/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrBlurUtils.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrFixedClip.h"
#include "GrProxyProvider.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrShape.h"
#include "GrSoftwarePathRenderer.h"
#include "GrStyle.h"
#include "GrTextureProxy.h"
#include "effects/GrSimpleTextureEffect.h"
#include "SkDraw.h"
#include "SkGr.h"
#include "SkMaskFilterBase.h"
#include "SkPaint.h"
#include "SkTLazy.h"
static bool clip_bounds_quick_reject(const SkIRect& clipBounds, const SkIRect& rect) {
return clipBounds.isEmpty() || rect.isEmpty() || !SkIRect::Intersects(clipBounds, rect);
}
// Draw a mask using the supplied paint. Since the coverage/geometry
// is already burnt into the mask this boils down to a rect draw.
// Return true if the mask was successfully drawn.
static bool draw_mask(GrRenderTargetContext* renderTargetContext,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkIRect& maskRect,
GrPaint&& paint,
sk_sp<GrTextureProxy> mask) {
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
SkMatrix matrix = SkMatrix::MakeTrans(-SkIntToScalar(maskRect.fLeft),
-SkIntToScalar(maskRect.fTop));
matrix.preConcat(viewMatrix);
paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(std::move(mask), matrix));
renderTargetContext->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::Make(maskRect), inverse);
return true;
}
static void mask_release_proc(void* addr, void* /*context*/) {
SkMask::FreeImage(addr);
}
static bool sw_draw_with_mask_filter(GrContext* context,
GrRenderTargetContext* renderTargetContext,
const GrClip& clipData,
const SkMatrix& viewMatrix,
const GrShape& shape,
const SkMaskFilter* filter,
const SkIRect& clipBounds,
GrPaint&& paint,
const GrUniqueKey& key) {
SkASSERT(filter);
SkASSERT(!shape.style().applies());
auto proxyProvider = context->contextPriv().proxyProvider();
sk_sp<GrTextureProxy> filteredMask;
SkStrokeRec::InitStyle fillOrHairline = shape.style().isSimpleHairline()
? SkStrokeRec::kHairline_InitStyle
: SkStrokeRec::kFill_InitStyle;
if (key.isValid()) {
// TODO: this cache look up is duplicated in draw_shape_with_mask_filter for gpu
filteredMask = proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin);
}
SkIRect drawRect;
if (filteredMask) {
SkRect devBounds = shape.bounds();
viewMatrix.mapRect(&devBounds);
// Here we need to recompute the destination bounds in order to draw the mask correctly
SkMask srcM, dstM;
if (!SkDraw::ComputeMaskBounds(devBounds, &clipBounds, filter, &viewMatrix,
&srcM.fBounds)) {
return false;
}
srcM.fFormat = SkMask::kA8_Format;
if (!as_MFB(filter)->filterMask(&dstM, srcM, viewMatrix, nullptr)) {
return false;
}
// Unfortunately, we cannot double check that the computed bounds (i.e., dstM.fBounds)
// match the stored bounds of the mask bc the proxy may have been recreated and,
// when it is recreated, it just gets the bounds of the underlying GrTexture (which
// might be a loose fit).
drawRect = dstM.fBounds;
} else {
// TODO: it seems like we could create an SkDraw here and set its fMatrix field rather
// than explicitly transforming the path to device space.
