/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLIRGenerator.h"
#include "limits.h"
#include <unordered_set>
#include "SkSLCompiler.h"
#include "SkSLParser.h"
#include "ast/SkSLASTBoolLiteral.h"
#include "ast/SkSLASTFieldSuffix.h"
#include "ast/SkSLASTFloatLiteral.h"
#include "ast/SkSLASTIndexSuffix.h"
#include "ast/SkSLASTIntLiteral.h"
#include "ir/SkSLAppendStage.h"
#include "ir/SkSLBinaryExpression.h"
#include "ir/SkSLBoolLiteral.h"
#include "ir/SkSLBreakStatement.h"
#include "ir/SkSLConstructor.h"
#include "ir/SkSLContinueStatement.h"
#include "ir/SkSLDiscardStatement.h"
#include "ir/SkSLDoStatement.h"
#include "ir/SkSLEnum.h"
#include "ir/SkSLExpressionStatement.h"
#include "ir/SkSLField.h"
#include "ir/SkSLFieldAccess.h"
#include "ir/SkSLFloatLiteral.h"
#include "ir/SkSLForStatement.h"
#include "ir/SkSLFunctionCall.h"
#include "ir/SkSLFunctionDeclaration.h"
#include "ir/SkSLFunctionDefinition.h"
#include "ir/SkSLFunctionReference.h"
#include "ir/SkSLIfStatement.h"
#include "ir/SkSLIndexExpression.h"
#include "ir/SkSLInterfaceBlock.h"
#include "ir/SkSLIntLiteral.h"
#include "ir/SkSLLayout.h"
#include "ir/SkSLPostfixExpression.h"
#include "ir/SkSLPrefixExpression.h"
#include "ir/SkSLReturnStatement.h"
#include "ir/SkSLSetting.h"
#include "ir/SkSLSwitchCase.h"
#include "ir/SkSLSwitchStatement.h"
#include "ir/SkSLSwizzle.h"
#include "ir/SkSLTernaryExpression.h"
#include "ir/SkSLUnresolvedFunction.h"
#include "ir/SkSLVariable.h"
#include "ir/SkSLVarDeclarations.h"
#include "ir/SkSLVarDeclarationsStatement.h"
#include "ir/SkSLVariableReference.h"
#include "ir/SkSLWhileStatement.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
class AutoLoopLevel {
public:
AutoLoopLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fLoopLevel++;
}
~AutoLoopLevel() {
fIR->fLoopLevel--;
}
IRGenerator* fIR;
};
class AutoSwitchLevel {
public:
AutoSwitchLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fSwitchLevel++;
}
~AutoSwitchLevel() {
fIR->fSwitchLevel--;
}
IRGenerator* fIR;
};
IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable,
ErrorReporter& errorReporter)
: fContext(*context)
, fCurrentFunction(nullptr)
, fRootSymbolTable(symbolTable)
, fSymbolTable(symbolTable)
, fLoopLevel(0)
, fSwitchLevel(0)
, fTmpCount(0)
, fErrors(errorReporter) {}
void IRGenerator::pushSymbolTable() {
fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), &fErrors));
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
static void fill_caps(const SKSL_CAPS_CLASS& caps,
std::unordered_map<String, Program::Settings::Value>* capsMap) {
#define CAP(name) \
capsMap->insert(std::make_pair(String(#name), Program::Settings::Value(caps.name())))
CAP(fbFetchSupport);
CAP(fbFetchNeedsCustomOutput);
CAP(dropsTileOnZeroDivide);
CAP(flatInterpolationSupport);
CAP(noperspectiveInterpolationSupport);
CAP(externalTextureSupport);
CAP(imageLoadStoreSupport);
CAP(mustEnableAdvBlendEqs);
CAP(mustEnableSpecificAdvBlendEqs);
CAP(mustDeclareFragmentShaderOutput);
CAP(mustDoOpBetweenFloorAndAbs);
CAP(atan2ImplementedAsAtanYOverX);
CAP(canUseAnyFunctionInShader);
CAP(floatIs32Bits);
CAP(integerSupport);
#undef CAP
}
void IRGenerator::start(const Program::Settings* settings,
std::vector<std::unique_ptr<ProgramElement>>* inherited) {
if (fStarted) {
this->popSymbolTable();
}
fSettings = settings;
fCapsMap.clear();
if (settings->fCaps) {
fill_caps(*settings->fCaps, &fCapsMap);
} else {
fCapsMap.insert(std::make_pair(String("integerSupport"),
Program::Settings::Value(true)));
}
this->pushSymbolTable();
fInvocations = -1;
fInputs.reset();
fSkPerVertex = nullptr;
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
if (inherited) {
for (const auto& e : *inherited) {
if (e->fKind == ProgramElement::kInterfaceBlock_Kind) {
InterfaceBlock& intf = (InterfaceBlock&) *e;
if (intf.fVariable.fName == Compiler::PERVERTEX_NAME) {
SkASSERT(!fSkPerVertex);
fSkPerVertex = &intf.fVariable;
}
}
}
}
}
std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) {
return std::unique_ptr<Extension>(new Extension(extension.fOffset, extension.fName));
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) {
switch (statement.fKind) {
case ASTStatement::kBlock_Kind:
return this->convertBlock((ASTBlock&) statement);
case ASTStatement::kVarDeclaration_Kind:
return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement);
case ASTStatement::kExpression_Kind: {
std::unique_ptr<Statement> result =
this->convertExpressionStatement((ASTExpressionStatement&) statement);
if (fRTAdjust && Program::kGeometry_Kind == fKind) {
SkASSERT(result->fKind == Statement::kExpression_Kind);
Expression& expr = *((ExpressionStatement&) *result).fExpression;
if (expr.fKind == Expression::kFunctionCall_Kind) {
FunctionCall& fc = (FunctionCall&) expr;
if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") {
std::vector<std::unique_ptr<Statement>> statements;
statements.push_back(getNormalizeSkPositionCode());
statements.push_back(std::move(result));
return std::unique_ptr<Block>(new Block(statement.fOffset,
std::move(statements),
fSymbolTable));
}
}
}
return result;
}
case ASTStatement::kIf_Kind:
return this->convertIf((ASTIfStatement&) statement);
case ASTStatement::kFor_Kind:
return this->convertFor((ASTForStatement&) statement);
case ASTStatement::kWhile_Kind:
return this->convertWhile((ASTWhileStatement&) statement);
case ASTStatement::kDo_Kind:
return this->convertDo((ASTDoStatement&) statement);
case ASTStatement::kSwitch_Kind:
return this->convertSwitch((ASTSwitchStatement&) statement);
case ASTStatement::kReturn_Kind:
return this->convertReturn((ASTReturnStatement&) statement);
case ASTStatement::kBreak_Kind:
return this->convertBreak((ASTBreakStatement&) statement);
case ASTStatement::kContinue_Kind:
return this->convertContinue((ASTContinueStatement&) statement);
case ASTStatement::kDiscard_Kind:
return this->convertDiscard((ASTDiscardStatement&) statement);
default:
ABORT("unsupported statement type: %d\n", statement.fKind);
}
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
AutoSymbolTable table(this);
std::vector<std::unique_ptr<Statement>> statements;
for (size_t i = 0; i < block.fStatements.size(); i++) {
std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return std::unique_ptr<Block>(new Block(block.fOffset, std::move(statements), fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
const ASTVarDeclarationStatement& s) {
auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage);
if (!decl) {
return nullptr;
}
return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
}
std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl,
Variable::Storage storage) {
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Type* baseType = this->convertType(*decl.fType);
if (!baseType) {
return nullptr;
}
if (fKind != Program::kFragmentProcessor_Kind &&
(decl.fModifiers.fFlags & Modifiers::kIn_Flag) &&
baseType->kind() == Type::Kind::kMatrix_Kind) {
