/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRasterPipeline.h"
#include "SkOpts.h"
#include <algorithm>
SkRasterPipeline::SkRasterPipeline(SkArenaAlloc* alloc) : fAlloc(alloc) {
this->reset();
}
void SkRasterPipeline::reset() {
fStages = nullptr;
fNumStages = 0;
fSlotsNeeded = 1; // We always need one extra slot for just_return().
}
void SkRasterPipeline::append(StockStage stage, void* ctx) {
SkASSERT(stage != uniform_color); // Please use append_constant_color().
SkASSERT(stage != unbounded_uniform_color); // Please use append_constant_color().
SkASSERT(stage != set_rgb); // Please use append_set_rgb().
SkASSERT(stage != unbounded_set_rgb); // Please use append_set_rgb().
SkASSERT(stage != clamp_gamut); // Please use append_gamut_clamp_if_normalized().
this->unchecked_append(stage, ctx);
}
void SkRasterPipeline::unchecked_append(StockStage stage, void* ctx) {
fStages = fAlloc->make<StageList>( StageList{fStages, (uint64_t) stage, ctx, false} );
fNumStages += 1;
fSlotsNeeded += ctx ? 2 : 1;
}
void SkRasterPipeline::append(void* fn, void* ctx) {
fStages = fAlloc->make<StageList>( StageList{fStages, (uint64_t) fn, ctx, true} );
fNumStages += 1;
fSlotsNeeded += ctx ? 2 : 1;
}
void SkRasterPipeline::extend(const SkRasterPipeline& src) {
if (src.empty()) {
return;
}
auto stages = fAlloc->makeArrayDefault<StageList>(src.fNumStages);
int n = src.fNumStages;
const StageList* st = src.fStages;
while (n --> 1) {
stages[n] = *st;
stages[n].prev = &stages[n-1];
st = st->prev;
}
stages[0] = *st;
stages[0].prev = fStages;
fStages = &stages[src.fNumStages - 1];
fNumStages += src.fNumStages;
fSlotsNeeded += src.fSlotsNeeded - 1; // Don't double count just_returns().
}
void SkRasterPipeline::dump() const {
SkDebugf("SkRasterPipeline, %d stages\n", fNumStages);
std::vector<const char*> stages;
for (auto st = fStages; st; st = st->prev) {
const char* name = "";
switch (st->stage) {
#define M(x) case x: name = #x; break;
SK_RASTER_PIPELINE_STAGES(M)
#undef M
}
stages.push_back(name);
}
std::reverse(stages.begin(), stages.end());
for (const char* name : stages) {
SkDebugf("\t%s\n", name);
}
SkDebugf("\n");
}
void SkRasterPipeline::append_set_rgb(SkArenaAlloc* alloc, const float rgb[3]) {
auto arg = alloc->makeArrayDefault<float>(3);
arg[0] = rgb[0];
arg[1] = rgb[1];
arg[2] = rgb[2];
auto stage = unbounded_set_rgb;
if (0 <= rgb[0] && rgb[0] <= 1 &&
0 <= rgb[1] && rgb[1] <= 1 &&
0 <= rgb[2] && rgb[2] <= 1)
{
stage = set_rgb;
}
this->unchecked_append(stage, arg);
}
void SkRasterPipeline::append_constant_color(SkArenaAlloc* alloc, const float rgba[4]) {
// r,g,b might be outside [0,1], but alpha should probably always be in [0,1].
SkASSERT(0 <= rgba[3] && rgba[3] <= 1);
if (rgba[0] == 0 && rgba[1] == 0 && rgba[2] == 0 && rgba[3] == 1) {
this->append(black_color);
} else if (rgba[0] == 1 && rgba[1] == 1 && rgba[2] == 1 && rgba[3] == 1) {
this->append(white_color);
} else {
auto ctx = alloc->make<SkRasterPipeline_UniformColorCtx>();
Sk4f color = Sk4f::Load(rgba);
color.store(&ctx->r);
// uniform_color requires colors in range and can go lowp,
// while unbounded_uniform_color supports out-of-range colors too but not lowp.