SkPath devPath;
shape.asPath(&devPath);
devPath.transform(viewMatrix);
SkMask srcM, dstM;
if (!SkDraw::DrawToMask(devPath, &clipBounds, filter, &viewMatrix, &srcM,
SkMask::kComputeBoundsAndRenderImage_CreateMode, fillOrHairline)) {
return false;
}
SkAutoMaskFreeImage autoSrc(srcM.fImage);
SkASSERT(SkMask::kA8_Format == srcM.fFormat);
if (!as_MFB(filter)->filterMask(&dstM, srcM, viewMatrix, nullptr)) {
return false;
}
// this will free-up dstM when we're done (allocated in filterMask())
SkAutoMaskFreeImage autoDst(dstM.fImage);
if (clip_bounds_quick_reject(clipBounds, dstM.fBounds)) {
return false;
}
// we now have a device-aligned 8bit mask in dstM, ready to be drawn using
// the current clip (and identity matrix) and GrPaint settings
SkBitmap bm;
if (!bm.installPixels(SkImageInfo::MakeA8(dstM.fBounds.width(), dstM.fBounds.height()),
autoDst.release(), dstM.fRowBytes, mask_release_proc, nullptr)) {
return false;
}
bm.setImmutable();
sk_sp<SkImage> image = SkImage::MakeFromBitmap(bm);
if (!image) {
return false;
}
filteredMask = proxyProvider->createTextureProxy(std::move(image),
kNone_GrSurfaceFlags,
1, SkBudgeted::kYes,
SkBackingFit::kApprox);
if (!filteredMask) {
return false;
}
SkASSERT(kTopLeft_GrSurfaceOrigin == filteredMask->origin());
drawRect = dstM.fBounds;
if (key.isValid()) {
proxyProvider->assignUniqueKeyToProxy(key, filteredMask.get());
}
}
return draw_mask(renderTargetContext, clipData, viewMatrix, drawRect,
std::move(paint), std::move(filteredMask));
}
// Create a mask of 'shape' and place the result in 'mask'.
static sk_sp<GrTextureProxy> create_mask_GPU(GrContext* context,
const SkIRect& maskRect,
const SkMatrix& origViewMatrix,
const GrShape& shape,
int sampleCnt) {
GrBackendFormat format =
context->contextPriv().caps()->getBackendFormatFromColorType(kAlpha_8_SkColorType);
sk_sp<GrRenderTargetContext> rtContext(
context->contextPriv().makeDeferredRenderTargetContextWithFallback(
format, SkBackingFit::kApprox, maskRect.width(), maskRect.height(),
kAlpha_8_GrPixelConfig, nullptr, sampleCnt, GrMipMapped::kNo,
kTopLeft_GrSurfaceOrigin));
if (!rtContext) {
return nullptr;
}
rtContext->priv().absClear(nullptr, SK_PMColor4fTRANSPARENT);
GrPaint maskPaint;
maskPaint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
// setup new clip
const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
GrFixedClip clip(clipRect);
// Draw the mask into maskTexture with the path's integerized top-left at
// the origin using maskPaint.
SkMatrix viewMatrix = origViewMatrix;
viewMatrix.postTranslate(-SkIntToScalar(maskRect.fLeft), -SkIntToScalar(maskRect.fTop));
rtContext->drawShape(clip, std::move(maskPaint), GrAA::kYes, viewMatrix, shape);
return rtContext->asTextureProxyRef();
}
static bool get_unclipped_shape_dev_bounds(const GrShape& shape, const SkMatrix& matrix,
SkIRect* devBounds) {
SkRect shapeBounds = shape.styledBounds();
if (shapeBounds.isEmpty()) {
return false;
}
SkRect shapeDevBounds;
matrix.mapRect(&shapeDevBounds, shapeBounds);
// Even though these are "unclipped" bounds we still clip to the int32_t range.
// This is the largest int32_t that is representable exactly as a float. The next 63 larger ints
// would round down to this value when cast to a float, but who really cares.
// INT32_MIN is exactly representable.
static constexpr int32_t kMaxInt = 2147483520;
if (!shapeDevBounds.intersect(SkRect::MakeLTRB(INT32_MIN, INT32_MIN, kMaxInt, kMaxInt))) {
return false;
}
// Make sure that the resulting SkIRect can have representable width and height
if (SkScalarRoundToInt(shapeDevBounds.width()) > kMaxInt ||
SkScalarRoundToInt(shapeDevBounds.height()) > kMaxInt) {
return false;
}
shapeDevBounds.roundOut(devBounds);
return true;
}
// Gets the shape bounds, the clip bounds, and the intersection (if any). Returns false if there
// is no intersection.