fErrors.error(decl.fOffset, "'in' variables may not have matrix type");
}
for (const auto& varDecl : decl.fVars) {
if (decl.fModifiers.fLayout.fLocation == 0 && decl.fModifiers.fLayout.fIndex == 0 &&
(decl.fModifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind &&
varDecl.fName != "sk_FragColor") {
fErrors.error(decl.fOffset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const Type* type = baseType;
std::vector<std::unique_ptr<Expression>> sizes;
for (const auto& rawSize : varDecl.fSizes) {
if (rawSize) {
auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type);
if (!size) {
return nullptr;
}
String name(type->fName);
int64_t count;
if (size->fKind == Expression::kIntLiteral_Kind) {
count = ((IntLiteral&) *size).fValue;
if (count <= 0) {
fErrors.error(size->fOffset, "array size must be positive");
}
name += "[" + to_string(count) + "]";
} else {
count = -1;
name += "[]";
}
type = new Type(name, Type::kArray_Kind, *type, (int) count);
fSymbolTable->takeOwnership((Type*) type);
sizes.push_back(std::move(size));
} else {
type = new Type(type->name() + "[]", Type::kArray_Kind, *type, -1);
fSymbolTable->takeOwnership((Type*) type);
sizes.push_back(nullptr);
}
}
auto var = std::unique_ptr<Variable>(new Variable(decl.fOffset, decl.fModifiers,
varDecl.fName, *type, storage));
if (var->fName == Compiler::RTADJUST_NAME) {
SkASSERT(!fRTAdjust);
SkASSERT(var->fType == *fContext.fFloat4_Type);
fRTAdjust = var.get();
}
std::unique_ptr<Expression> value;
if (varDecl.fValue) {
value = this->convertExpression(*varDecl.fValue);
if (!value) {
return nullptr;
}
value = this->coerce(std::move(value), *type);
if (!value) {
return nullptr;
}
var->fWriteCount = 1;
var->fInitialValue = value.get();
}
if (storage == Variable::kGlobal_Storage && varDecl.fName == "sk_FragColor" &&
(*fSymbolTable)[varDecl.fName]) {
// already defined, ignore
} else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] &&
(*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind &&
((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) {
// already defined, just update the modifiers
Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName];
old->fModifiers = var->fModifiers;
} else {
variables.emplace_back(new VarDeclaration(var.get(), std::move(sizes),
std::move(value)));
fSymbolTable->add(varDecl.fName, std::move(var));
}
}
return std::unique_ptr<VarDeclarations>(new VarDeclarations(decl.fOffset,
baseType,
std::move(variables)));
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(
const ASTModifiersDeclaration& m) {
Modifiers modifiers = m.fModifiers;
if (modifiers.fLayout.fInvocations != -1) {
fInvocations = modifiers.fLayout.fInvocations;
if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fInvocations = -1;
Variable* invocationId = (Variable*) (*fSymbolTable)["sk_InvocationID"];
SkASSERT(invocationId);
invocationId->fModifiers.fFlags = 0;
invocationId->fModifiers.fLayout.fBuiltin = -1;
if (modifiers.fLayout.description() == "") {
return nullptr;
}
}
}
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fMaxVertices *= fInvocations;
}
return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(modifiers));
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (s.fIfFalse) {
ifFalse = this->convertStatement(*s.fIfFalse);
if (!ifFalse) {
return nullptr;
}
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean value, fold down to a single branch
if (((BoolLiteral&) *test).fValue) {
return ifTrue;
} else if (s.fIfFalse) {
return ifFalse;
} else {
// False & no else clause. Not an error, so don't return null!
std::vector<std::unique_ptr<Statement>> empty;
return std::unique_ptr<Statement>(new Block(s.fOffset, std::move(empty),
fSymbolTable));
}
}
return std::unique_ptr<Statement>(new IfStatement(s.fOffset, s.fIsStatic, std::move(test),
std::move(ifTrue), std::move(ifFalse)));
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
AutoLoopLevel level(this);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
if (f.fInitializer) {
initializer = this->convertStatement(*f.fInitializer);
if (!initializer) {
return nullptr;
}
}
std::unique_ptr<Expression> test;
if (f.fTest) {
test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type);
if (!test) {
return nullptr;
}
}
std::unique_ptr<Expression> next;
if (f.fNext) {
next = this->convertExpression(*f.fNext);
if (!next) {
return nullptr;
}
this->checkValid(*next);
}
std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new ForStatement(f.fOffset, std::move(initializer),
std::move(test), std::move(next),
std::move(statement), fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
AutoLoopLevel level(this);
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new WhileStatement(w.fOffset, std::move(test),
std::move(statement)));
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
AutoLoopLevel level(this);
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new DoStatement(d.fOffset, std::move(statement),
std::move(test)));
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTSwitchStatement& s) {
AutoSwitchLevel level(this);
std::unique_ptr<Expression> value = this->convertExpression(*s.fValue);
if (!value) {
return nullptr;
}
if (value->fType != *fContext.fUInt_Type && value->fType.kind() != Type::kEnum_Kind) {
value = this->coerce(std::move(value), *fContext.fInt_Type);
if (!value) {
return nullptr;
}
}
AutoSymbolTable table(this);
std::unordered_set<int> caseValues;
std::vector<std::unique_ptr<SwitchCase>> cases;
for (const auto& c : s.fCases) {
std::unique_ptr<Expression> caseValue;
if (c->fValue) {
caseValue = this->convertExpression(*c->fValue);
if (!caseValue) {
return nullptr;
}
caseValue = this->coerce(std::move(caseValue), value->fType);
if (!caseValue) {
return nullptr;
}
if (!caseValue->isConstant()) {
fErrors.error(caseValue->fOffset, "case value must be a constant");
return nullptr;
}
int64_t v;
this->getConstantInt(*caseValue, &v);
if (caseValues.find(v) != caseValues.end()) {
fErrors.error(caseValue->fOffset, "duplicate case value");
}
caseValues.insert(v);
}
std::vector<std::unique_ptr<Statement>> statements;
for (const auto& s : c->fStatements) {
std::unique_ptr<Statement> converted = this->convertStatement(*s);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
cases.emplace_back(new SwitchCase(c->fOffset, std::move(caseValue),
std::move(statements)));
}
return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.fIsStatic,
std::move(value), std::move(cases),
fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
const ASTExpressionStatement& s) {
std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
if (!e) {
return nullptr;
}
this->checkValid(*e);
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
SkASSERT(fCurrentFunction);
// early returns from a vertex main function will bypass the sk_Position normalization, so
// SkASSERT that we aren't doing that. It is of course possible to fix this by adding a
// normalization before each return, but it will probably never actually be necessary.
SkASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName);
if (r.fExpression) {
std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression);
if (!result) {
return nullptr;
}
if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
fErrors.error(result->fOffset, "may not return a value from a void function");
} else {
result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
if (!result) {
return nullptr;
}
}
return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
} else {
if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
fErrors.error(r.fOffset, "expected function to return '" +
fCurrentFunction->fReturnType.description() + "'");
}
return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset));
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
if (fLoopLevel > 0 || fSwitchLevel > 0) {
return std::unique_ptr<Statement>(new BreakStatement(b.fOffset));
} else {
fErrors.error(b.fOffset, "break statement must be inside a loop or switch");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) {
if (fLoopLevel > 0) {
return std::unique_ptr<Statement>(new ContinueStatement(c.fOffset));
} else {
fErrors.error(c.fOffset, "continue statement must be inside a loop");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) {
return std::unique_ptr<Statement>(new DiscardStatement(d.fOffset));
}
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
Layout invokeLayout;
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
FunctionDeclaration* invokeDecl = new FunctionDeclaration(-1,
invokeModifiers,
"_invoke",
std::vector<const Variable*>(),
*fContext.fVoid_Type);
fProgramElements->push_back(std::unique_ptr<ProgramElement>(
new FunctionDefinition(-1, *invokeDecl, std::move(main))));
fSymbolTable->add(invokeDecl->fName, std::unique_ptr<FunctionDeclaration>(invokeDecl));
std::vector<std::unique_ptr<VarDeclaration>> variables;
Variable* loopIdx = (Variable*) (*fSymbolTable)["sk_InvocationID"];
SkASSERT(loopIdx);
std::unique_ptr<Expression> test(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
Token::LT,
std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, fInvocations)),
*fContext.fBool_Type));
std::unique_ptr<Expression> next(new PostfixExpression(
std::unique_ptr<Expression>(
new VariableReference(-1,
*loopIdx,
VariableReference::kReadWrite_RefKind)),
Token::PLUSPLUS));
ASTIdentifier endPrimitiveID = ASTIdentifier(-1, "EndPrimitive");
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
SkASSERT(endPrimitive);
std::vector<std::unique_ptr<Statement>> loopBody;
std::vector<std::unique_ptr<Expression>> invokeArgs;
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
*invokeDecl,
std::vector<std::unique_ptr<Expression>>()))));
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
std::move(endPrimitive),
std::vector<std::unique_ptr<Expression>>()))));
std::unique_ptr<Expression> assignment(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
Token::EQ,
std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, 0)),
*fContext.fInt_Type));
std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment)));
std::unique_ptr<Statement> loop = std::unique_ptr<Statement>(
new ForStatement(-1,
std::move(initializer),
std::move(test),
std::move(next),
std::unique_ptr<Block>(new Block(-1, std::move(loopBody))),
fSymbolTable));
std::vector<std::unique_ptr<Statement>> children;
children.push_back(std::move(loop));
return std::unique_ptr<Block>(new Block(-1, std::move(children)));
}
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
// 0,
// sk_Position.w);
SkASSERT(fSkPerVertex && fRTAdjust);
#define REF(var) std::unique_ptr<Expression>(\
new VariableReference(-1, *var, VariableReference::kRead_RefKind))
#define FIELD(var, idx) std::unique_ptr<Expression>(\
new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define POS std::unique_ptr<Expression>(new FieldAccess(REF(fSkPerVertex), 0, \
FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define ADJUST (fRTAdjustInterfaceBlock ? \
FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \
REF(fRTAdjust))
#define SWIZZLE(expr, ...) std::unique_ptr<Expression>(new Swizzle(fContext, expr, \
{ __VA_ARGS__ }))
#define OP(left, op, right) std::unique_ptr<Expression>( \
new BinaryExpression(-1, left, op, right, \
*fContext.fFloat2_Type))
std::vector<std::unique_ptr<Expression>> children;
children.push_back(OP(OP(SWIZZLE(POS, 0, 1), Token::STAR, SWIZZLE(ADJUST, 0, 2)),
Token::PLUS,
OP(SWIZZLE(POS, 3, 3), Token::STAR, SWIZZLE(ADJUST, 1, 3))));
children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0)));
children.push_back(SWIZZLE(POS, 3));
std::unique_ptr<Expression> result = OP(POS, Token::EQ,
std::unique_ptr<Expression>(new Constructor(-1,
*fContext.fFloat4_Type,
std::move(children))));
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result)));
}
void IRGenerator::convertFunction(const ASTFunction& f) {
const Type* returnType = this->convertType(*f.fReturnType);
if (!returnType) {
return;
}
std::vector<const Variable*> parameters;
for (const auto& param : f.fParameters) {
const Type* type = this->convertType(*param->fType);
if (!type) {
return;
}
for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
int size = param->fSizes[j];
String name = type->name() + "[" + to_string(size) + "]";
Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size);
fSymbolTable->takeOwnership(newType);
type = newType;
}
StringFragment name = param->fName;
Variable* var = new Variable(param->fOffset, param->fModifiers, name, *type,
Variable::kParameter_Storage);
fSymbolTable->takeOwnership(var);
parameters.push_back(var);
}
if (f.fName == "main") {
if (fKind == Program::kPipelineStage_Kind) {
bool valid = parameters.size() == 3 &&
parameters[0]->fType == *fContext.fInt_Type &&
parameters[0]->fModifiers.fFlags == 0 &&
parameters[1]->fType == *fContext.fInt_Type &&
parameters[1]->fModifiers.fFlags == 0 &&
parameters[2]->fType == *fContext.fHalf4_Type &&
parameters[2]->fModifiers.fFlags == (Modifiers::kIn_Flag |
Modifiers::kOut_Flag);
if (!valid) {
fErrors.error(f.fOffset, "pipeline stage 'main' must be declared main(int, "
"int, inout half4)");
return;
}
} else if (parameters.size()) {
fErrors.error(f.fOffset, "shader 'main' must have zero parameters");
}
}
// find existing declaration
const FunctionDeclaration* decl = nullptr;
auto entry = (*fSymbolTable)[f.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->fKind) {
case Symbol::kUnresolvedFunction_Kind:
functions = ((UnresolvedFunction*) entry)->fFunctions;
break;
case Symbol::kFunctionDeclaration_Kind:
functions.push_back((FunctionDeclaration*) entry);
break;
default:
fErrors.error(f.fOffset, "symbol '" + f.fName + "' was already defined");
return;
}
for (const auto& other : functions) {
SkASSERT(other->fName == f.fName);
if (parameters.size() == other->fParameters.size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fType != other->fParameters[i]->fType) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->fReturnType) {
FunctionDeclaration newDecl(f.fOffset, f.fModifiers, f.fName, parameters,
*returnType);
fErrors.error(f.fOffset, "functions '" + newDecl.description() +
"' and '" + other->description() +
"' differ only in return type");
return;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
fErrors.error(f.fOffset, "modifiers on parameter " +
to_string((uint64_t) i + 1) +
" differ between declaration and "
"definition");
return;
}
}
if (other->fDefined) {
fErrors.error(f.fOffset, "duplicate definition of " +
other->description());
}
break;
}
}
}
}
if (!decl) {
// couldn't find an existing declaration
auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fOffset,
f.fModifiers,
f.fName,
parameters,
*returnType));
decl = newDecl.get();
fSymbolTable->add(decl->fName, std::move(newDecl));
}
if (f.fBody) {
SkASSERT(!fCurrentFunction);
fCurrentFunction = decl;
decl->fDefined = true;
std::shared_ptr<SymbolTable> old = fSymbolTable;
AutoSymbolTable table(this);
if (f.fName == "main" && fKind == Program::kPipelineStage_Kind) {
parameters[0]->fModifiers.fLayout.fBuiltin = SK_MAIN_X_BUILTIN;
parameters[1]->fModifiers.fLayout.fBuiltin = SK_MAIN_Y_BUILTIN;
parameters[2]->fModifiers.fLayout.fBuiltin = SK_OUTCOLOR_BUILTIN;
}
for (size_t i = 0; i < parameters.size(); i++) {
fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
}
bool needInvocationIDWorkaround = fInvocations != -1 && f.fName == "main" &&
fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport();
SkASSERT(!fExtraVars.size());
std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
for (auto& v : fExtraVars) {
body->fStatements.insert(body->fStatements.begin(), std::move(v));
}
fExtraVars.clear();
fCurrentFunction = nullptr;
if (!body) {
return;
}
if (needInvocationIDWorkaround) {
body = this->applyInvocationIDWorkaround(std::move(body));
}
// conservatively assume all user-defined functions have side effects
((Modifiers&) decl->fModifiers).fFlags |= Modifiers::kHasSideEffects_Flag;
if (Program::kVertex_Kind == fKind && f.fName == "main" && fRTAdjust) {
body->fStatements.insert(body->fStatements.end(), this->getNormalizeSkPositionCode());
}
fProgramElements->push_back(std::unique_ptr<FunctionDefinition>(
new FunctionDefinition(f.fOffset, *decl, std::move(body))));
