32_t word = 0;
const spv_result_t result = DecodeNonIdWord(&word);
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(word);
} else {
assert(operand.number_bit_width <= 64);
uint64_t word = 0;
if (operand.number_kind == SPV_NUMBER_UNSIGNED_INT) {
if (!reader_.ReadVariableWidthU64(&word, model_->u64_chunk_length()))
return Diag(SPV_ERROR_INVALID_BINARY) << "Failed to read literal U64";
} else if (operand.number_kind == SPV_NUMBER_SIGNED_INT) {
int64_t val = 0;
if (!reader_.ReadVariableWidthS64(&val, model_->s64_chunk_length(),
model_->s64_block_exponent()))
return Diag(SPV_ERROR_INVALID_BINARY) << "Failed to read literal S64";
std::memcpy(&word, &val, 8);
} else if (operand.number_kind == SPV_NUMBER_FLOATING) {
if (!reader_.ReadUnencoded(&word))
return Diag(SPV_ERROR_INVALID_BINARY) << "Failed to read literal F64";
} else {
return Diag(SPV_ERROR_INTERNAL) << "Unsupported bit length";
}
inst_words_.push_back(static_cast<uint32_t>(word));
inst_words_.push_back(static_cast<uint32_t>(word >> 32));
}
return SPV_SUCCESS;
}
bool MarkvDecoder::ReadToByteBreak(size_t byte_break_if_less_than) {
const size_t num_bits_to_next_byte =
GetNumBitsToNextByte(reader_.GetNumReadBits());
if (num_bits_to_next_byte == 0 ||
num_bits_to_next_byte > byte_break_if_less_than)
return true;
uint64_t bits = 0;
if (!reader_.ReadBits(&bits, num_bits_to_next_byte)) return false;
assert(bits == 0);
if (bits != 0) return false;
return true;
}
spv_result_t MarkvDecoder::DecodeModule(std::vector<uint32_t>* spirv_binary) {
const bool header_read_success =
reader_.ReadUnencoded(&header_.magic_number) &&
reader_.ReadUnencoded(&header_.markv_version) &&
reader_.ReadUnencoded(&header_.markv_model) &&
reader_.ReadUnencoded(&header_.markv_length_in_bits) &&
reader_.ReadUnencoded(&header_.spirv_version) &&
reader_.ReadUnencoded(&header_.spirv_generator);
if (!header_read_success)
return Diag(SPV_ERROR_INVALID_BINARY) << "Unable to read MARK-V header";
if (header_.markv_length_in_bits == 0)
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Header markv_length_in_bits field is zero";
if (header_.magic_number != MarkvCodec::kMarkvMagicNumber)
return Diag(SPV_ERROR_INVALID_BINARY)
<< "MARK-V binary has incorrect magic number";
// TODO(atgoo@github.com): Print version strings.
if (header_.markv_version != MarkvCodec::GetMarkvVersion())
return Diag(SPV_ERROR_INVALID_BINARY)
<< "MARK-V binary and the codec have different versions";
const uint32_t model_type = header_.markv_model >> 16;
const uint32_t model_version = header_.markv_model & 0xFFFF;
if (model_type != model_->model_type())
return Diag(SPV_ERROR_INVALID_BINARY)
<< "MARK-V binary and the codec use different MARK-V models";
if (model_version != model_->model_version())
return Diag(SPV_ERROR_INVALID_BINARY)
<< "MARK-V binary and the codec use different versions if the same "
<< "MARK-V model";
spirv_.reserve(header_.markv_length_in_bits / 2); // Heuristic.
spirv_.resize(5, 0);
spirv_[0] = SpvMagicNumber;
spirv_[1] = header_.spirv_version;
spirv_[2] = header_.spirv_generator;
if (logger_) {
reader_.SetCallback(
[this](const std::string& str) { logger_->AppendBitSequence(str); });
}
while (reader_.GetNumReadBits() < header_.markv_length_in_bits) {
inst_ = {};
const spv_result_t decode_result = DecodeInstruction();
if (decode_result != SPV_SUCCESS) return decode_result;
}
if (validator_options_) {
spv_const_binary_t validation_binary = {spirv_.data(), spirv_.size()};
const spv_result_t result = spvValidateWithOptions(
context_, validator_options_, &validation_binary, nullptr);
if (result != SPV_SUCCESS) return result;
}
// Validate the decode binary
if (reader_.GetNumReadBits() != header_.markv_length_in_bits ||
!reader_.OnlyZeroesLeft()) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "MARK-V binary has wrong stated bit length "
<< reader_.GetNumReadBits() << " " << header_.markv_length_in_bits;
}
// Decoding of the module is finished, validation state should have correct
// id bound.
spirv_[3] = GetIdBound();
*spirv_binary = std::move(spirv_);
return SPV_SUCCESS;
}
// TODO(atgoo@github.com): The implementation borrows heavily from
// Parser::parseOperand.