if (0 <= rgba[0] && rgba[0] <= rgba[3] &&
0 <= rgba[1] && rgba[1] <= rgba[3] &&
0 <= rgba[2] && rgba[2] <= rgba[3]) {
// To make loads more direct, we store 8-bit values in 16-bit slots.
color = color * 255.0f + 0.5f;
ctx->rgba[0] = (uint16_t)color[0];
ctx->rgba[1] = (uint16_t)color[1];
ctx->rgba[2] = (uint16_t)color[2];
ctx->rgba[3] = (uint16_t)color[3];
this->unchecked_append(uniform_color, ctx);
} else {
this->unchecked_append(unbounded_uniform_color, ctx);
}
}
}
void SkRasterPipeline::append_matrix(SkArenaAlloc* alloc, const SkMatrix& matrix) {
SkMatrix::TypeMask mt = matrix.getType();
if (mt == SkMatrix::kIdentity_Mask) {
return;
}
if (mt == SkMatrix::kTranslate_Mask) {
float* trans = alloc->makeArrayDefault<float>(2);
trans[0] = matrix.getTranslateX();
trans[1] = matrix.getTranslateY();
this->append(SkRasterPipeline::matrix_translate, trans);
} else if ((mt | (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) ==
(SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) {
float* scaleTrans = alloc->makeArrayDefault<float>(4);
scaleTrans[0] = matrix.getScaleX();
scaleTrans[1] = matrix.getScaleY();
scaleTrans[2] = matrix.getTranslateX();
scaleTrans[3] = matrix.getTranslateY();
this->append(SkRasterPipeline::matrix_scale_translate, scaleTrans);
} else {
float* storage = alloc->makeArrayDefault<float>(9);
if (matrix.asAffine(storage)) {
// note: asAffine and the 2x3 stage really only need 6 entries
this->append(SkRasterPipeline::matrix_2x3, storage);
} else {
matrix.get9(storage);
this->append(SkRasterPipeline::matrix_perspective, storage);
}
}
}
void SkRasterPipeline::append_load(SkColorType ct, const SkRasterPipeline_MemoryCtx* ctx) {
switch (ct) {
case kUnknown_SkColorType: SkASSERT(false); break;
case kAlpha_8_SkColorType: this->append(load_a8, ctx); break;
case kRGB_565_SkColorType: this->append(load_565, ctx); break;
case kARGB_4444_SkColorType: this->append(load_4444, ctx); break;
case kRGBA_8888_SkColorType: this->append(load_8888, ctx); break;
case kRGBA_1010102_SkColorType: this->append(load_1010102, ctx); break;
case kRGBA_F16_SkColorType: this->append(load_f16, ctx); break;
case kRGBA_F32_SkColorType: this->append(load_f32, ctx); break;
case kGray_8_SkColorType: this->append(load_a8, ctx);
this->append(alpha_to_gray);
break;
case kRGB_888x_SkColorType: this->append(load_8888, ctx);
this->append(force_opaque);
break;
case kRGB_101010x_SkColorType: this->append(load_1010102, ctx);
this->append(force_opaque);
break;
case kBGRA_8888_SkColorType: this->append(load_8888, ctx);
this->append(swap_rb);
break;
}
}
void SkRasterPipeline::append_load_dst(SkColorType ct, const SkRasterPipeline_MemoryCtx* ctx) {
switch (ct) {
case kUnknown_SkColorType: SkASSERT(false); break;
case kAlpha_8_SkColorType: this->append(load_a8_dst, ctx); break;
case kRGB_565_SkColorType: this->append(load_565_dst, ctx); break;
case kARGB_4444_SkColorType: this->append(load_4444_dst, ctx); break;
case kRGBA_8888_SkColorType: this->append(load_8888_dst, ctx); break;
case kRGBA_1010102_SkColorType: this->append(load_1010102_dst, ctx); break;
case kRGBA_F16_SkColorType: this->append(load_f16_dst, ctx); break;
case kRGBA_F32_SkColorType: this->append(load_f32_dst, ctx); break;
case kGray_8_SkColorType: this->append(load_a8_dst, ctx);