static bool get_shape_and_clip_bounds(GrRenderTargetContext* renderTargetContext,
const GrClip& clip,
const GrShape& shape,
const SkMatrix& matrix,
SkIRect* unclippedDevShapeBounds,
SkIRect* devClipBounds) {
// compute bounds as intersection of rt size, clip, and path
clip.getConservativeBounds(renderTargetContext->width(),
renderTargetContext->height(),
devClipBounds);
if (!get_unclipped_shape_dev_bounds(shape, matrix, unclippedDevShapeBounds)) {
*unclippedDevShapeBounds = SkIRect::EmptyIRect();
return false;
}
return true;
}
static void draw_shape_with_mask_filter(GrContext* context,
GrRenderTargetContext* renderTargetContext,
const GrClip& clip,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkMaskFilterBase* maskFilter,
const GrShape& origShape) {
SkASSERT(maskFilter);
const GrShape* shape = &origShape;
SkTLazy<GrShape> tmpShape;
if (origShape.style().applies()) {
SkScalar styleScale = GrStyle::MatrixToScaleFactor(viewMatrix);
if (0 == styleScale) {
return;
}
tmpShape.init(origShape.applyStyle(GrStyle::Apply::kPathEffectAndStrokeRec, styleScale));
if (tmpShape.get()->isEmpty()) {
return;
}
shape = tmpShape.get();
}
if (maskFilter->directFilterMaskGPU(context,
renderTargetContext,
std::move(paint),
clip,
viewMatrix,
*shape)) {
// the mask filter was able to draw itself directly, so there's nothing
// left to do.
return;
}
assert_alive(paint);
// If the path is hairline, ignore inverse fill.
bool inverseFilled = shape->inverseFilled() &&
!GrPathRenderer::IsStrokeHairlineOrEquivalent(shape->style(),
viewMatrix, nullptr);
SkIRect unclippedDevShapeBounds, devClipBounds;
if (!get_shape_and_clip_bounds(renderTargetContext, clip, *shape, viewMatrix,
&unclippedDevShapeBounds,
&devClipBounds)) {
// TODO: just cons up an opaque mask here
if (!inverseFilled) {
return;
}
}
// To prevent overloading the cache with entries during animations we limit the cache of masks
// to cases where the matrix preserves axis alignment.
#ifdef SK_DISABLE_MASKFILTERED_MASK_CACHING
bool useCache = false;
#else
bool useCache = !inverseFilled && viewMatrix.preservesAxisAlignment() &&
shape->hasUnstyledKey() && as_MFB(maskFilter)->asABlur(nullptr);
#endif
const SkIRect* boundsForClip = &devClipBounds;
if (useCache) {
SkIRect clippedMaskRect, unClippedMaskRect;
maskFilter->canFilterMaskGPU(*shape, unclippedDevShapeBounds, devClipBounds,
viewMatrix, &clippedMaskRect);
maskFilter->canFilterMaskGPU(*shape, unclippedDevShapeBounds, unclippedDevShapeBounds,
viewMatrix, &unClippedMaskRect);
if (clippedMaskRect.isEmpty()) {
return;
}
// Use the cache only if >50% of the filtered mask is visible.
int unclippedWidth = unClippedMaskRect.width();
int unclippedHeight = unClippedMaskRect.height();
int64_t unclippedArea = sk_64_mul(unclippedWidth, unclippedHeight);
int64_t clippedArea = sk_64_mul(clippedMaskRect.width(), clippedMaskRect.height());
int maxTextureSize = renderTargetContext->caps()->maxTextureSize();
if (unclippedArea > 2 * clippedArea || unclippedWidth > maxTextureSize ||
unclippedHeight > maxTextureSize) {
useCache = false;
} else {
// Make the clip not affect the mask
boundsForClip = &unclippedDevShapeBounds;
}
}
GrUniqueKey maskKey;
if (useCache) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(&maskKey, kDomain, 5 + 2 + shape->unstyledKeySize(),
"Mask Filtered Masks");
// We require the upper left 2x2 of the matrix to match exactly for a cache hit.
SkScalar sx = viewMatrix.get(SkMatrix::kMScaleX);
SkScalar sy = viewMatrix.get(SkMatrix::kMScaleY);
SkScalar kx = viewMatrix.get(SkMatrix::kMSkewX);
SkScalar ky = viewMatrix.get(SkMatrix::kMSkewY);
SkScalar tx = viewMatrix.get(SkMatrix::kMTransX);
SkScalar ty = viewMatrix.get(SkMatrix::kMTransY);
// Allow 8 bits each in x and y of subpixel positioning.