// Consider coupling them together in some way once MARK-V codec is more mature.
// For now it's better to keep the code independent for experimentation
// purposes.
spv_result_t MarkvDecoder::DecodeOperand(
size_t operand_offset, const spv_operand_type_t type,
spv_operand_pattern_t* expected_operands) {
const SpvOp opcode = static_cast<SpvOp>(inst_.opcode);
memset(&operand_, 0, sizeof(operand_));
assert((operand_offset >> 16) == 0);
operand_.offset = static_cast<uint16_t>(operand_offset);
operand_.type = type;
// Set default values, may be updated later.
operand_.number_kind = SPV_NUMBER_NONE;
operand_.number_bit_width = 0;
const size_t first_word_index = inst_words_.size();
switch (type) {
case SPV_OPERAND_TYPE_RESULT_ID: {
const spv_result_t result = DecodeResultId();
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(inst_.result_id);
SetIdBound(std::max(GetIdBound(), inst_.result_id + 1));
PromoteIfNeeded(inst_.result_id);
break;
}
case SPV_OPERAND_TYPE_TYPE_ID: {
const spv_result_t result = DecodeTypeId();
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(inst_.type_id);
SetIdBound(std::max(GetIdBound(), inst_.type_id + 1));
PromoteIfNeeded(inst_.type_id);
break;
}
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID: {
uint32_t id = 0;
const spv_result_t result = DecodeRefId(&id);
if (result != SPV_SUCCESS) return result;
if (id == 0) return Diag(SPV_ERROR_INVALID_BINARY) << "Decoded id is 0";
if (type == SPV_OPERAND_TYPE_ID || type == SPV_OPERAND_TYPE_OPTIONAL_ID) {
operand_.type = SPV_OPERAND_TYPE_ID;
if (opcode == SpvOpExtInst && operand_.offset == 3) {
// The current word is the extended instruction set id.
// Set the extended instruction set type for the current
// instruction.
auto ext_inst_type_iter = import_id_to_ext_inst_type_.find(id);
if (ext_inst_type_iter == import_id_to_ext_inst_type_.end()) {
return Diag(SPV_ERROR_INVALID_ID)
<< "OpExtInst set id " << id
<< " does not reference an OpExtInstImport result Id";
}
inst_.ext_inst_type = ext_inst_type_iter->second;
}
}
inst_words_.push_back(id);
SetIdBound(std::max(GetIdBound(), id + 1));
PromoteIfNeeded(id);
break;
}
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
uint32_t word = 0;
const spv_result_t result = DecodeNonIdWord(&word);
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(word);
assert(SpvOpExtInst == opcode);
assert(inst_.ext_inst_type != SPV_EXT_INST_TYPE_NONE);
spv_ext_inst_desc ext_inst;
if (grammar_.lookupExtInst(inst_.ext_inst_type, word, &ext_inst))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid extended instruction number: " << word;
spvPushOperandTypes(ext_inst->operandTypes, expected_operands);
break;
}
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER: {
// These are regular single-word literal integer operands.
// Post-parsing validation should check the range of the parsed value.
operand_.type = SPV_OPERAND_TYPE_LITERAL_INTEGER;
// It turns out they are always unsigned integers!
operand_.number_kind = SPV_NUMBER_UNSIGNED_INT;
operand_.number_bit_width = 32;
uint32_t word = 0;
const spv_result_t result = DecodeNonIdWord(&word);
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(word);
break;
}
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER: {
operand_.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER;
if (opcode == SpvOpSwitch) {
// The literal operands have the same type as the value
// referenced by the selector Id.
const uint32_t selector_id = inst_words_.at(1);
const auto type_id_iter = id_to_type_id_.find(selector_id);
if (type_id_iter == id_to_type_id_.end() || type_id_iter->second == 0) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid OpSwitch: selector id " << selector_id
<< " has no type";
}
uint32_t type_id = type_id_iter->second;
if (selector_id == type_id) {
// Recall that by convention, a result ID that is a type definition
// maps to itself.
