/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkOpSegment.h"
#include "SkOpSpan.h"
#include "SkPathOpsPoint.h"
#include "SkPathWriter.h"
#include "SkTSort.h"
// wrap path to keep track of whether the contour is initialized and non-empty
SkPathWriter::SkPathWriter(SkPath& path)
: fPathPtr(&path)
{
init();
}
void SkPathWriter::close() {
if (fCurrent.isEmpty()) {
return;
}
SkASSERT(this->isClosed());
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("path.close();\n");
#endif
fCurrent.close();
fPathPtr->addPath(fCurrent);
fCurrent.reset();
init();
}
void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) {
SkPoint pt2pt = this->update(pt2);
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n",
pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY, weight);
#endif
fCurrent.conicTo(pt1, pt2pt, weight);
}
void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) {
SkPoint pt3pt = this->update(pt3);
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3pt.fX, pt3pt.fY);
#endif
fCurrent.cubicTo(pt1, pt2, pt3pt);
}
bool SkPathWriter::deferredLine(const SkOpPtT* pt) {
SkASSERT(fFirstPtT);
SkASSERT(fDefer[0]);
if (fDefer[0] == pt) {
// FIXME: why we're adding a degenerate line? Caller should have preflighted this.
return true;
}
if (pt->contains(fDefer[0])) {
// FIXME: why we're adding a degenerate line?
return true;
}
if (this->matchedLast(pt)) {
return false;
}
if (fDefer[1] && this->changedSlopes(pt)) {
this->lineTo();
fDefer[0] = fDefer[1];
}
fDefer[1] = pt;
return true;
}
void SkPathWriter::deferredMove(const SkOpPtT* pt) {
if (!fDefer[1]) {
fFirstPtT = fDefer[0] = pt;
return;
}
SkASSERT(fDefer[0]);
if (!this->matchedLast(pt)) {
this->finishContour();
fFirstPtT = fDefer[0] = pt;
}
}
void SkPathWriter::finishContour() {
if (!this->matchedLast(fDefer[0])) {
if (!fDefer[1]) {
return;
}
this->lineTo();
}
if (fCurrent.isEmpty()) {
return;
}
if (this->isClosed()) {
this->close();
} else {
SkASSERT(fDefer[1]);
fEndPtTs.push_back(fFirstPtT);
fEndPtTs.push_back(fDefer[1]);
fPartials.push_back(fCurrent);
this->init();
}
}
void SkPathWriter::init() {
fCurrent.reset();
fFirstPtT = fDefer[0] = fDefer[1] = nullptr;
}
bool SkPathWriter::isClosed() const {
return this->matchedLast(fFirstPtT);
}
void SkPathWriter::lineTo() {
if (fCurrent.isEmpty()) {
this->moveTo();
}
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY);
#endif
fCurrent.lineTo(fDefer[1]->fPt);
}
bool SkPathWriter::matchedLast(const SkOpPtT* test) const {
if (test == fDefer[1]) {
return true;
}
if (!test) {
return false;
}
if (!fDefer[1]) {
return false;
}
return test->contains(fDefer[1]);
}
void SkPathWriter::moveTo() {
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY);
#endif
fCurrent.moveTo(fFirstPtT->fPt);
}
void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) {
SkPoint pt2pt = this->update(pt2);
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY);
#endif
fCurrent.quadTo(pt1, pt2pt);
}
// if last point to be written matches the current path's first point, alter the
// last to avoid writing a degenerate lineTo when the path is closed
SkPoint SkPathWriter::update(const SkOpPtT* pt) {
if (!fDefer[1]) {
this->moveTo();
} else if (!this->matchedLast(fDefer[0])) {
this->lineTo();
}
SkPoint result = pt->fPt;
if (fFirstPtT && result != fFirstPtT->fPt && fFirstPtT->contains(pt)) {
result = fFirstPtT->fPt;
}
fDefer[0] = fDefer[1] = pt; // set both to know that there is not a pending deferred line
return result;
}