}
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) {
std::shared_ptr<SymbolTable> old = fSymbolTable;
this->pushSymbolTable();
std::shared_ptr<SymbolTable> symbols = fSymbolTable;
std::vector<Type::Field> fields;
bool haveRuntimeArray = false;
bool foundRTAdjust = false;
for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
*intf.fDeclarations[i],
Variable::kInterfaceBlock_Storage);
if (!decl) {
return nullptr;
}
for (const auto& stmt : decl->fVars) {
VarDeclaration& vd = (VarDeclaration&) *stmt;
if (haveRuntimeArray) {
fErrors.error(decl->fOffset,
"only the last entry in an interface block may be a runtime-sized "
"array");
}
if (vd.fVar == fRTAdjust) {
foundRTAdjust = true;
SkASSERT(vd.fVar->fType == *fContext.fFloat4_Type);
fRTAdjustFieldIndex = fields.size();
}
fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName,
&vd.fVar->fType));
if (vd.fValue) {
fErrors.error(decl->fOffset,
"initializers are not permitted on interface block fields");
}
if (vd.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag |
Modifiers::kOut_Flag |
Modifiers::kUniform_Flag |
Modifiers::kBuffer_Flag |
Modifiers::kConst_Flag)) {
fErrors.error(decl->fOffset,
"interface block fields may not have storage qualifiers");
}
if (vd.fVar->fType.kind() == Type::kArray_Kind &&
vd.fVar->fType.columns() == -1) {
haveRuntimeArray = true;
}
}
}
this->popSymbolTable();
Type* type = new Type(intf.fOffset, intf.fTypeName, fields);
old->takeOwnership(type);
std::vector<std::unique_ptr<Expression>> sizes;
for (const auto& size : intf.fSizes) {
if (size) {
std::unique_ptr<Expression> converted = this->convertExpression(*size);
if (!converted) {
return nullptr;
}
String name = type->fName;
int64_t count;
if (converted->fKind == Expression::kIntLiteral_Kind) {
count = ((IntLiteral&) *converted).fValue;
if (count <= 0) {
fErrors.error(converted->fOffset, "array size must be positive");
}
name += "[" + to_string(count) + "]";
} else {
count = -1;
name += "[]";
}
type = new Type(name, Type::kArray_Kind, *type, (int) count);
symbols->takeOwnership((Type*) type);
sizes.push_back(std::move(converted));
} else {
type = new Type(type->name() + "[]", Type::kArray_Kind, *type, -1);
symbols->takeOwnership((Type*) type);
sizes.push_back(nullptr);
}
}
Variable* var = new Variable(intf.fOffset, intf.fModifiers,
intf.fInstanceName.fLength ? intf.fInstanceName : intf.fTypeName,
*type, Variable::kGlobal_Storage);
if (foundRTAdjust) {
fRTAdjustInterfaceBlock = var;
}
old->takeOwnership(var);
if (intf.fInstanceName.fLength) {
old->addWithoutOwnership(intf.fInstanceName, var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fOffset, *var,
(int) i)));
}
}
return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fOffset,
var,
intf.fTypeName,
intf.fInstanceName,
std::move(sizes),
symbols));
}
void IRGenerator::getConstantInt(const Expression& value, int64_t* out) {
switch (value.fKind) {
case Expression::kIntLiteral_Kind:
*out = ((const IntLiteral&) value).fValue;
break;
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) value).fVariable;
if ((var.fModifiers.fFlags & Modifiers::kConst_Flag) &&
var.fInitialValue) {
this->getConstantInt(*var.fInitialValue, out);
}
break;
}
default:
fErrors.error(value.fOffset, "expected a constant int");
}
}
void IRGenerator::convertEnum(const ASTEnum& e) {
std::vector<Variable*> variables;
int64_t currentValue = 0;
Layout layout;
ASTType enumType(e.fOffset, e.fTypeName, ASTType::kIdentifier_Kind, {});
const Type* type = this->convertType(enumType);
Modifiers modifiers(layout, Modifiers::kConst_Flag);
std::shared_ptr<SymbolTable> symbols(new SymbolTable(fSymbolTable, &fErrors));
fSymbolTable = symbols;
for (size_t i = 0; i < e.fNames.size(); i++) {
std::unique_ptr<Expression> value;
if (e.fValues[i]) {
value = this->convertExpression(*e.fValues[i]);
if (!value) {
fSymbolTable = symbols->fParent;
return;
}
this->getConstantInt(*value, ¤tValue);
}
value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue));
++currentValue;
auto var = std::unique_ptr<Variable>(new Variable(e.fOffset, modifiers, e.fNames[i],
*type, Variable::kGlobal_Storage,
value.get()));
variables.push_back(var.get());
symbols->add(e.fNames[i], std::move(var));
symbols->takeOwnership(value.release());
}
fProgramElements->push_back(std::unique_ptr<ProgramElement>(new Enum(e.fOffset, e.fTypeName,
symbols)));
fSymbolTable = symbols->fParent;
}
const Type* IRGenerator::convertType(const ASTType& type) {
const Symbol* result = (*fSymbolTable)[type.fName];
if (result && result->fKind == Symbol::kType_Kind) {
for (int size : type.fSizes) {
String name(result->fName);
name += "[";
if (size != -1) {
name += to_string(size);
}
name += "]";
result = new Type(name, Type::kArray_Kind, (const Type&) *result, size);
fSymbolTable->takeOwnership((Type*) result);
}
return (const Type*) result;
}
fErrors.error(type.fOffset, "unknown type '" + type.fName + "'");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
switch (expr.fKind) {
case ASTExpression::kIdentifier_Kind:
return this->convertIdentifier((ASTIdentifier&) expr);
case ASTExpression::kBool_Kind:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
((ASTBoolLiteral&) expr).fValue));
case ASTExpression::kInt_Kind:
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
((ASTIntLiteral&) expr).fValue));
case ASTExpression::kFloat_Kind:
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
((ASTFloatLiteral&) expr).fValue));
case ASTExpression::kBinary_Kind:
return this->convertBinaryExpression((ASTBinaryExpression&) expr);
case ASTExpression::kPrefix_Kind:
return this->convertPrefixExpression((ASTPrefixExpression&) expr);
case ASTExpression::kSuffix_Kind:
return this->convertSuffixExpression((ASTSuffixExpression&) expr);
case ASTExpression::kTernary_Kind:
return this->convertTernaryExpression((ASTTernaryExpression&) expr);
default:
ABORT("unsupported expression type: %d\n", expr.fKind);
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
const Symbol* result = (*fSymbolTable)[identifier.fText];
if (!result) {
fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.fText + "'");
return nullptr;
}
switch (result->fKind) {
case Symbol::kFunctionDeclaration_Kind: {
std::vector<const FunctionDeclaration*> f = {
(const FunctionDeclaration*) result
};
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
identifier.fOffset,
f));
}
case Symbol::kUnresolvedFunction_Kind: {
const UnresolvedFunction* f = (const UnresolvedFunction*) result;
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
identifier.fOffset,
f->fFunctions));
}
case Symbol::kVariable_Kind: {
const Variable* var = (const Variable*) result;
switch (var->fModifiers.fLayout.fBuiltin) {
case SK_WIDTH_BUILTIN:
fInputs.fRTWidth = true;
break;
case SK_HEIGHT_BUILTIN:
fInputs.fRTHeight = true;
break;
#ifndef SKSL_STANDALONE
case SK_FRAGCOORD_BUILTIN:
if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
fInputs.fFlipY = true;
if (fSettings->fFlipY &&
(!fSettings->fCaps ||
!fSettings->fCaps->fragCoordConventionsExtensionString())) {
fInputs.fRTHeight = true;
}
}
#endif
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::unique_ptr<VariableReference>(new VariableReference(
identifier.fOffset,
*var,
VariableReference::kRead_RefKind));
}
case Symbol::kField_Kind: {
const Field* field = (const Field*) result;
VariableReference* base = new VariableReference(identifier.fOffset, field->fOwner,
VariableReference::kRead_RefKind);
return std::unique_ptr<Expression>(new FieldAccess(
std::unique_ptr<Expression>(base),
field->fFieldIndex,
FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
}
case Symbol::kType_Kind: {
const Type* t = (const Type*) result;
return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fOffset,
*t));
}
default:
ABORT("unsupported symbol type %d\n", result->fKind);
}
}
std::unique_ptr<Section> IRGenerator::convertSection(const ASTSection& s) {
return std::unique_ptr<Section>(new Section(s.fOffset, s.fName, s.fArgument, s.fText));
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
if (!expr) {
return nullptr;
}
if (expr->fType == type) {
return expr;
}
this->checkValid(*expr);
if (expr->fType == *fContext.fInvalid_Type) {
return nullptr;
}
if (expr->coercionCost(type) == INT_MAX) {
fErrors.error(expr->fOffset, "expected '" + type.description() + "', but found '" +
expr->fType.description() + "'");
return nullptr;
}
if (type.kind() == Type::kScalar_Kind) {
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
ASTIdentifier id(-1, type.fName);
std::unique_ptr<Expression> ctor = this->convertIdentifier(id);
SkASSERT(ctor);
return this->call(-1, std::move(ctor), std::move(args));
}
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
return std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
}
static bool is_matrix_multiply(const Type& left, const Type& right) {
if (left.kind() == Type::kMatrix_Kind) {
return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind;
}
return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind;
}
/**
* Determines the operand and result types of a binary expression. Returns true if the expression is
* legal, false otherwise. If false, the values of the out parameters are undefined.