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid OpSwitch: selector id " << selector_id
<< " is a type, not a value";
}
if (auto error = SetNumericTypeInfoForType(&operand_, type_id))
return error;
if (operand_.number_kind != SPV_NUMBER_UNSIGNED_INT &&
operand_.number_kind != SPV_NUMBER_SIGNED_INT) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid OpSwitch: selector id " << selector_id
<< " is not a scalar integer";
}
} else {
assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant);
// The literal number type is determined by the type Id for the
// constant.
assert(inst_.type_id);
if (auto error = SetNumericTypeInfoForType(&operand_, inst_.type_id))
return error;
}
if (auto error = DecodeLiteralNumber(operand_)) return error;
break;
}
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
operand_.type = SPV_OPERAND_TYPE_LITERAL_STRING;
std::vector<char> str;
auto* codec = model_->GetLiteralStringHuffmanCodec(inst_.opcode);
if (codec) {
std::string decoded_string;
const bool huffman_result =
codec->DecodeFromStream(GetReadBitCallback(), &decoded_string);
assert(huffman_result);
if (!huffman_result)
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read literal string";
if (decoded_string != "kMarkvNoneOfTheAbove") {
std::copy(decoded_string.begin(), decoded_string.end(),
std::back_inserter(str));
str.push_back('\0');
}
}
// The loop is expected to terminate once we encounter '\0' or exhaust
// the bit stream.
if (str.empty()) {
while (true) {
char ch = 0;
if (!reader_.ReadUnencoded(&ch))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read literal string";
str.push_back(ch);
if (ch == '\0') break;
}
}
while (str.size() % 4 != 0) str.push_back('\0');
inst_words_.resize(inst_words_.size() + str.size() / 4);
std::memcpy(&inst_words_[first_word_index], str.data(), str.size());
if (SpvOpExtInstImport == opcode) {
// Record the extended instruction type for the ID for this import.
// There is only one string literal argument to OpExtInstImport,
// so it's sufficient to guard this just on the opcode.
const spv_ext_inst_type_t ext_inst_type =
spvExtInstImportTypeGet(str.data());
if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid extended instruction import '" << str.data()
<< "'";
}
// We must have parsed a valid result ID. It's a condition
// of the grammar, and we only accept non-zero result Ids.
assert(inst_.result_id);
const bool inserted =
import_id_to_ext_inst_type_.emplace(inst_.result_id, ext_inst_type)
.second;
(void)inserted;
assert(inserted);
}
break;
}
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: {
// A single word that is a plain enum value.
uint32_t word = 0;
const spv_result_t result = DecodeNonIdWord(&word);
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(word);
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER)
operand_.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, word, &entry)) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid " << spvOperandTypeStr(operand_.type)
<< " operand: " << word;
}
// Prepare to accept operands to this operand, if needed.
spvPushOperandTypes(entry->operandTypes, expected_operands);
break;
}
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL: {
// This operand is a mask.
uint32_t word = 0;
const spv_result_t result = DecodeNonIdWord(&word);
if (result != SPV_SUCCESS) return result;
inst_words_.push_back(word);
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE)
operand_.type = SPV_OPERAND_TYPE_IMAGE;
else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS)
operand_.type = SPV_OPERAND_TYPE_MEMORY_ACCESS;
// Check validity of set mask bits. Also prepare for operands for those
// masks if they have any. To get operand order correct, scan from
// MSB to LSB since we can only prepend operands to a pattern.
// The only case in the grammar where you have more than one mask bit
// having an operand is for image operands. See SPIR-V 3.14 Image
// Operands.
uint32_t remaining_word = word;
for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) {
if (remaining_word & mask) {
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry)) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Invalid " << spvOperandTypeStr(operand_.type)
<< " operand: " << word << " has invalid mask component "
<< mask;
}
remaining_word ^= mask;
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
if (word == 0) {
// An all-zeroes mask *might* also be valid.
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) {
// Prepare for its operands, if any.
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
break;
}
default:
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Internal error: Unhandled operand type: " << type;
}
operand_.num_words = uint16_t(inst_words_.size() - first_word_index);
assert(spvOperandIsConcrete(operand_.type));
parsed_operands_.push_back(operand_);
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::DecodeInstruction() {
parsed_operands_.clear();
inst_words_.clear();
// Opcode/num_words placeholder, the word will be filled in later.