this->append(alpha_to_gray_dst);
break;
case kRGB_888x_SkColorType: this->append(load_8888_dst, ctx);
this->append(force_opaque_dst);
break;
case kRGB_101010x_SkColorType: this->append(load_1010102_dst, ctx);
this->append(force_opaque_dst);
break;
case kBGRA_8888_SkColorType: this->append(load_8888_dst, ctx);
this->append(swap_rb_dst);
break;
}
}
void SkRasterPipeline::append_store(SkColorType ct, const SkRasterPipeline_MemoryCtx* ctx) {
switch (ct) {
case kUnknown_SkColorType: SkASSERT(false); break;
case kAlpha_8_SkColorType: this->append(store_a8, ctx); break;
case kRGB_565_SkColorType: this->append(store_565, ctx); break;
case kARGB_4444_SkColorType: this->append(store_4444, ctx); break;
case kRGBA_8888_SkColorType: this->append(store_8888, ctx); break;
case kRGBA_1010102_SkColorType: this->append(store_1010102, ctx); break;
case kRGBA_F16_SkColorType: this->append(store_f16, ctx); break;
case kRGBA_F32_SkColorType: this->append(store_f32, ctx); break;
case kRGB_888x_SkColorType: this->append(force_opaque);
this->append(store_8888, ctx);
break;
case kRGB_101010x_SkColorType: this->append(force_opaque);
this->append(store_1010102, ctx);
break;
case kGray_8_SkColorType: this->append(luminance_to_alpha);
this->append(store_a8, ctx);
break;
case kBGRA_8888_SkColorType: this->append(swap_rb);
this->append(store_8888, ctx);
break;
}
}
void SkRasterPipeline::append_gamut_clamp_if_normalized(const SkImageInfo& dstInfo) {
if (dstInfo.colorType() != kRGBA_F16_SkColorType &&
dstInfo.colorType() != kRGBA_F32_SkColorType &&
dstInfo.alphaType() == kPremul_SkAlphaType)
{
this->unchecked_append(SkRasterPipeline::clamp_gamut, nullptr);
}
}
SkRasterPipeline::StartPipelineFn SkRasterPipeline::build_pipeline(void** ip) const {
// We'll try to build a lowp pipeline, but if that fails fallback to a highp float pipeline.
void** reset_point = ip;
// Stages are stored backwards in fStages, so we reverse here, back to front.
*--ip = (void*)SkOpts::just_return_lowp;
for (const StageList* st = fStages; st; st = st->prev) {
SkOpts::StageFn fn;
if (!st->rawFunction && (fn = SkOpts::stages_lowp[st->stage])) {
if (st->ctx) {
*--ip = st->ctx;
}
*--ip = (void*)fn;
} else {
ip = reset_point;
break;
}
}
if (ip != reset_point) {
return SkOpts::start_pipeline_lowp;
}
*--ip = (void*)SkOpts::just_return_highp;
for (const StageList* st = fStages; st; st = st->prev) {
if (st->ctx) {
*--ip = st->ctx;
}
if (st->rawFunction) {
*--ip = (void*)st->stage;
} else {
*--ip = (void*)SkOpts::stages_highp[st->stage];
}
}
return SkOpts::start_pipeline_highp;
}
void SkRasterPipeline::run(size_t x, size_t y, size_t w, size_t h) const {
if (this->empty()) {
return;
}
// Best to not use fAlloc here... we can't bound how often run() will be called.
SkAutoSTMalloc<64, void*> program(fSlotsNeeded);
auto start_pipeline = this->build_pipeline(program.get() + fSlotsNeeded);
start_pipeline(x,y,x+w,y+h, program.get());
}
std::function<void(size_t, size_t, size_t, size_t)> SkRasterPipeline::compile() const {
if (this->empty()) {
return [](size_t, size_t, size_t, size_t) {};
}
void** program = fAlloc->makeArray<void*>(fSlotsNeeded);
auto start_pipeline = this->build_pipeline(program + fSlotsNeeded);
return [=](size_t x, size_t y, size_t w, size_t h) {
start_pipeline(x,y,x+w,y+h, program);
};
}