*/
static bool determine_binary_type(const Context& context,
Token::Kind op,
const Type& left,
const Type& right,
const Type** outLeftType,
const Type** outRightType,
const Type** outResultType,
bool tryFlipped) {
bool isLogical;
bool validMatrixOrVectorOp;
switch (op) {
case Token::EQ:
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
case Token::EQEQ: // fall through
case Token::NEQ:
if (right.canCoerceTo(left)) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = context.fBool_Type.get();
return true;
} if (left.canCoerceTo(right)) {
*outLeftType = &right;
*outRightType = &right;
*outResultType = context.fBool_Type.get();
return true;
}
return false;
case Token::LT: // fall through
case Token::GT: // fall through
case Token::LTEQ: // fall through
case Token::GTEQ:
isLogical = true;
validMatrixOrVectorOp = false;
break;
case Token::LOGICALOR: // fall through
case Token::LOGICALAND: // fall through
case Token::LOGICALXOR: // fall through
case Token::LOGICALOREQ: // fall through
case Token::LOGICALANDEQ: // fall through
case Token::LOGICALXOREQ:
*outLeftType = context.fBool_Type.get();
*outRightType = context.fBool_Type.get();
*outResultType = context.fBool_Type.get();
return left.canCoerceTo(*context.fBool_Type) &&
right.canCoerceTo(*context.fBool_Type);
case Token::STAREQ:
if (left.kind() == Type::kScalar_Kind) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
}
// fall through
case Token::STAR:
if (is_matrix_multiply(left, right)) {
// determine final component type
if (determine_binary_type(context, Token::STAR, left.componentType(),
right.componentType(), outLeftType, outRightType,
outResultType, false)) {
*outLeftType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
*outRightType = &(*outResultType)->toCompound(context, right.columns(),
right.rows());
int leftColumns = left.columns();
int leftRows = left.rows();
int rightColumns;
int rightRows;
if (right.kind() == Type::kVector_Kind) {
// matrix * vector treats the vector as a column vector, so we need to
// transpose it
rightColumns = right.rows();
rightRows = right.columns();
SkASSERT(rightColumns == 1);
} else {
rightColumns = right.columns();
rightRows = right.rows();
}
if (rightColumns > 1) {
*outResultType = &(*outResultType)->toCompound(context, rightColumns,
leftRows);
} else {
// result was a column vector, transpose it back to a row
*outResultType = &(*outResultType)->toCompound(context, leftRows,
rightColumns);
}
return leftColumns == rightRows;
} else {
return false;
}
}
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::PLUSEQ:
case Token::MINUSEQ:
case Token::SLASHEQ:
case Token::PERCENTEQ:
case Token::SHLEQ:
case Token::SHREQ:
if (left.kind() == Type::kScalar_Kind) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
}
// fall through
case Token::PLUS: // fall through
case Token::MINUS: // fall through
case Token::SLASH: // fall through
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::COMMA:
*outLeftType = &left;
*outRightType = &right;
*outResultType = &right;
return true;
default:
isLogical = false;
validMatrixOrVectorOp = false;
}
bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind;
if (left.kind() == Type::kScalar_Kind && right.kind() == Type::kScalar_Kind &&
right.canCoerceTo(left)) {
if (left.priority() > right.priority()) {
*outLeftType = &left;
*outRightType = &left;
} else {
*outLeftType = &right;
*outRightType = &right;
}
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if (right.canCoerceTo(left) && isVectorOrMatrix && validMatrixOrVectorOp) {
*outLeftType = &left;
*outRightType = &left;
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
(right.kind() == Type::kScalar_Kind)) {
if (determine_binary_type(context, op, left.componentType(), right, outLeftType,
outRightType, outResultType, false)) {
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
if (!isLogical) {
*outResultType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
}
return true;
}
return false;
}
if (tryFlipped) {
return determine_binary_type(context, op, right, left, outRightType, outLeftType,
outResultType, false);
}
return false;
}
static std::unique_ptr<Expression> short_circuit_boolean(const Context& context,
const Expression& left,
Token::Kind op,
const Expression& right) {
SkASSERT(left.fKind == Expression::kBoolLiteral_Kind);
bool leftVal = ((BoolLiteral&) left).fValue;
if (op == Token::LOGICALAND) {
// (true && expr) -> (expr) and (false && expr) -> (false)
return leftVal ? right.clone()
: std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, false));
} else if (op == Token::LOGICALOR) {
// (true || expr) -> (true) and (false || expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, true))
: right.clone();
} else {
// Can't short circuit XOR
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
Token::Kind op,
const Expression& right) const {
// If the left side is a constant boolean literal, the right side does not need to be constant
// for short circuit optimizations to allow the constant to be folded.
if (left.fKind == Expression::kBoolLiteral_Kind && !right.isConstant()) {
return short_circuit_boolean(fContext, left, op, right);
} else if (right.fKind == Expression::kBoolLiteral_Kind && !left.isConstant()) {
// There aren't side effects in SKSL within expressions, so (left OP right) is equivalent to
// (right OP left) for short-circuit optimizations
return short_circuit_boolean(fContext, right, op, left);
}
// Other than the short-circuit cases above, constant folding requires both sides to be constant
if (!left.isConstant() || !right.isConstant()) {
return nullptr;
}
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
// precision to calculate the results and hope the result makes sense. The plan is to move the
// Skia caps into SkSL, so we have access to all of them including the precisions of the various
// types, which will let us be more intelligent about this.
if (left.fKind == Expression::kBoolLiteral_Kind &&
right.fKind == Expression::kBoolLiteral_Kind) {
bool leftVal = ((BoolLiteral&) left).fValue;
bool rightVal = ((BoolLiteral&) right).fValue;
bool result;
switch (op) {
case Token::LOGICALAND: result = leftVal && rightVal; break;
case Token::LOGICALOR: result = leftVal || rightVal; break;
case Token::LOGICALXOR: result = leftVal ^ rightVal; break;
default: return nullptr;
}
return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result));
}
#define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fOffset, \
leftVal op rightVal))
if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) {
int64_t leftVal = ((IntLiteral&) left).fValue;
int64_t rightVal = ((IntLiteral&) right).fValue;
switch (op) {
case Token::PLUS: return RESULT(Int, +);
case Token::MINUS: return RESULT(Int, -);
case Token::STAR: return RESULT(Int, *);
case Token::SLASH:
if (rightVal) {
return RESULT(Int, /);
}
fErrors.error(right.fOffset, "division by zero");
return nullptr;
case Token::PERCENT:
if (rightVal) {
return RESULT(Int, %);
}
fErrors.error(right.fOffset, "division by zero");
return nullptr;
case Token::BITWISEAND: return RESULT(Int, &);
case Token::BITWISEOR: return RESULT(Int, |);
case Token::BITWISEXOR: return RESULT(Int, ^);
case Token::SHL: return RESULT(Int, <<);
case Token::SHR: return RESULT(Int, >>);
case Token::EQEQ: return RESULT(Bool, ==);
case Token::NEQ: return RESULT(Bool, !=);
case Token::GT: return RESULT(Bool, >);
case Token::GTEQ: return RESULT(Bool, >=);
case Token::LT: return RESULT(Bool, <);
case Token::LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
if (left.fKind == Expression::kFloatLiteral_Kind &&
right.fKind == Expression::kFloatLiteral_Kind) {
double leftVal = ((FloatLiteral&) left).fValue;
double rightVal = ((FloatLiteral&) right).fValue;
switch (op) {
case Token::PLUS: return RESULT(Float, +);
case Token::MINUS: return RESULT(Float, -);
case Token::STAR: return RESULT(Float, *);
case Token::SLASH:
if (rightVal) {
return RESULT(Float, /);
}
fErrors.error(right.fOffset, "division by zero");
return nullptr;
case Token::EQEQ: return RESULT(Bool, ==);
case Token::NEQ: return RESULT(Bool, !=);
case Token::GT: return RESULT(Bool, >);
case Token::GTEQ: return RESULT(Bool, >=);
case Token::LT: return RESULT(Bool, <);
case Token::LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
if (left.fType.kind() == Type::kVector_Kind &&
left.fType.componentType() == *fContext.fFloat_Type &&
left.fType == right.fType) {