bool SkPathWriter::someAssemblyRequired() {
this->finishContour();
return fEndPtTs.count() > 0;
}
bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const {
if (matchedLast(fDefer[0])) {
return false;
}
SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt;
SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt;
return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX;
}
class DistanceLessThan {
public:
DistanceLessThan(double* distances) : fDistances(distances) { }
double* fDistances;
bool operator()(const int one, const int two) {
return fDistances[one] < fDistances[two];
}
};
/*
check start and end of each contour
if not the same, record them
match them up
connect closest
reassemble contour pieces into new path
*/
void SkPathWriter::assemble() {
#if DEBUG_SHOW_TEST_NAME
SkDebugf("</div>\n");
#endif
if (!this->someAssemblyRequired()) {
return;
}
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s\n", __FUNCTION__);
#endif
SkOpPtT const* const* runs = fEndPtTs.begin(); // starts, ends of partial contours
int endCount = fEndPtTs.count(); // all starts and ends
SkASSERT(endCount > 0);
SkASSERT(endCount == fPartials.count() * 2);
#if DEBUG_ASSEMBLE
for (int index = 0; index < endCount; index += 2) {
const SkOpPtT* eStart = runs[index];
const SkOpPtT* eEnd = runs[index + 1];
SkASSERT(eStart != eEnd);
SkASSERT(!eStart->contains(eEnd));
SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__,
eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY);
}
#endif
// lengthen any partial contour adjacent to a simple segment
for (int pIndex = 0; pIndex < endCount; pIndex++) {
SkOpPtT* opPtT = const_cast<SkOpPtT*>(runs[pIndex]);
SkPath dummy;
SkPathWriter partWriter(dummy);
do {
if (!zero_or_one(opPtT->fT)) {
break;
}
SkOpSpanBase* opSpanBase = opPtT->span();
SkOpSpanBase* start = opPtT->fT ? opSpanBase->prev() : opSpanBase->upCast()->next();
int step = opPtT->fT ? 1 : -1;
const SkOpSegment* opSegment = opSpanBase->segment();
const SkOpSegment* nextSegment = opSegment->isSimple(&start, &step);
if (!nextSegment) {
break;
}
SkOpSpanBase* opSpanEnd = start->t() ? start->prev() : start->upCast()->next();
if (start->starter(opSpanEnd)->alreadyAdded()) {
break;
}
nextSegment->addCurveTo(start, opSpanEnd, &partWriter);
opPtT = opSpanEnd->ptT();
SkOpPtT** runsPtr = const_cast<SkOpPtT**>(&runs[pIndex]);
*runsPtr = opPtT;
} while (true);
partWriter.finishContour();
const SkTArray<SkPath>& partPartials = partWriter.partials();
if (!partPartials.count()) {
continue;
}
// if pIndex is even, reverse and prepend to fPartials; otherwise, append
SkPath& partial = const_cast<SkPath&>(fPartials[pIndex >> 1]);
const SkPath& part = partPartials[0];
if (pIndex & 1) {
partial.addPath(part, SkPath::kExtend_AddPathMode);
} else {
SkPath reverse;
reverse.reverseAddPath(part);
reverse.addPath(partial, SkPath::kExtend_AddPathMode);
partial = reverse;
}
}
SkTDArray<int> sLink, eLink;
int linkCount = endCount / 2; // number of partial contours
sLink.append(linkCount);
eLink.append(linkCount);
int rIndex, iIndex;
for (rIndex = 0; rIndex < linkCount; ++rIndex) {
sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
}
const int entries = endCount * (endCount - 1) / 2; // folded triangle
SkSTArray<8, double, true> distances(entries);
SkSTArray<8, int, true> sortedDist(entries);
SkSTArray<8, int, true> distLookup(entries);
int rRow = 0;
int dIndex = 0;
for (rIndex = 0; rIndex < endCount - 1; ++rIndex) {
const SkOpPtT* oPtT = runs[rIndex];
