/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRandom.h"
#include "SkTInternalLList.h"
#include "SkTLList.h"
#include "Test.h"
class ListElement {
public:
ListElement(int id) : fID(id) {
}
bool operator== (const ListElement& other) { return fID == other.fID; }
int fID;
private:
SK_DECLARE_INTERNAL_LLIST_INTERFACE(ListElement);
};
static void check_list(const SkTInternalLList<ListElement>& list,
skiatest::Reporter* reporter,
bool empty,
int numElements,
bool in0, bool in1, bool in2, bool in3,
ListElement elements[4]) {
REPORTER_ASSERT(reporter, empty == list.isEmpty());
#ifdef SK_DEBUG
list.validate();
REPORTER_ASSERT(reporter, numElements == list.countEntries());
REPORTER_ASSERT(reporter, in0 == list.isInList(&elements[0]));
REPORTER_ASSERT(reporter, in1 == list.isInList(&elements[1]));
REPORTER_ASSERT(reporter, in2 == list.isInList(&elements[2]));
REPORTER_ASSERT(reporter, in3 == list.isInList(&elements[3]));
#endif
}
static void test_tinternallist(skiatest::Reporter* reporter) {
SkTInternalLList<ListElement> list;
ListElement elements[4] = {
ListElement(0),
ListElement(1),
ListElement(2),
ListElement(3),
};
// list should be empty to start with
check_list(list, reporter, true, 0, false, false, false, false, elements);
list.addToHead(&elements[0]);
check_list(list, reporter, false, 1, true, false, false, false, elements);
list.addToHead(&elements[1]);
list.addToHead(&elements[2]);
list.addToHead(&elements[3]);
check_list(list, reporter, false, 4, true, true, true, true, elements);
// test out iterators
typedef SkTInternalLList<ListElement>::Iter Iter;
Iter iter;
ListElement* cur = iter.init(list, Iter::kHead_IterStart);
for (int i = 0; cur; ++i, cur = iter.next()) {
REPORTER_ASSERT(reporter, cur->fID == 3-i);
}
cur = iter.init(list, Iter::kTail_IterStart);
for (int i = 0; cur; ++i, cur = iter.prev()) {
REPORTER_ASSERT(reporter, cur->fID == i);
}
// remove middle, frontmost then backmost
list.remove(&elements[1]);
list.remove(&elements[3]);
list.remove(&elements[0]);
check_list(list, reporter, false, 1, false, false, true, false, elements);
// remove last element
list.remove(&elements[2]);
// list should be empty again
check_list(list, reporter, true, 0, false, false, false, false, elements);
// test out methods that add to the middle of the list.
list.addAfter(&elements[1], nullptr);
check_list(list, reporter, false, 1, false, true, false, false, elements);
list.remove(&elements[1]);
list.addBefore(&elements[1], nullptr);
check_list(list, reporter, false, 1, false, true, false, false, elements);
list.addBefore(&elements[0], &elements[1]);
check_list(list, reporter, false, 2, true, true, false, false, elements);
list.addAfter(&elements[3], &elements[1]);
check_list(list, reporter, false, 3, true, true, false, true, elements);
list.addBefore(&elements[2], &elements[3]);
check_list(list, reporter, false, 4, true, true, true, true, elements);
cur = iter.init(list, Iter::kHead_IterStart);
for (int i = 0; cur; ++i, cur = iter.next()) {
REPORTER_ASSERT(reporter, cur->fID == i);
}
while (!list.isEmpty()) {
list.remove(list.tail());
}
// test concat.
SkTInternalLList<ListElement> listA, listB;
listA.concat(std::move(listB));
check_list(listA, reporter, true, 0, false, false, false, false, elements);
// NOLINTNEXTLINE(bugprone-use-after-move)
check_list(listB, reporter, true, 0, false, false, false, false, elements);
listB.addToTail(&elements[0]);
listA.concat(std::move(listB));
check_list(listA, reporter, false, 1, true, false, false, false, elements);
// NOLINTNEXTLINE(bugprone-use-after-move)
check_list(listB, reporter, true, 0, false, false, false, false, elements);
listB.addToTail(&elements[1]);
listA.concat(std::move(listB));
check_list(listA, reporter, false, 2, true, true, false, false, elements);
// NOLINTNEXTLINE(bugprone-use-after-move)
check_list(listB, reporter, true, 0, false, false, false, false, elements);
listA.concat(std::move(listB));
check_list(listA, reporter, false, 2, true, true, false, false, elements);
// NOLINTNEXTLINE(bugprone-use-after-move)
check_list(listB, reporter, true, 0, false, false, false, false, elements);
listB.addToTail(&elements[2]);
listB.addToTail(&elements[3]);
listA.concat(std::move(listB));
check_list(listA, reporter, false, 4, true, true, true, true, elements);
// NOLINTNEXTLINE(bugprone-use-after-move)
check_list(listB, reporter, true, 0, false, false, false, false, elements);
cur = iter.init(listA, Iter::kHead_IterStart);
for (int i = 0; cur; ++i, cur = iter.next()) {
REPORTER_ASSERT(reporter, cur->fID == i);
}
}
template <unsigned int N> static void test_tllist(skiatest::Reporter* reporter) {
typedef SkTLList<ListElement, N> ElList;
typedef typename ElList::Iter Iter;
SkRandom random;
ElList list1;
ElList list2;
Iter iter1;
Iter iter2;
Iter iter3;
Iter iter4;
REPORTER_ASSERT(reporter, list1.isEmpty());
REPORTER_ASSERT(reporter, nullptr == iter1.init(list1, Iter::kHead_IterStart));
REPORTER_ASSERT(reporter, nullptr == iter1.init(list1, Iter::kTail_IterStart));
// Try popping an empty list
list1.popHead();
list1.popTail();
REPORTER_ASSERT(reporter, list1.isEmpty());
REPORTER_ASSERT(reporter, list1 == list2);
// Create two identical lists, one by appending to head and the other to the tail.