SkASSERT(left.fKind == Expression::kConstructor_Kind);
SkASSERT(right.fKind == Expression::kConstructor_Kind);
std::vector<std::unique_ptr<Expression>> args;
#define RETURN_VEC_COMPONENTWISE_RESULT(op) \
for (int i = 0; i < left.fType.columns(); i++) { \
float value = ((Constructor&) left).getFVecComponent(i) op \
((Constructor&) right).getFVecComponent(i); \
args.emplace_back(new FloatLiteral(fContext, -1, value)); \
} \
return std::unique_ptr<Expression>(new Constructor(-1, left.fType, \
std::move(args)))
switch (op) {
case Token::EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
case Token::PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+);
case Token::MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-);
case Token::STAR: RETURN_VEC_COMPONENTWISE_RESULT(*);
case Token::SLASH: RETURN_VEC_COMPONENTWISE_RESULT(/);
default: return nullptr;
}
}
if (left.fType.kind() == Type::kMatrix_Kind &&
right.fType.kind() == Type::kMatrix_Kind &&
left.fKind == right.fKind) {
switch (op) {
case Token::EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
default:
return nullptr;
}
}
#undef RESULT
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
const ASTBinaryExpression& expression) {
std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft);
if (!left) {
return nullptr;
}
std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight);
if (!right) {
return nullptr;
}
const Type* leftType;
const Type* rightType;
const Type* resultType;
const Type* rawLeftType;
if (left->fKind == Expression::kIntLiteral_Kind && right->fType.isInteger()) {
rawLeftType = &right->fType;
} else {
rawLeftType = &left->fType;
}
const Type* rawRightType;
if (right->fKind == Expression::kIntLiteral_Kind && left->fType.isInteger()) {
rawRightType = &left->fType;
} else {
rawRightType = &right->fType;
}
if (!determine_binary_type(fContext, expression.fOperator, *rawLeftType, *rawRightType,
&leftType, &rightType, &resultType,
!Compiler::IsAssignment(expression.fOperator))) {
fErrors.error(expression.fOffset, String("type mismatch: '") +
Compiler::OperatorName(expression.fOperator) +
"' cannot operate on '" + left->fType.fName +
"', '" + right->fType.fName + "'");
return nullptr;
}
if (Compiler::IsAssignment(expression.fOperator)) {
this->setRefKind(*left, expression.fOperator != Token::EQ ?
VariableReference::kReadWrite_RefKind :
VariableReference::kWrite_RefKind);
}
left = this->coerce(std::move(left), *leftType);
right = this->coerce(std::move(right), *rightType);
if (!left || !right) {
return nullptr;
}
std::unique_ptr<Expression> result = this->constantFold(*left.get(), expression.fOperator,
*right.get());
if (!result) {
result = std::unique_ptr<Expression>(new BinaryExpression(expression.fOffset,
std::move(left),
expression.fOperator,
std::move(right),
*resultType));
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
const ASTTernaryExpression& expression) {
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue);
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse);
if (!ifFalse) {
return nullptr;
}
const Type* trueType;
const Type* falseType;
const Type* resultType;
if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType,
&falseType, &resultType, true) || trueType != falseType) {
fErrors.error(expression.fOffset, "ternary operator result mismatch: '" +
ifTrue->fType.fName + "', '" +
ifFalse->fType.fName + "'");
return nullptr;
}
ifTrue = this->coerce(std::move(ifTrue), *trueType);
if (!ifTrue) {
return nullptr;
}
ifFalse = this->coerce(std::move(ifFalse), *falseType);
if (!ifFalse) {
return nullptr;
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean test, just return one of the branches
if (((BoolLiteral&) *test).fValue) {
return ifTrue;
} else {
return ifFalse;
}
}
return std::unique_ptr<Expression>(new TernaryExpression(expression.fOffset,
std::move(test),
std::move(ifTrue),
std::move(ifFalse)));
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
std::vector<std::unique_ptr<Expression>> arguments) {
if (function.fParameters.size() != arguments.size()) {
String msg = "call to '" + function.fName + "' expected " +
to_string((uint64_t) function.fParameters.size()) +
" argument";
if (function.fParameters.size() != 1) {
msg += "s";
}
msg += ", but found " + to_string((uint64_t) arguments.size());
fErrors.error(offset, msg);
return nullptr;
}
std::vector<const Type*> types;
const Type* returnType;
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
String msg = "no match for " + function.fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.description();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
for (size_t i = 0; i < arguments.size(); i++) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
this->setRefKind(*arguments[i],
function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag ?
VariableReference::kReadWrite_RefKind :
VariableReference::kPointer_RefKind);
}
}
return std::unique_ptr<FunctionCall>(new FunctionCall(offset, *returnType, function,
std::move(arguments)));
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns INT_MAX if the call is not
* valid.
*/
int IRGenerator::callCost(const FunctionDeclaration& function,
const std::vector<std::unique_ptr<Expression>>& arguments) {
if (function.fParameters.size() != arguments.size()) {
return INT_MAX;
}
int total = 0;
std::vector<const Type*> types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return INT_MAX;
}
for (size_t i = 0; i < arguments.size(); i++) {
int cost = arguments[i]->coercionCost(*types[i]);
if (cost != INT_MAX) {
total += cost;
} else {
return INT_MAX;
}
}
return total;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
std::unique_ptr<Expression> functionValue,
std::vector<std::unique_ptr<Expression>> arguments) {
if (functionValue->fKind == Expression::kTypeReference_Kind) {
return this->convertConstructor(offset,
((TypeReference&) *functionValue).fValue,
std::move(arguments));
}
if (functionValue->fKind != Expression::kFunctionReference_Kind) {
fErrors.error(offset, "'" + functionValue->description() + "' is not a function");
return nullptr;
}
FunctionReference* ref = (FunctionReference*) functionValue.get();
int bestCost = INT_MAX;
const FunctionDeclaration* best = nullptr;
if (ref->fFunctions.size() > 1) {
for (const auto& f : ref->fFunctions) {
int cost = this->callCost(*f, arguments);
if (cost < bestCost) {
bestCost = cost;
best = f;
}
}
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + ref->fFunctions[0]->fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.description();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
return this->call(offset, *ref->fFunctions[0], std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertNumberConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
SkASSERT(type.isNumber());
if (args.size() != 1) {
fErrors.error(offset, "invalid arguments to '" + type.description() +
"' constructor, (expected exactly 1 argument, but found " +
to_string((uint64_t) args.size()) + ")");
return nullptr;
}
if (type == args[0]->fType) {
return std::move(args[0]);
}
if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kFloatLiteral_Kind) {
double value = ((FloatLiteral&) *args[0]).fValue;
return std::unique_ptr<Expression>(new FloatLiteral(offset, value, &type));
}
if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kIntLiteral_Kind) {
int64_t value = ((IntLiteral&) *args[0]).fValue;
return std::unique_ptr<Expression>(new FloatLiteral(offset, (double) value, &type));
}
if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type ||
type == *fContext.fUInt_Type)) {
return std::unique_ptr<Expression>(new IntLiteral(offset,
((IntLiteral&) *args[0]).fValue,
&type));
}
if (args[0]->fType == *fContext.fBool_Type) {
std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, offset, 0));
std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, offset, 1));
return std::unique_ptr<Expression>(
new TernaryExpression(offset, std::move(args[0]),
this->coerce(std::move(one), type),
this->coerce(std::move(zero),
type)));
}
if (!args[0]->fType.isNumber()) {
fErrors.error(offset, "invalid argument to '" + type.description() +
"' constructor (expected a number or bool, but found '" +
args[0]->fType.description() + "')");
return nullptr;
}
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
}
int component_count(const Type& type) {
switch (type.kind()) {
case Type::kVector_Kind:
return type.columns();
