C++程序  |  251行  |  7.32 KB

/*
 * Copyright 2015 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkCodecPriv_DEFINED
#define SkCodecPriv_DEFINED

#include "SkColorData.h"
#include "SkColorTable.h"
#include "SkEncodedInfo.h"
#include "SkEncodedOrigin.h"
#include "SkImageInfo.h"
#include "SkTypes.h"

#ifdef SK_PRINT_CODEC_MESSAGES
    #define SkCodecPrintf SkDebugf
#else
    #define SkCodecPrintf(...)
#endif

// Defined in SkCodec.cpp
bool sk_select_xform_format(SkColorType colorType, bool forColorTable,
                            skcms_PixelFormat* outFormat);

// FIXME: Consider sharing with dm, nanbench, and tools.
static inline float get_scale_from_sample_size(int sampleSize) {
    return 1.0f / ((float) sampleSize);
}

static inline bool is_valid_subset(const SkIRect& subset, const SkISize& imageDims) {
    return SkIRect::MakeSize(imageDims).contains(subset);
}

/*
 * returns a scaled dimension based on the original dimension and the sampleSize
 * NOTE: we round down here for scaled dimension to match the behavior of SkImageDecoder
 * FIXME: I think we should call this get_sampled_dimension().
 */
static inline int get_scaled_dimension(int srcDimension, int sampleSize) {
    if (sampleSize > srcDimension) {
        return 1;
    }
    return srcDimension / sampleSize;
}

/*
 * Returns the first coordinate that we will keep during a scaled decode.
 * The output can be interpreted as an x-coordinate or a y-coordinate.
 *
 * This does not need to be called and is not called when sampleFactor == 1.
 */
static inline int get_start_coord(int sampleFactor) { return sampleFactor / 2; };

/*
 * Given a coordinate in the original image, this returns the corresponding
 * coordinate in the scaled image.  This function is meaningless if
 * IsCoordNecessary returns false.
 * The output can be interpreted as an x-coordinate or a y-coordinate.
 *
 * This does not need to be called and is not called when sampleFactor == 1.
 */
static inline int get_dst_coord(int srcCoord, int sampleFactor) { return srcCoord / sampleFactor; };

/*
 * When scaling, we will discard certain y-coordinates (rows) and
 * x-coordinates (columns).  This function returns true if we should keep the
 * coordinate and false otherwise.
 * The inputs may be x-coordinates or y-coordinates.
 *
 * This does not need to be called and is not called when sampleFactor == 1.
 */
static inline bool is_coord_necessary(int srcCoord, int sampleFactor, int scaledDim) {
    // Get the first coordinate that we want to keep
    int startCoord = get_start_coord(sampleFactor);

    // Return false on edge cases
    if (srcCoord < startCoord || get_dst_coord(srcCoord, sampleFactor) >= scaledDim) {
        return false;
    }

    // Every sampleFactor rows are necessary
    return ((srcCoord - startCoord) % sampleFactor) == 0;
}

static inline bool valid_alpha(SkAlphaType dstAlpha, bool srcIsOpaque) {
    if (kUnknown_SkAlphaType == dstAlpha) {
        return false;
    }

    if (srcIsOpaque) {
        if (kOpaque_SkAlphaType != dstAlpha) {
            SkCodecPrintf("Warning: an opaque image should be decoded as opaque "
                          "- it is being decoded as non-opaque, which will draw slower\n");
        }
        return true;
    }

    return dstAlpha != kOpaque_SkAlphaType;
}

/*
 * If there is a color table, get a pointer to the colors, otherwise return nullptr
 */
static inline const SkPMColor* get_color_ptr(SkColorTable* colorTable) {
     return nullptr != colorTable ? colorTable->readColors() : nullptr;
}

/*
 * Compute row bytes for an image using pixels per byte
 */
static inline size_t compute_row_bytes_ppb(int width, uint32_t pixelsPerByte) {
    return (width + pixelsPerByte - 1) / pixelsPerByte;
}

/*
 * Compute row bytes for an image using bytes per pixel
 */
static inline size_t compute_row_bytes_bpp(int width, uint32_t bytesPerPixel) {
    return width * bytesPerPixel;
}