list1.addToHead(ListElement(1));
list2.addToTail(ListElement(1));
iter1.init(list1, Iter::kHead_IterStart);
iter2.init(list1, Iter::kTail_IterStart);
REPORTER_ASSERT(reporter, iter1.get()->fID == iter2.get()->fID);
iter3.init(list2, Iter::kHead_IterStart);
iter4.init(list2, Iter::kTail_IterStart);
REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, list1 == list2);
list2.reset();
// use both before/after in-place construction on an empty list
list2.addBefore(list2.headIter(), 1);
REPORTER_ASSERT(reporter, list2 == list1);
list2.reset();
list2.addAfter(list2.tailIter(), 1);
REPORTER_ASSERT(reporter, list2 == list1);
// add an element to the second list, check that iters are still valid
iter3.init(list2, Iter::kHead_IterStart);
iter4.init(list2, Iter::kTail_IterStart);
list2.addToHead(ListElement(2));
REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, 1 == Iter(list2, Iter::kTail_IterStart).get()->fID);
REPORTER_ASSERT(reporter, 2 == Iter(list2, Iter::kHead_IterStart).get()->fID);
REPORTER_ASSERT(reporter, list1 != list2);
list1.addToHead(ListElement(2));
REPORTER_ASSERT(reporter, list1 == list2);
REPORTER_ASSERT(reporter, !list1.isEmpty());
list1.reset();
list2.reset();
REPORTER_ASSERT(reporter, list1.isEmpty() && list2.isEmpty());
// randomly perform insertions and deletions on a list and perform tests
int count = 0;
for (int j = 0; j < 100; ++j) {
if (list1.isEmpty() || random.nextBiasedBool(3 * SK_Scalar1 / 4)) {
int id = j;
// Choose one of three ways to insert a new element: at the head, at the tail,
// before a random element, after a random element
int numValidMethods = 0 == count ? 2 : 4;
int insertionMethod = random.nextULessThan(numValidMethods);
switch (insertionMethod) {
case 0:
list1.addToHead(ListElement(id));
break;
case 1:
list1.addToTail(ListElement(id));
break;
case 2: // fallthru to share code that picks random element.
case 3: {
int n = random.nextULessThan(list1.count());
Iter iter = list1.headIter();
// remember the elements before/after the insertion point.
while (n--) {
iter.next();
}
Iter prev(iter);
Iter next(iter);
next.next();
prev.prev();
SkASSERT(iter.get());
// insert either before or after the iterator, then check that the
// surrounding sequence is correct.
if (2 == insertionMethod) {
list1.addBefore(iter, id);
Iter newItem(iter);
newItem.prev();
REPORTER_ASSERT(reporter, newItem.get()->fID == id);
if (next.get()) {
REPORTER_ASSERT(reporter, next.prev()->fID == iter.get()->fID);
}
if (prev.get()) {
REPORTER_ASSERT(reporter, prev.next()->fID == id);
}
} else {
list1.addAfter(iter, id);
Iter newItem(iter);
newItem.next();
REPORTER_ASSERT(reporter, newItem.get()->fID == id);
if (next.get()) {
REPORTER_ASSERT(reporter, next.prev()->fID == id);
}
if (prev.get()) {
REPORTER_ASSERT(reporter, prev.next()->fID == iter.get()->fID);
}
}
}
}
++count;
} else {
// walk to a random place either forward or backwards and remove.
int n = random.nextULessThan(list1.count());
typename Iter::IterStart start;
ListElement* (Iter::*incrFunc)();
if (random.nextBool()) {
start = Iter::kHead_IterStart;
incrFunc = &Iter::next;
} else {
start = Iter::kTail_IterStart;
incrFunc = &Iter::prev;
}
// find the element
Iter iter(list1, start);
while (n--) {
REPORTER_ASSERT(reporter, iter.get());
(iter.*incrFunc)();
}
REPORTER_ASSERT(reporter, iter.get());
// remember the prev and next elements from the element to be removed
Iter prev = iter;
Iter next = iter;
prev.prev();
next.next();
list1.remove(iter.get());
// make sure the remembered next/prev iters still work
Iter pn = prev; pn.next();
Iter np = next; np.prev();
// pn should match next unless the target node was the head, in which case prev
// walked off the list.
REPORTER_ASSERT(reporter, pn.get() == next.get() || nullptr == prev.get());
// Similarly, np should match prev unless next originally walked off the tail.
REPORTER_ASSERT(reporter, np.get() == prev.get() || nullptr == next.get());
--count;
}
REPORTER_ASSERT(reporter, count == list1.count());
}
}
DEF_TEST(LList, reporter) {
test_tinternallist(reporter);
test_tllist<1>(reporter);
test_tllist<3>(reporter);
test_tllist<8>(reporter);
test_tllist<10>(reporter);
test_tllist<16>(reporter);
}