case Type::kMatrix_Kind:
return type.columns() * type.rows();
default:
return 1;
}
}
std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
SkASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind);
if (type.kind() == Type::kMatrix_Kind && args.size() == 1 &&
args[0]->fType.kind() == Type::kMatrix_Kind) {
// matrix from matrix is always legal
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
}
int actual = 0;
int expected = type.rows() * type.columns();
if (args.size() != 1 || expected != component_count(args[0]->fType) ||
type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) {
for (size_t i = 0; i < args.size(); i++) {
if (args[i]->fType.kind() == Type::kVector_Kind) {
if (type.componentType().isNumber() !=
args[i]->fType.componentType().isNumber()) {
fErrors.error(offset, "'" + args[i]->fType.description() + "' is not a valid "
"parameter to '" + type.description() +
"' constructor");
return nullptr;
}
actual += args[i]->fType.columns();
} else if (args[i]->fType.kind() == Type::kScalar_Kind) {
actual += 1;
if (type.kind() != Type::kScalar_Kind) {
args[i] = this->coerce(std::move(args[i]), type.componentType());
if (!args[i]) {
return nullptr;
}
}
} else {
fErrors.error(offset, "'" + args[i]->fType.description() + "' is not a valid "
"parameter to '" + type.description() + "' constructor");
return nullptr;
}
}
if (actual != 1 && actual != expected) {
fErrors.error(offset, "invalid arguments to '" + type.description() +
"' constructor (expected " + to_string(expected) +
" scalars, but found " + to_string(actual) + ")");
return nullptr;
}
}
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
}
std::unique_ptr<Expression> IRGenerator::convertConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
// FIXME: add support for structs
Type::Kind kind = type.kind();
if (args.size() == 1 && args[0]->fType == type) {
// argument is already the right type, just return it
return std::move(args[0]);
}
if (type.isNumber()) {
return this->convertNumberConstructor(offset, type, std::move(args));
} else if (kind == Type::kArray_Kind) {
const Type& base = type.componentType();
for (size_t i = 0; i < args.size(); i++) {
args[i] = this->coerce(std::move(args[i]), base);
if (!args[i]) {
return nullptr;
}
}
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
} else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) {
return this->convertCompoundConstructor(offset, type, std::move(args));
} else {
fErrors.error(offset, "cannot construct '" + type.description() + "'");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
const ASTPrefixExpression& expression) {
std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand);
if (!base) {
return nullptr;
}
switch (expression.fOperator) {
case Token::PLUS:
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
fErrors.error(expression.fOffset,
"'+' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
return base;
case Token::MINUS:
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
fErrors.error(expression.fOffset,
"'-' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
if (base->fKind == Expression::kIntLiteral_Kind) {
return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fOffset,
-((IntLiteral&) *base).fValue));
}
if (base->fKind == Expression::kFloatLiteral_Kind) {
double value = -((FloatLiteral&) *base).fValue;
return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fOffset,
value));
}
return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base)));
case Token::PLUSPLUS:
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
break;
case Token::MINUSMINUS:
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
break;
case Token::LOGICALNOT:
if (base->fType != *fContext.fBool_Type) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
if (base->fKind == Expression::kBoolLiteral_Kind) {
return std::unique_ptr<Expression>(new BoolLiteral(fContext, base->fOffset,
!((BoolLiteral&) *base).fValue));
}
break;
case Token::BITWISENOT:
if (base->fType != *fContext.fInt_Type) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.fOperator) +
"' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
break;
default:
ABORT("unsupported prefix operator\n");
}
return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator,
std::move(base)));
}
std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
const ASTExpression& index) {
if (base->fKind == Expression::kTypeReference_Kind) {
if (index.fKind == ASTExpression::kInt_Kind) {
const Type& oldType = ((TypeReference&) *base).fValue;
int64_t size = ((const ASTIntLiteral&) index).fValue;
Type* newType = new Type(oldType.name() + "[" + to_string(size) + "]",
Type::kArray_Kind, oldType, size);
fSymbolTable->takeOwnership(newType);
return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
*newType));
} else {
fErrors.error(base->fOffset, "array size must be a constant");
return nullptr;
}
}
if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind &&
base->fType.kind() != Type::kVector_Kind) {
fErrors.error(base->fOffset, "expected array, but found '" + base->fType.description() +
"'");
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(index);
if (!converted) {
return nullptr;
}
if (converted->fType != *fContext.fUInt_Type) {
converted = this->coerce(std::move(converted), *fContext.fInt_Type);
if (!converted) {
return nullptr;
}
}
return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base),
std::move(converted)));
}
std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
StringFragment field) {
auto fields = base->fType.fields();
for (size_t i = 0; i < fields.size(); i++) {
if (fields[i].fName == field) {
return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
}
}
fErrors.error(base->fOffset, "type '" + base->fType.description() + "' does not have a "
"field named '" + field + "");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
StringFragment fields) {
if (base->fType.kind() != Type::kVector_Kind) {
fErrors.error(base->fOffset, "cannot swizzle type '" + base->fType.description() + "'");
return nullptr;
}
std::vector<int> swizzleComponents;
for (size_t i = 0; i < fields.fLength; i++) {
switch (fields[i]) {
case 'x': // fall through
case 'r': // fall through
case 's':
swizzleComponents.push_back(0);
break;
case 'y': // fall through
case 'g': // fall through
case 't':
if (base->fType.columns() >= 2) {
swizzleComponents.push_back(1);
break;
}
// fall through
case 'z': // fall through
case 'b': // fall through
case 'p':
if (base->fType.columns() >= 3) {
swizzleComponents.push_back(2);
break;
}
// fall through
case 'w': // fall through
case 'a': // fall through
case 'q':
if (base->fType.columns() >= 4) {
swizzleComponents.push_back(3);
break;
}
// fall through
default:
fErrors.error(base->fOffset, String::printf("invalid swizzle component '%c'",
fields[i]));
return nullptr;
}
}
SkASSERT(swizzleComponents.size() > 0);
if (swizzleComponents.size() > 4) {
fErrors.error(base->fOffset, "too many components in swizzle mask '" + fields + "'");
return nullptr;
}
return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents));
}
std::unique_ptr<Expression> IRGenerator::getCap(int offset, String name) {
auto found = fCapsMap.find(name);
if (found == fCapsMap.end()) {
fErrors.error(offset, "unknown capability flag '" + name + "'");
return nullptr;
}
String fullName = "sk_Caps." + name;
return std::unique_ptr<Expression>(new Setting(offset, fullName,
found->second.literal(fContext, offset)));
}
std::unique_ptr<Expression> IRGenerator::getArg(int offset, String name) const {
auto found = fSettings->fArgs.find(name);
if (found == fSettings->fArgs.end()) {
return nullptr;
}
String fullName = "sk_Args." + name;
return std::unique_ptr<Expression>(new Setting(offset,
fullName,
found->second.literal(fContext, offset)));
}
std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
StringFragment field) {
std::unique_ptr<Expression> result;
for (const auto& e : *fProgramElements) {
if (e->fKind == ProgramElement::kEnum_Kind && type.name() == ((Enum&) *e).fTypeName) {
std::shared_ptr<SymbolTable> old = fSymbolTable;
fSymbolTable = ((Enum&) *e).fSymbols;
result = convertIdentifier(ASTIdentifier(offset, field));
fSymbolTable = old;
}
}
if (!result) {
fErrors.error(offset, "type '" + type.fName + "' does not have a field named '" + field +
"'");
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertAppend(int offset,
const std::vector<std::unique_ptr<ASTExpression>>& args) {