/*
 * Compute row bytes for an image
 */
static inline size_t compute_row_bytes(int width, uint32_t bitsPerPixel) {
    if (bitsPerPixel < 16) {
        SkASSERT(0 == 8 % bitsPerPixel);
        const uint32_t pixelsPerByte = 8 / bitsPerPixel;
        return compute_row_bytes_ppb(width, pixelsPerByte);
    } else {
        SkASSERT(0 == bitsPerPixel % 8);
        const uint32_t bytesPerPixel = bitsPerPixel / 8;
        return compute_row_bytes_bpp(width, bytesPerPixel);
    }
}

/*
 * Get a byte from a buffer
 * This method is unsafe, the caller is responsible for performing a check
 */
static inline uint8_t get_byte(uint8_t* buffer, uint32_t i) {
    return buffer[i];
}

/*
 * Get a short from a buffer
 * This method is unsafe, the caller is responsible for performing a check
 */
static inline uint16_t get_short(uint8_t* buffer, uint32_t i) {
    uint16_t result;
    memcpy(&result, &(buffer[i]), 2);
#ifdef SK_CPU_BENDIAN
    return SkEndianSwap16(result);
#else
    return result;
#endif
}

/*
 * Get an int from a buffer
 * This method is unsafe, the caller is responsible for performing a check
 */
static inline uint32_t get_int(uint8_t* buffer, uint32_t i) {
    uint32_t result;
    memcpy(&result, &(buffer[i]), 4);
#ifdef SK_CPU_BENDIAN
    return SkEndianSwap32(result);
#else
    return result;
#endif
}

/*
 * @param data           Buffer to read bytes from
 * @param isLittleEndian Output parameter
 *                       Indicates if the data is little endian
 *                       Is unaffected on false returns
 */
static inline bool is_valid_endian_marker(const uint8_t* data, bool* isLittleEndian) {
    // II indicates Intel (little endian) and MM indicates motorola (big endian).
    if (('I' != data[0] || 'I' != data[1]) && ('M' != data[0] || 'M' != data[1])) {
        return false;
    }

    *isLittleEndian = ('I' == data[0]);
    return true;
}

static inline uint16_t get_endian_short(const uint8_t* data, bool littleEndian) {
    if (littleEndian) {
        return (data[1] << 8) | (data[0]);
    }

    return (data[0] << 8) | (data[1]);
}

static inline SkPMColor premultiply_argb_as_rgba(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
    if (a != 255) {
        r = SkMulDiv255Round(r, a);
        g = SkMulDiv255Round(g, a);
        b = SkMulDiv255Round(b, a);
    }

    return SkPackARGB_as_RGBA(a, r, g, b);
}

static inline SkPMColor premultiply_argb_as_bgra(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
    if (a != 255) {
        r = SkMulDiv255Round(r, a);
        g = SkMulDiv255Round(g, a);
        b = SkMulDiv255Round(b, a);
    }

    return SkPackARGB_as_BGRA(a, r, g, b);
}

static inline bool is_rgba(SkColorType colorType) {
#ifdef SK_PMCOLOR_IS_RGBA
    return (kBGRA_8888_SkColorType != colorType);
#else
    return (kRGBA_8888_SkColorType == colorType);
#endif
}

// Method for coverting to a 32 bit pixel.
typedef uint32_t (*PackColorProc)(U8CPU a, U8CPU r, U8CPU g, U8CPU b);

static inline PackColorProc choose_pack_color_proc(bool isPremul, SkColorType colorType) {
    bool isRGBA = is_rgba(colorType);
    if (isPremul) {
        if (isRGBA) {
            return &premultiply_argb_as_rgba;
        } else {
            return &premultiply_argb_as_bgra;
        }
    } else {
        if (isRGBA) {
            return &SkPackARGB_as_RGBA;
        } else {
            return &SkPackARGB_as_BGRA;
        }
    }
}

bool is_orientation_marker(const uint8_t* data, size_t data_length, SkEncodedOrigin* orientation);

#endif // SkCodecPriv_DEFINED