inst_words_.push_back(0);
bool num_operands_still_unknown = true;
{
uint32_t opcode = 0;
uint32_t num_operands = 0;
const spv_result_t opcode_decoding_result =
DecodeOpcodeAndNumberOfOperands(&opcode, &num_operands);
if (opcode_decoding_result < 0) return opcode_decoding_result;
if (opcode_decoding_result == SPV_SUCCESS) {
inst_.num_operands = static_cast<uint16_t>(num_operands);
num_operands_still_unknown = false;
} else {
if (!reader_.ReadVariableWidthU32(&opcode,
model_->opcode_chunk_length())) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read opcode of instruction";
}
}
inst_.opcode = static_cast<uint16_t>(opcode);
}
const SpvOp opcode = static_cast<SpvOp>(inst_.opcode);
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(opcode, &opcode_desc) != SPV_SUCCESS) {
return Diag(SPV_ERROR_INVALID_BINARY) << "Invalid opcode";
}
spv_operand_pattern_t expected_operands;
expected_operands.reserve(opcode_desc->numTypes);
for (auto i = 0; i < opcode_desc->numTypes; i++) {
expected_operands.push_back(
opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]);
}
if (num_operands_still_unknown) {
if (!OpcodeHasFixedNumberOfOperands(opcode)) {
if (!reader_.ReadVariableWidthU16(&inst_.num_operands,
model_->num_operands_chunk_length()))
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Failed to read num_operands of instruction";
} else {
inst_.num_operands = static_cast<uint16_t>(expected_operands.size());
}
}
for (operand_index_ = 0;
operand_index_ < static_cast<size_t>(inst_.num_operands);
++operand_index_) {
assert(!expected_operands.empty());
const spv_operand_type_t type =
spvTakeFirstMatchableOperand(&expected_operands);
const size_t operand_offset = inst_words_.size();
const spv_result_t decode_result =
DecodeOperand(operand_offset, type, &expected_operands);
if (decode_result != SPV_SUCCESS) return decode_result;
}
assert(inst_.num_operands == parsed_operands_.size());
// Only valid while inst_words_ and parsed_operands_ remain unchanged (until
// next DecodeInstruction call).
inst_.words = inst_words_.data();
inst_.operands = parsed_operands_.empty() ? nullptr : parsed_operands_.data();
inst_.num_words = static_cast<uint16_t>(inst_words_.size());
inst_words_[0] = spvOpcodeMake(inst_.num_words, SpvOp(inst_.opcode));
std::copy(inst_words_.begin(), inst_words_.end(), std::back_inserter(spirv_));
assert(inst_.num_words ==
std::accumulate(
parsed_operands_.begin(), parsed_operands_.end(), 1,
[](int num_words, const spv_parsed_operand_t& operand) {
return num_words += operand.num_words;
}) &&
"num_words in instruction doesn't correspond to the sum of num_words"
"in the operands");
RecordNumberType();
ProcessCurInstruction();
if (!ReadToByteBreak(MarkvCodec::kByteBreakAfterInstIfLessThanUntilNextByte))
return Diag(SPV_ERROR_INVALID_BINARY) << "Failed to read to byte break";
if (logger_) {
logger_->NewLine();
std::stringstream ss;
ss << spvOpcodeString(opcode) << " ";
for (size_t index = 1; index < inst_words_.size(); ++index)
ss << inst_words_[index] << " ";
logger_->AppendText(ss.str());
logger_->NewLine();
logger_->NewLine();
if (!logger_->DebugInstruction(inst_)) return SPV_REQUESTED_TERMINATION;
}
return SPV_SUCCESS;
}
spv_result_t MarkvDecoder::SetNumericTypeInfoForType(
spv_parsed_operand_t* parsed_operand, uint32_t type_id) {
assert(type_id != 0);
auto type_info_iter = type_id_to_number_type_info_.find(type_id);
if (type_info_iter == type_id_to_number_type_info_.end()) {
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Type Id " << type_id << " is not a type";
}
const NumberType& info = type_info_iter->second;
if (info.type == SPV_NUMBER_NONE) {
// This is a valid type, but for something other than a scalar number.
return Diag(SPV_ERROR_INVALID_BINARY)
<< "Type Id " << type_id << " is not a scalar numeric type";
}
parsed_operand->number_kind = info.type;
parsed_operand->number_bit_width = info.bit_width;
// Round up the word count.
parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32);
return SPV_SUCCESS;
}
void MarkvDecoder::RecordNumberType() {
const SpvOp opcode = static_cast<SpvOp>(inst_.opcode);
if (spvOpcodeGeneratesType(opcode)) {
NumberType info = {SPV_NUMBER_NONE, 0};
if (SpvOpTypeInt == opcode) {
info.bit_width = inst_.words[inst_.operands[1].offset];
info.type = inst_.words[inst_.operands[2].offset]
? SPV_NUMBER_SIGNED_INT
: SPV_NUMBER_UNSIGNED_INT;
} else if (SpvOpTypeFloat == opcode) {
info.bit_width = inst_.words[inst_.operands[1].offset];
info.type = SPV_NUMBER_FLOATING;
}
// The *result* Id of a type generating instruction is the type Id.
type_id_to_number_type_info_[inst_.result_id] = info;
}
}
} // namespace comp
} // namespace spvtools