for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) {
const SkOpPtT* iPtT = runs[iIndex];
double dx = iPtT->fPt.fX - oPtT->fPt.fX;
double dy = iPtT->fPt.fY - oPtT->fPt.fY;
double dist = dx * dx + dy * dy;
distLookup.push_back(rRow + iIndex);
distances.push_back(dist); // oStart distance from iStart
sortedDist.push_back(dIndex++);
}
rRow += endCount;
}
SkASSERT(dIndex == entries);
SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
int remaining = linkCount; // number of start/end pairs
for (rIndex = 0; rIndex < entries; ++rIndex) {
int pair = sortedDist[rIndex];
pair = distLookup[pair];
int row = pair / endCount;
int col = pair - row * endCount;
int ndxOne = row >> 1;
bool endOne = row & 1;
int* linkOne = endOne ? eLink.begin() : sLink.begin();
if (linkOne[ndxOne] != SK_MaxS32) {
continue;
}
int ndxTwo = col >> 1;
bool endTwo = col & 1;
int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
if (linkTwo[ndxTwo] != SK_MaxS32) {
continue;
}
SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
bool flip = endOne == endTwo;
linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
if (!--remaining) {
break;
}
}
SkASSERT(!remaining);
#if DEBUG_ASSEMBLE
for (rIndex = 0; rIndex < linkCount; ++rIndex) {
int s = sLink[rIndex];
int e = eLink[rIndex];
SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
}
#endif
rIndex = 0;
do {
bool forward = true;
bool first = true;
int sIndex = sLink[rIndex];
SkASSERT(sIndex != SK_MaxS32);
sLink[rIndex] = SK_MaxS32;
int eIndex;
if (sIndex < 0) {
eIndex = sLink[~sIndex];
sLink[~sIndex] = SK_MaxS32;
} else {
eIndex = eLink[sIndex];
eLink[sIndex] = SK_MaxS32;
}
SkASSERT(eIndex != SK_MaxS32);
#if DEBUG_ASSEMBLE
SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
eIndex < 0 ? ~eIndex : eIndex);
#endif
do {
const SkPath& contour = fPartials[rIndex];
if (!first) {
SkPoint prior, next;
if (!fPathPtr->getLastPt(&prior)) {
return;
}
if (forward) {
next = contour.getPoint(0);
} else {
SkAssertResult(contour.getLastPt(&next));
}
if (prior != next) {
/* TODO: if there is a gap between open path written so far and path to come,
connect by following segments from one to the other, rather than introducing
a diagonal to connect the two.
*/
SkDebugf("");
}
}
if (forward) {
fPathPtr->addPath(contour,
first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode);
} else {
SkASSERT(!first);
fPathPtr->reversePathTo(contour);
}
if (first) {
first = false;
}
#if DEBUG_ASSEMBLE
SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
#endif
if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
fPathPtr->close();
break;
}
if (forward) {
eIndex = eLink[rIndex];
SkASSERT(eIndex != SK_MaxS32);
eLink[rIndex] = SK_MaxS32;
if (eIndex >= 0) {
SkASSERT(sLink[eIndex] == rIndex);
sLink[eIndex] = SK_MaxS32;
} else {
SkASSERT(eLink[~eIndex] == ~rIndex);
eLink[~eIndex] = SK_MaxS32;
}
} else {
eIndex = sLink[rIndex];
SkASSERT(eIndex != SK_MaxS32);
sLink[rIndex] = SK_MaxS32;
if (eIndex >= 0) {
SkASSERT(eLink[eIndex] == rIndex);
eLink[eIndex] = SK_MaxS32;
} else {
SkASSERT(sLink[~eIndex] == ~rIndex);
sLink[~eIndex] = SK_MaxS32;
}
}
rIndex = eIndex;
if (rIndex < 0) {
forward ^= 1;
rIndex = ~rIndex;
}
} while (true);
for (rIndex = 0; rIndex < linkCount; ++rIndex) {
if (sLink[rIndex] != SK_MaxS32) {
break;
}
}
} while (rIndex < linkCount);
#if DEBUG_ASSEMBLE
for (rIndex = 0; rIndex < linkCount; ++rIndex) {
SkASSERT(sLink[rIndex] == SK_MaxS32);
SkASSERT(eLink[rIndex] == SK_MaxS32);
}
#endif
return;
}