SkFixed fracX = SkScalarToFixed(SkScalarFraction(tx)) & 0x0000FF00;
SkFixed fracY = SkScalarToFixed(SkScalarFraction(ty)) & 0x0000FF00;
builder[0] = SkFloat2Bits(sx);
builder[1] = SkFloat2Bits(sy);
builder[2] = SkFloat2Bits(kx);
builder[3] = SkFloat2Bits(ky);
// Distinguish between hairline and filled paths. For hairlines, we also need to include
// the cap. (SW grows hairlines by 0.5 pixel with round and square caps). Note that
// stroke-and-fill of hairlines is turned into pure fill by SkStrokeRec, so this covers
// all cases we might see.
uint32_t styleBits = shape->style().isSimpleHairline()
? ((shape->style().strokeRec().getCap() << 1) | 1)
: 0;
builder[4] = fracX | (fracY >> 8) | (styleBits << 16);
SkMaskFilterBase::BlurRec rec;
SkAssertResult(as_MFB(maskFilter)->asABlur(&rec));
builder[5] = rec.fStyle; // TODO: we could put this with the other style bits
builder[6] = SkFloat2Bits(rec.fSigma);
shape->writeUnstyledKey(&builder[7]);
}
SkIRect maskRect;
if (maskFilter->canFilterMaskGPU(*shape,
unclippedDevShapeBounds,
*boundsForClip,
viewMatrix,
&maskRect)) {
if (clip_bounds_quick_reject(*boundsForClip, maskRect)) {
// clipped out
return;
}
sk_sp<GrTextureProxy> filteredMask;
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
if (maskKey.isValid()) {
// TODO: this cache look up is duplicated in sw_draw_with_mask_filter for raster
filteredMask = proxyProvider->findOrCreateProxyByUniqueKey(
maskKey, kTopLeft_GrSurfaceOrigin);
}
if (!filteredMask) {
sk_sp<GrTextureProxy> maskProxy(create_mask_GPU(
context,
maskRect,
viewMatrix,
*shape,
renderTargetContext->numColorSamples()));
if (maskProxy) {
filteredMask = maskFilter->filterMaskGPU(context,
std::move(maskProxy),
viewMatrix,
maskRect);
SkASSERT(kTopLeft_GrSurfaceOrigin == filteredMask->origin());
if (filteredMask && maskKey.isValid()) {
proxyProvider->assignUniqueKeyToProxy(maskKey, filteredMask.get());
}
}
}
if (filteredMask) {
if (draw_mask(renderTargetContext, clip, viewMatrix,
maskRect, std::move(paint), std::move(filteredMask))) {
// This path is completely drawn
return;
}
assert_alive(paint);
}
}
sw_draw_with_mask_filter(context, renderTargetContext, clip, viewMatrix, *shape,
maskFilter, *boundsForClip, std::move(paint), maskKey);
}
void GrBlurUtils::drawShapeWithMaskFilter(GrContext* context,
GrRenderTargetContext* renderTargetContext,
const GrClip& clip,
const GrShape& shape,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkMaskFilter* mf) {
draw_shape_with_mask_filter(context, renderTargetContext, clip, std::move(paint),
viewMatrix, as_MFB(mf), shape);
}
void GrBlurUtils::drawShapeWithMaskFilter(GrContext* context,
GrRenderTargetContext* renderTargetContext,
const GrClip& clip,
const SkPaint& paint,
const SkMatrix& viewMatrix,
const GrShape& shape) {
if (context->abandoned()) {
return;
}
GrPaint grPaint;
if (!SkPaintToGrPaint(context, renderTargetContext->colorSpaceInfo(), paint, viewMatrix,
&grPaint)) {
return;
}
SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter());
if (mf && !mf->hasFragmentProcessor()) {
// The MaskFilter wasn't already handled in SkPaintToGrPaint
draw_shape_with_mask_filter(context, renderTargetContext, clip, std::move(grPaint),
viewMatrix, mf, shape);
} else {
GrAA aa = GrAA(paint.isAntiAlias());
renderTargetContext->drawShape(clip, std::move(grPaint), aa, viewMatrix, shape);
}
}