#ifndef SKSL_STANDALONE
if (args.size() < 2) {
fErrors.error(offset, "'append' requires at least two arguments");
return nullptr;
}
std::unique_ptr<Expression> pipeline = this->convertExpression(*args[0]);
if (!pipeline) {
return nullptr;
}
if (pipeline->fType != *fContext.fSkRasterPipeline_Type) {
fErrors.error(offset, "first argument of 'append' must have type 'SkRasterPipeline'");
return nullptr;
}
if (ASTExpression::kIdentifier_Kind != args[1]->fKind) {
fErrors.error(offset, "'" + args[1]->description() + "' is not a valid stage");
return nullptr;
}
StringFragment name = ((const ASTIdentifier&) *args[1]).fText;
SkRasterPipeline::StockStage stage = SkRasterPipeline::premul;
std::vector<std::unique_ptr<Expression>> stageArgs;
stageArgs.push_back(std::move(pipeline));
for (size_t i = 2; i < args.size(); ++i) {
std::unique_ptr<Expression> arg = this->convertExpression(*args[i]);
if (!arg) {
return nullptr;
}
stageArgs.push_back(std::move(arg));
}
size_t expectedArgs = 0;
// FIXME use a map
if ("premul" == name) {
stage = SkRasterPipeline::premul;
}
else if ("unpremul" == name) {
stage = SkRasterPipeline::unpremul;
}
else if ("clamp_0" == name) {
stage = SkRasterPipeline::clamp_0;
}
else if ("clamp_1" == name) {
stage = SkRasterPipeline::clamp_1;
}
else if ("matrix_4x5" == name) {
expectedArgs = 1;
stage = SkRasterPipeline::matrix_4x5;
if (1 == stageArgs.size() && stageArgs[0]->fType.fName != "float[20]") {
fErrors.error(offset, "pipeline stage '" + name + "' expected a float[20] argument");
return nullptr;
}
}
else {
bool found = false;
for (const auto& e : *fProgramElements) {
if (ProgramElement::kFunction_Kind == e->fKind) {
const FunctionDefinition& f = (const FunctionDefinition&) *e;
if (f.fDeclaration.fName == name) {
stage = SkRasterPipeline::callback;
std::vector<const FunctionDeclaration*> functions = { &f.fDeclaration };
stageArgs.emplace_back(new FunctionReference(fContext, offset, functions));
found = true;
break;
}
}
}
if (!found) {
fErrors.error(offset, "'" + name + "' is not a valid pipeline stage");
return nullptr;
}
}
if (args.size() != expectedArgs + 2) {
fErrors.error(offset, "pipeline stage '" + name + "' expected an additional argument " +
"count of " + to_string((int) expectedArgs) + ", but found " +
to_string((int) args.size() - 1));
return nullptr;
}
return std::unique_ptr<Expression>(new AppendStage(fContext, offset, stage,
std::move(stageArgs)));
#else
SkASSERT(false);
return nullptr;
#endif
}
std::unique_ptr<Expression> IRGenerator::convertSuffixExpression(
const ASTSuffixExpression& expression) {
std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase);
if (!base) {
return nullptr;
}
switch (expression.fSuffix->fKind) {
case ASTSuffix::kIndex_Kind: {
const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get();
if (expr) {
return this->convertIndex(std::move(base), *expr);
} else if (base->fKind == Expression::kTypeReference_Kind) {
const Type& oldType = ((TypeReference&) *base).fValue;
Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType,
-1);
fSymbolTable->takeOwnership(newType);
return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
*newType));
} else {
fErrors.error(expression.fOffset, "'[]' must follow a type name");
return nullptr;
}
}
case ASTSuffix::kCall_Kind: {
auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments;
if (Expression::kFunctionReference_Kind == base->fKind &&
"append" == ((const FunctionReference&) *base).fFunctions[0]->fName) {
return convertAppend(expression.fOffset, *rawArguments);
}
std::vector<std::unique_ptr<Expression>> arguments;
for (size_t i = 0; i < rawArguments->size(); i++) {
std::unique_ptr<Expression> converted =
this->convertExpression(*(*rawArguments)[i]);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(expression.fOffset, std::move(base), std::move(arguments));
}
case ASTSuffix::kField_Kind: {
StringFragment field = ((ASTFieldSuffix&) *expression.fSuffix).fField;
if (base->fType == *fContext.fSkCaps_Type) {
return this->getCap(expression.fOffset, field);
}
if (base->fType == *fContext.fSkArgs_Type) {
return this->getArg(expression.fOffset, field);
}
if (base->fKind == Expression::kTypeReference_Kind) {
return this->convertTypeField(base->fOffset, ((TypeReference&) *base).fValue,
field);
}
switch (base->fType.kind()) {
case Type::kVector_Kind:
return this->convertSwizzle(std::move(base), field);
case Type::kOther_Kind:
case Type::kStruct_Kind:
return this->convertField(std::move(base), field);
default:
fErrors.error(base->fOffset, "cannot swizzle value of type '" +
base->fType.description() + "'");
return nullptr;
}
}
case ASTSuffix::kPostIncrement_Kind:
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
"'++' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
Token::PLUSPLUS));
case ASTSuffix::kPostDecrement_Kind:
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
"'--' cannot operate on '" + base->fType.description() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
Token::MINUSMINUS));
default:
ABORT("unsupported suffix operator");
}
}
void IRGenerator::checkValid(const Expression& expr) {
switch (expr.fKind) {
case Expression::kFunctionReference_Kind:
fErrors.error(expr.fOffset, "expected '(' to begin function call");
break;
case Expression::kTypeReference_Kind:
fErrors.error(expr.fOffset, "expected '(' to begin constructor invocation");
break;
default:
if (expr.fType == *fContext.fInvalid_Type) {
fErrors.error(expr.fOffset, "invalid expression");
}
}
}
static bool has_duplicates(const Swizzle& swizzle) {
int bits = 0;
for (int idx : swizzle.fComponents) {
SkASSERT(idx >= 0 && idx <= 3);
int bit = 1 << idx;
if (bits & bit) {
return true;
}
bits |= bit;
}
return false;
}
void IRGenerator::setRefKind(const Expression& expr, VariableReference::RefKind kind) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) expr).fVariable;
if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) {
fErrors.error(expr.fOffset,
"cannot modify immutable variable '" + var.fName + "'");
}
((VariableReference&) expr).setRefKind(kind);
break;
}
case Expression::kFieldAccess_Kind:
this->setRefKind(*((FieldAccess&) expr).fBase, kind);
break;
case Expression::kSwizzle_Kind:
if (has_duplicates((Swizzle&) expr)) {
fErrors.error(expr.fOffset,
"cannot write to the same swizzle field more than once");
}
this->setRefKind(*((Swizzle&) expr).fBase, kind);
break;
case Expression::kIndex_Kind:
this->setRefKind(*((IndexExpression&) expr).fBase, kind);
break;
case Expression::kTernary_Kind: {
TernaryExpression& t = (TernaryExpression&) expr;
this->setRefKind(*t.fIfTrue, kind);
this->setRefKind(*t.fIfFalse, kind);
break;
}
default:
fErrors.error(expr.fOffset, "cannot assign to '" + expr.description() + "'");
break;
}
}
void IRGenerator::convertProgram(Program::Kind kind,
const char* text,
size_t length,
SymbolTable& types,
std::vector<std::unique_ptr<ProgramElement>>* out) {
fKind = kind;
fProgramElements = out;
Parser parser(text, length, types, fErrors);
std::vector<std::unique_ptr<ASTDeclaration>> parsed = parser.file();
if (fErrors.errorCount()) {
return;
}
for (size_t i = 0; i < parsed.size(); i++) {
ASTDeclaration& decl = *parsed[i];
switch (decl.fKind) {
case ASTDeclaration::kVar_Kind: {
std::unique_ptr<VarDeclarations> s = this->convertVarDeclarations(
(ASTVarDeclarations&) decl,
Variable::kGlobal_Storage);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
case ASTDeclaration::kEnum_Kind: {
this->convertEnum((ASTEnum&) decl);
break;
}
case ASTDeclaration::kFunction_Kind: {
this->convertFunction((ASTFunction&) decl);
break;
}
case ASTDeclaration::kModifiers_Kind: {
std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(
(ASTModifiersDeclaration&) decl);
if (f) {
fProgramElements->push_back(std::move(f));
}
break;
}
case ASTDeclaration::kInterfaceBlock_Kind: {
std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(
(ASTInterfaceBlock&) decl);
if (i) {
fProgramElements->push_back(std::move(i));
}
break;
}
case ASTDeclaration::kExtension_Kind: {
std::unique_ptr<Extension> e = this->convertExtension((ASTExtension&) decl);
if (e) {
fProgramElements->push_back(std::move(e));
}
break;
}
case ASTDeclaration::kSection_Kind: {
std::unique_ptr<Section> s = this->convertSection((ASTSection&) decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
default:
ABORT("unsupported declaration: %s\n", decl.description().c_str());
}
}
}
}